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Abstract

In this paper, another version of the star cube called the generalized-star cube, GSC(n, k,m),
is presented as a three level interconnection topology. GSC(n, k,m) is a product graph of the
(n, k)-star graph and the m-dimensional hypercube (m-cube). It can be constructed in one of
two ways: to replace each node in an m-cube with an (n, k)-star graph, or to replace each node
in an (n, k)-star graph with an m-cube. Because there are three parameters m, n, and k, the
network size of GSC(n, k,m) can be changed more flexibly than the star graph, star-cube, and
(n, k)-star graph. We first investigate the topological properties of the GSC(n, k,m), such as
the node degree, diameter, average distance, and cost. Also, the regularity and node symmetry
of the GSC(n, k,m) are derived. Next, we present a formal shortest-path routing algorithm.
Then, we give broadcasting algorithms for both of the single-port and all-port models. To
develop these algorithms, we use the spanning binomial tree, the neighborhood broadcasting
algorithm, and the minimum dominating set. The complexities of the routing and broadcasting
algorithms are also examined.

1 Introduction

In recent years, study of parallel and distributed computing has been featured as one of the important
research themes. Especially, there is increasing interest in large scale parallel computing. For such
parallel computing systems, the wide variety of interconnection topologies were proposed. Among
them, the hypercube [22] structure has been widely used because of its elegant topological properties
and the ability to emulate a wide variety of other frequently used networks.

However, conventional hypercube network is not a good candidate for such large scale networks
because hypercube has a major drawback. That is, the number of communication links for each
node is a logarithmic function of the number of nodes in the network. To alleviate this drawback,
several variations of the hypercube have been proposed in the literature. Cube-connected cycles [20]
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and reduced hypercube [25] focused on the reduction of the number of links of the hypercube.
Hierarchical cubic network [12] focused on reductions of the number of links and the diameter of
the hypercube. These topologies are the modification of the hypercube in one way or another with
motivation to improve some of its properties.

In such circumstances, [4] and [3] pointed out that many of these properties of the hypercube are
in fact group theoretic properties possessed by a large class of networks called Cayley graphs. Some
Cayley graphs not only possess all these properties but even offer a better degree and diameter than
the hypercube. The star graph is an important class of Cayley graph and an attractive alternative
to the hypercube in lower degree and shorter diameter [3]. Additionally, we can find multiple
disjoint paths in n-star graph and its each data or replica (copy data) can be placed in a distinct
(n−1)-star, so we can realize balanced data/replica distribution among peers on the network. These
fascinating properties have promoted extension of the star graph such as the contracted star graph
for P2P overlay networks by Fujita [10]. Furthermore, Fujita provided a P2P DHT as his advanced
work [11]. In the work, Fujita gave a scheme of mapping from a given key to a vertex on the proposed
overlay network.

However, star graph has also a major drawback such that the network size is restricted on the
choice of the total number of nodes by n!. To mitigate the restriction of the significant gap between
the two consecutive sizes of nodes n! in the n-star graph, the incomplete star [15] and arrangement
graphs [8] have been proposed. However, the incomplete star is a non-symmetric and irregular graph
and the arrangement graphs have a problem of the very high node degree. These problems restrict
the adoption of these topologies to the practical system design. To solve these problems, (n, k)-star
graph [6] and star-cube [24] are proposed.

By generalizing the star graph with another parameter k, we can obtain the (n, k)-star graph.
In this graph, two parameters n and k are used to control the number of nodes, thus making it
convenient to design a network with a desirable size and a better degree/diameter trade-off than
the star graph. The star-cube is a product graph based on the star graph and the hypercube and
inherits all the attractive properties from both topologies. In this graph, two parameters of star
graph n and hypercube m are used to control the network size. Therefore, its size grows in smaller
steps than the star graph.

For any interconnection network, we can classify it as either a single-port model or all-port model,
depending on how a node communicates with its neighbors. In the single-port model, in one step,
a node can send (receive) a message to (from) one and only one of its neighbor nodes. Meanwhile,
in the all-port model, in one step, a node can send (receive) messages to (from) all of its neighbor
nodes.

One of the simplest and most fundamental collective communication operations is one-to-all
broadcasting. In one-to-all broadcast, a source node sends a message to all nodes. Nowadays,
it is a standard component of parallel software libraries and is supported in hardware in many
commercial parallel computers. One-to-all broadcast algorithm is used in many parallel algorithms,
such as vector-matrix multiplication, Gaussian elimination, LU (lower upper) factorization, and
Householder transformations [18].

A similar problem which has been studied is the problem of neighborhood broadcasting. It is
an algorithm to send a message from a node to its all neighbors. It is clear for any interconnection
network with N nodes, on a single-port model, that the problem of broadcasting has a trivial
lower bound of Ω(logN) because in one step, the number of informed nodes can double at most.
Similarly, the problem of neighborhood broadcasting has a trivial lower bound of Ω(logn) where
n is the degree of the source node. It is also clear for any interconnection network, on an all-port
model, that a trivial lower bound for the problem of broadcasting is the diameter of the network
and the neighborhood broadcasting can be done in one step.

In this paper, we propose a new interconnection network called the generalized-star cube (GSC)
with three parameters n, k, and m. A GSC(n, k,m) network consists of 2mn!/(n− k)! nodes with
a degree of m + n − 1 and a diameter of m + 2k − 1 for k ≤ ⌊n/2⌋ and m + k + ⌊(n − 1)/2⌋ for
k > ⌊n/2⌋. GSC(n, k,m) is a product graph based on the (n, k)-star graph and m-dimensional
hypercube. Using these three parameters, compared to star graph, star-cube, and (n, k)-star, the
network size of GSC(n, k,m) can be changed flexibly. We also address graph-theoretic properties of
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GSC(n, k,m). Additionally, a shortest-path routing algorithm and broadcasting algorithms for both
of the single-port and all-port models for GSC(n, k,m) are established. For these routing algorithms,
we separate them into hypercube part and (n, k)-star graph part and use existing optimal algorithms.
In the shortest-path routing, both algorithms for hypercube and (n, k)-star graph are simple, so the
routing algorithm for the product graph of them is also simple. In broadcasting algorithms at both
of the single-port and all-port models, we use spanning binomial tree for hypercube part. On the
other hand, in (n, k)-star graph part, on the single-port model, we use a neighborhood broadcasting
algorithm, and on the all-port model, we use minimum dominating set. As a result, we derived
optimal algorithms for these three-type routing problems.

The rest of this paper is organized as follows. Section 2 introduces the related works. Section 3
proposes the generalized-star cube and investigates properties of the generalized-star cube. Section 4
gives a shortest-path routing algorithm. Sections 5 and 6 describes two broadcasting algorithms on
single-port and all-port models, respectively. And the final section concludes the paper.

2 Preliminaries

This section introduces some interconnection topologies which have a close relation with the proposed
generalized-star cube topology.

2.1 Hypercube

The n-dimensional hypercube [22], n-cube for short, has 2n nodes and n edges per node. Each
n-cube node is assigned with a unique n-bit binary address. Two nodes are connected through an
edge if and only if their binary addresses differ in a single bit. In addition to this property, n-cube
has other elegant topological properties. For example, the strong connectivity, regularity, symmetry,
embeddability, partitionability, maximal fault-tolerance, strong resilience, and simple routing are
attractive properties of the hypercube. Figures 1(a) and (b) show a 2-cube and a 4-cube, respectively.
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Figure 1: Hypercubes

2.2 Star Graph

The n-dimensional star graph (n-star) [3] is composed of an integer set {x1, x2, x3, . . . , xn}, where
xi 6= xj for i, j = 1, 2, 3, . . . , n. In this graph, each node is represented as an n-permutation so
that the total number nodes is n!. The node degree is n − 1 and the diameter is ⌊3(n − 1)/2⌋.
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A node in an n-star is adjacent to n − 1 neighbors if their symbols differ in the first and another
positions. That is, two permutations, 〈a1a2. . .an〉 and 〈b1b2. . .bn〉, are connected if and only if
a1 = bi, ai = b1, and aj = bj for i 6= 1 and j /∈ {1, i}. Some of important features of the star
graph are fault-tolerance, partitionability, node-disjoint parallel paths, vertex/edge symmetry, and
strongly hierarchical structure, as are the case with the properties of the hypercube. Figures 2(a)
and (b) show a 3-star and a 4-star, respectively. Compared to hypercube the star graph has a lower
node degree, a shorter diameter, and a smaller average distance in a system with similar number of
nodes.

4231

32412431

2341

4321

3421

(*1)

1324

23143124

32142134

1234

(*4)

2143

4123 1243

1423 4213

2413

(*3)

1432 4312

3412

1342

3142

4132
(*2)

132

231312

321213

123

(a) 3-star (b) 4-star

Figure 2: Star graphs

2.3 (n, k)-Star Graph

The (n, k)-star graph is a generalization of the star graph topology [6, 7]. An (n, k)-star graph,
denoted by S(n, k), is regular of degree n− 1 and specified by two integers n and k with 1 ≤ k < n.
The node set of S(n, k) is a set of all k-permutations of n, denoted by {p1p2. . .pk | pi ∈ 〈n〉 and
pi 6= pj for i 6= j}, where 〈n〉 = {1, 2, . . . , n}. A node p = 〈p1p2. . .pi. . .pk〉 is adjacent to the
neighbors as follows: (1) 〈pip2. . .p1. . .pk〉 through an edge of dimension i, where 2 ≤ i ≤ k (swap
p1 and pi); this kind of edges are referred to as i-edges, and (2) 〈xp2. . .pi. . .pk〉 through an edge
of dimension 1, where x ∈ 〈n〉 − {pi | 1 ≤ i ≤ k}; this kind of edges are referred to as 1-edges.
The number of nodes in the (n, k)-star is n!/(n− k)! and the diameter is 2k − 1 for k ≤ ⌊n/2⌋ and
k + ⌊(n − 1)/2⌋ for k ≥ ⌊n/2⌋ + 1. Figure 3 shows an S(4,2). The (n, k)-star graph shares many
attractive properties with the n-star graph such as node symmetry, low degree, small diameter,
hierarchical structure, maximal fault tolerance, and simple shortest path routing. In addition, when
k = n − 1, S(n, n − 1) is isomorphic to the n-star. This implies that the n-star graph is a special
case of the (n, k)-star graph.

2.4 Star-Cube

The star-cube is a product graph based on the star graph and hypercube and defined by two
parameters m and n [24]. A star-cube, denoted by SC(n,m), also known as cube-star CS(m,n), is
regular of degree m + n − 1. The number of nodes is 2mn! and the diameter is m + ⌊3(n − 1)/2⌋.
In this graph, the address of each node has two parts as 〈xmxm−1. . .x2x1 , y1y2. . .yn−1yn〉. xm. . .x1

represents hypercube part and y1. . .yn represents star graph part. Therefore, each node is adjacent
to two types of neighbors, named as the cube-neighbors and star-neighbors with node addresses
〈xm. . .x̃i. . .x1 , y1. . .yn〉 for 1 ≤ i ≤ m (̃ means a bit inversion operation) and 〈xm. . .x1 , yj . . .y1. . .yn〉
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Figure 3: GS(4,2): A generalized star graph ((4,2)-star)

for 2 ≤ j ≤ n, respectively. This graph possesses all the attractive properties which are common
to both star graph and hypercube such as being regular, vertex/edge-symmetric, maximally fault-
tolerant, and simple shortest path routing. In addition, this topology has interesting features that
the nodes with the same hypercube-label form an n-star whereas the nodes with the same star
graph-label form an m-cube, as shown in Figure 4 and Figure 5, respectively.
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3 Generalized-Star Cube and its Properties

This section describes our new proposed interconnection topology, generalized-star cube, and its
topological properties.
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Figure 5: SC(3,2): A star-connected-cube (3-star× 2-cube)

3.1 Generalized-Star Cube

The generalized-star cube, denoted by GSC(n, k,m), is a product graph of the S(n, k) and m-
cube. In a GSC(n, k,m), the node address of each vertex can be separated into two part labels
〈xmxm−1. . .x2x1 , y1y2. . .yk−1yk〉, where the label of xm. . .x1 signifies the m-cube part (cube-label)
and y1. . .yk signifies the (n, k)-star graph part ((n, k)-star-label). Each node will be adjacent to
two types of neighbors, namely the cube-neighbors and (n, k)-star-neighbors, respectively. The node
addresses of cube-neighbors are represented as 〈xm. . .x̃i. . .x1 , y1. . .yk〉 for 1 ≤ i ≤ m (̃ means a bit
inversion operation) and of (n, k)-star-neighbors are represented as (1) 〈xm. . .x1 , yj. . .y1. . .yk〉 for
2 ≤ j ≤ k, or (2) 〈xm. . .x1 , y

′. . .yj. . .yk〉 for y′ ∈ {1, 2, . . . , n} − {yj | 1 ≤ j ≤ k}. The edges of
kind (1) are referred to as j-edges and (2) are referred to as 1-edges. In this graph, an (n, k)-star
graph replaces each vertex of the m-cube as the vertex of the GSC(n, k,m) and an m-cube replaces
each vertex of the (n, k)-star graph. This means that there are n!/(n− k)! m-cube subgraphs in the
GSC(n, k,m), where the nodes of each m-cube are assigned with the same (n, k)-star-label. These
subgraphs can be distinguished by their (n, k)-star-labels (Figure 6). Similarly, the GSC(n, k,m) can
be considered as having 2m (n, k)-star graphs, where the nodes of each (n, k)-star graph are assigned
with the same cube-label. These sub-graphs can be distinguished by their cube-labels (Figure 7).

3.2 Basic Terminologies

Before illustrating the topological properties of the proposed GSC(n, k,m), the basic terminologies
of the interconnection network are explained below. In this paper, the interconnection network is
thought of as an undirected graph. Therefore, the vertices correspond to the processors and the
edges correspond to the bidirectional communication links.

Definition 1 The interconnection network is a finite graph G = {V, E}, where V and E are a set
of vertices (or nodes) and a set of edges (or links), respectively.

Definition 2 The degree of a vertex v in G is equal to the number of edges incident on v.

Definition 3 The diameter of a graph G denoted as DG is defined to be max{dG(u, v) | u, v ∈ V },
where dG is the distance between two nodes u and v.

Definition 4 A graph is called regular if all of its vertices have the same degree.
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Definition 5 A graph G(V, E) is vertex symmetric if for any arbitrary pair of vertices, u and v,
there exists an automorphism of the graph that maps u into v (u, v ∈ V ).

3.3 Topological Properties

The following are some of the topological properties of the proposed generalized-star cube and these
results are summarized in Table 1.

Theorem 1 The total number of nodes in GSC(n, k,m) is 2mn!/(n− k)!.

Proof: The hypercube of dimension m has 2m nodes and the (n, k)-star graph has n!/(n − k)!
nodes. Because GSC(n, k,m) is a product graph of them, the total number of nodes is given by
p = 2m × n!/(n− k)!.

Theorem 2 The degree of the GSC(n, k,m) is (m+ n− 1).

Proof: In an m-cube, each node has m edges and (n− 1) edges are incident on the (n, k)-star graph.
Hence, the degree of each node in the GSC(n, k,m) is (m+ n− 1).

Theorem 3 The total number of links in the GSC(n, k,m) is 2m−1n!/(n− k)!(m+ n− 1).

Proof: The GSC(n, k,m) can be considered as n!/(n−k)! m-cubes connected in the (n, k)-star graph
form. Therefore, the total number of links in cube part is (m2m)/2×n!/(n−k)! = m2m−1n!/(n−k)!.
(m2m)/2 means that each node of 2m is incident on m neighbors but all edges are counted double,
so it is divided by 2. Next, each cube part node is linked to n − 1 neighbors which have same
cube part label through (n, k)-star edges. Therefore, there are (n − 1)2m/2 × n!/(n − k)! = (n −
1)2m−1n!/(n− k)! such (n, k)-star edges. Hence, the total number of links in GSC(n, k,m) is given
by E = m2m−1n!/(n− k)! + (n− 1)2m−1n!/(n− k)! = 2m−1n!/(n− k)!(m+ n− 1).

Theorem 4 The diameter of the GSC(n, k,m) is m+2k−1 for 1 ≤ k ≤ ⌊n/2⌋ and m+k+⌊n−1/2⌋
for ⌊n/2⌋+ 1 ≤ k ≤ n− 1.

Proof: Let (s, u) and (t, v) be a source node and a destination node, respectively, in the GSC(n, k,m),
where s and t are cube part labels and u and v are (n, k)-star part labels. Traveling from the node
(s, u) to the node (t, u), one can arrive in at most m steps because the nodes with the same (n, k)-
star part label form an m-cube. Then, traveling from the node (t, u), one can reach the node (t, v)
in 2k − 1 or k + ⌊n − 1/2⌋ steps for 1 ≤ k ≤ ⌊n/2⌋ and ⌊n/2⌋ + 1 ≤ k ≤ n − 1, respectively,
because the nodes with the same cube part label form an (n, k)-star graph. Therefore, in m+2k− 1
(1 ≤ k ≤ ⌊n/2⌋) or m+ k + ⌊n− 1/2⌋ (⌊n/2⌋+ 1 ≤ k ≤ n− 1) steps, we can reach the destination
node (t, v) from the source node (s, u).

Theorem 5 The cost of the GSC(n, k,m) is (m + n − 1)(m + 2k − 1) for 1 ≤ k ≤ ⌊n/2⌋ and
(m+ n− 1)(m+ k + ⌊n− 1/2⌋) for ⌊n/2⌋+ 1 ≤ k ≤ n− 1.

Proof: The cost of a network is defined as ξ = degree × diameter. From Theorem 2, the degree of
the GSC(n, k,m) is (m+n− 1). From Theorem 4, the diameter is m+2k− 1 and m+k+ ⌊n− 1/2⌋
for 1 ≤ k ≤ ⌊n/2⌋ and ⌊n/2⌋+ 1 ≤ k ≤ n− 1, respectively. Therefore, the cost of the GSC(n, k,m)
is ξ = (m + n − 1)(m + 2k − 1) for 1 ≤ k ≤ ⌊n/2⌋ and (m + n − 1)(m + k + ⌊n − 1/2⌋) for
⌊n/2⌋+ 1 ≤ k ≤ n− 1.

Theorem 6 The average distance of the GSC(n, k,m) is m/2 + k − 1 +
∑k

i=1 1/i − 2(k − 1)/n−
k!(n− k)!/n!.

Proof: The average distance for the hypercube of dimension m is
∑m

i=0 i
(
m

i

)
/2m = m/2 and the

average distance for the (n, k)-star graph is shown to be k−1+
∑k

i=1 1/i−2(k−1)/n−k!(n−k)!/n!

in [7]. Therefore, the average distance of the GSC(n, k,m) is given by dgsc = m/2+k−1+
∑k

i=1 1/i−
2(k − 1)/n− k!(n− k)!/n!.
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Theorem 7 The GSC(n, k,m) is a regular graph.

Proof: The m-cube and (n, k)-star graph are regular graphs. Then, GSC(n, k,m) is the product
graph of them, so from Definition 4, the GSC(n, k,m) is a regular graph.

Theorem 8 The GSC(n, k,m) is vertex symmetric.

Proof: The m-cube and (n, k)-star graph are vertex symmetric. Then, GSC(n, k,m) is the product
graph of them, so from Definition 5, the GSC(n, k,m) is vertex symmetric. However, GSC(n, k,m)
could not be edge symmetric. For example, in Figure 6, each 2-cube edge belongs to a cycle of length
at least 4, but each 1-edge of the (4, 2)-star graph may belong to a cycle of length at least 3.

Table 1: Comparison of the topological parameters for different networks

Parameters HC(m) n-Star (n, k)-Star SC(n,m) GSC(n, k,m)

Nodes 2m n! n!
(n−k)!

2mn! 2m n!
(n−k)!

Degree m n − 1 n − 1 m + n − 1 m + n − 1

Links m2m−1 n!n−1
2

n!
(n−k)!

n−1
2 2m−1n!(m + n − 1) 2m−1 n!

(n−k)!
(m + n − 1)

Diameter m ⌊
3(n−1)

2 ⌋

2k − 1

m + ⌊
3(n−1)

2 ⌋

m + 2k − 1

(if 1 ≤ k ≤ ⌊n

2 ⌋) (if 1 ≤ k ≤ ⌊n

2 ⌋)

k + ⌊n−1
2 ⌋ m + k + ⌊n−1

2 ⌋

(if ⌊n

2 ⌋+1 ≤ k ≤ n−1) (if ⌊n

2 ⌋ + 1 ≤ k ≤ n − 1)

Average
m

2

n − 4 + n

2 k − 1 +
∑

k

i=1

1
i

m

2 + n − 4 + n

2
m

2 + k − 1 +
∑

k

i=1

1
i

distance +
∑

n

i=1

1
i

−
2(k−1)

n
−

k!(n−k)!
n! +

∑
n

i=1

1
i

−
2(k−1)

n
−

k!(n−k)!
n!

Cost m2 (n−1)⌊
3(n−1)

2 ⌋

(n − 1)(2k − 1)

(m+n−1)(m+⌊
3(n−1)

2 ⌋)

(m + n − 1)(m + 2k − 1)

(if 1 ≤ k ≤ ⌊n

2 ⌋) (if 1 ≤ k ≤ ⌊n

2 ⌋)

(n − 1)(k + ⌊n−1
2 ⌋) (m+n−1)(m+k+⌊n−1

2 ⌋)

(if ⌊n

2 ⌋+1 ≤ k ≤ n−1) (if ⌊n

2 ⌋ + 1 ≤ k ≤ n − 1)

3.4 Comparison on Degree and Diameter

The node degree and diameter are key properties of the interconnection networks. The node degree
is the maximum number of the neighbors of a node in the whole network and the diameter is the
value of maximum shortest distance of all pairs of the nodes. Node degree represents the port
number of a switch module like the Infiniband. Generally, the more degree the network has, the
higher hardware cost of the network becomes. Diameter is used for estimating the maximum delay
in transmitting a message from one processor to another and influences the message traffic density
and fault-tolerance. Thus a network with the lower node degree and shorter diameter is desired. To
evaluate such a network it is needed to compare these two properties simultaneously.

Figures 8 and 9 show the comparison of the node degree and diameter against the total number of
nodes of the generalized-star cube with that of the hypercube, star graph, star-cube, and (n, k)-star
graph, respectively. The proposed network can connect a more variety of the number of nodes than
others. For example, when we want to make a 100,000-node network, we need to connect at least
131,072, 362,880, 122,880, and 151,200 nodes with the hypercube, star graph, star-cube, and (n, k)-
star graph, respectively. Contrastingly, the GSC(n, k,m) can connect 107,520 or 110,880 nodes.
Note that the node degree of (11, 1)-star graph is 10. Actually, the (11, 1)-star graph is a 11-node
complete graph, whose diameter is 1. Also, the node degree of (11, 2)-star graph is 10; its diameter
is 3. If the generalized-star cube contains such (n, k)-star graphs, the node degree will exceed that of
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hypercube of similar network sizes. Therefore, we recommend k ≥ 3 (and hence n ≥ 4) for building
a GSC(n, k,m). Such a restriction is reasonable because as k approaches 1, the (n, k)-star graph of
the GSC(n, k,m) is close to the complete graph of dimension n and such a network is unpractical
for constructing a large-scale network.
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The diameters of the GSC(n, k,m) with k ≥ 3 and n ≥ 4 fall in between the hypercube and (n, k)-
star graph, as shown in Figure 9. From the figure we can see that the diameter nonlinear variation
of the GSC(n, k,m) is resulted from the domination of the cube part and (n, k)-star part. When the
cube part dominates the network, the diameter is close to the hypercube diameter. Similarly, when
the (n, k)-star part dominates the network, the diameter is close to the (n, k)-star graph diameter.
As observed from Figures 8 and 9, the network size of the generalized-star cube changes in smaller
steps. Thus we can choose more desirable network size than the hypercube, star graph, star-cube,
and (n, k)-star graph.

Here, we investigate degree and diameter at the same time, with the comparison on different
configurations. For a given approximate sized GSC(n, k,m), selecting a larger number of m will
make both the degree and diameter larger. Table 2 gives some GSC(n, k,m) examples with around
100,000 nodes, where #Hypercube = 2m is the number of nodes in an m-cube and #(n, k)-star
is the number of nodes in an (n, k)-star graph; their product is the total number of nodes in the
GSC(n, k,m). We can check that, both GSC(3, 1, 15) and GSC(4, 3, 12) have 98,304 nodes and their
diameters are 16. But their degrees are 17 and 15, respectively. Therefore, the GSC(4, 3, 12) which
has a smaller m has a better performance than GSC(3, 1, 15).

Table 2: GSC(n, k,m) examples with around 100,000 nodes

Nodes n k m Degree Diameter Cost #Hypercube #(n, k)-star

90,112 11 1 13 23 14 322 8192 11

92,160 6 4 8 13 14 182 256 360

92,160 6 5 7 12 14 168 128 720

92,160 10 2 10 19 13 247 1024 90

92,160 10 3 7 16 12 192 128 720

96,768 9 4 5 13 12 156 32 3024

98,304 3 1 15 17 16 272 32768 3

98,304 3 2 14 16 17 272 16384 6

98,304 4 2 13 16 16 256 8192 12

98,304 4 3 12 15 16 240 4096 24

98,304 6 1 14 19 15 285 16384 6

107,520 7 3 9 15 14 210 512 210

107,520 7 4 7 13 14 182 128 840

107,520 8 4 6 13 13 169 64 1680

107,520 8 5 4 11 12 132 16 6720

110,880 11 5 1 11 10 110 2 55440

112,640 11 2 10 20 13 260 1024 110

114,688 7 1 14 20 15 300 16384 7

114,688 8 2 11 18 14 252 2048 56

Finally, we check network cost in Figure 10. Network cost is represented as the product of degree
and diameter, so naturally, high-degree and high-diameter topology such as hypercube has high-cost,
and low-degree and low-diameter topology such as (n, k)-star graph has low-cost. Generalized-star
cube is a product graph of hypercube and (n, k)-star graph, so its cost also falls in between their
network cost as with the cases of the node degree and diameter. Of course, when the cube part
dominates the network, the cost is close to the hypercube cost. Similarly, when the (n, k)-star part
dominates the network, the cost is close to the (n, k)-star graph cost.
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Consequently, generalized-star cube is a product graph of hypercube and (n, k)-star graph, so we
can have a great amount of options of the network size. This flexible choice is the very outstanding
merit of GSC and its degree and diameter change between hypercube and (n, k)-star graph, so we
should pick up advantageous selections such as networks comprised of sizable (n, k)-stars.

4 Shortest-Path Routing Algorithm

In interconnection networks, routing algorithm is an important problem. An optimal routing al-
gorithm is to find a shortest path from a source node to a destination node and to transmit the
message through the path. In the generalized-star cube network, routing algorithm is constructed by
using the existing routing algorithms for hypercube and (n, k)-star graph. Because both hypercube
and (n, k)-star graph have simple routing algorithms, the routing algorithm of the product graph
structure is also simple. Before discussing the details of the routing algorithm for the generalized-
star cube, the following notations are defined: 〈s, u〉 denotes the address of the source node; 〈t, v〉
denotes the address of the destination node; symbol ∈ 〈n〉 − 〈k〉 denotes an external symbol of
(n, k)-star graph (〈n〉 = {1, 2, . . . , n}); and symbol ∈ 〈k〉 denotes an internal symbol. The routing
algorithm is shown as below.

Step 1 Transmit message from 〈s, u〉 to 〈t, u〉 using a routing algorithm for hypercube.

Step 2 Transmit message from 〈t, u〉 to 〈t, v〉 using a routing algorithm for (n, k)-star graph.

In Step 1, the cube part routing algorithm, we need to correct cube-label s of 〈s, u〉. In the
m-cube, cube-label is an m-bit address and at most m steps are needed to reach from a source node
to a destination node. Therefore, the routing computational complexity of the m-cube is O(m).

In Step 2, the (n, k)-star part routing algorithm, we need to correct (n, k)-star-label u of 〈t, u〉.
To clarify our presentation, we consider the destination node label v as the identity node address
Ik = 1 2 . . . k. Similar to the well-known cyclic representation [3], we can represent the cyclic
representation for an (n, k)-star graph. For each external symbol umi

(/∈ 〈k〉) in label u, we construct
an external cycle Ci = (u1, u2, . . . , umi

). In the external cycle, each symbol uj in u desires the correct

379



Routing and Broadcasting Algorithms for Generalized-Star Cube

position and it is held by uj+1 for 1 ≤ j ≤ mi−1. Additionally, all uj, for 1 ≤ j ≤ mi−1, are internal
symbols (∈ 〈k〉). For each external cycle, we define the desired symbol di whose desired position is
held by the first element u1 of the cycle Ci. The rest of the cycles are internal cycles defined as [3].
Therefore, we can find the path from u to Ik (v) in the (n, k)-star graph by swapping internal
symbols and exchanging the external symbols with desired symbols.

The detailed routing algorithm is formally given in Algorithm 1. We assume that s is a source
node (s s and s u are hypercube address and (n, k)-star graph address, respectively), t is a desti-
nation node (t t and t v are hypercube address and (n, k)-star graph address, respectively), and P

is a shortest path from s to t. We give an example to find the routing path from u to Ik (v). Let
u = 3219586 and v = 1234567 in S(9,7). By following the scheme described above, we construct
the external cycles ((7), 6, 8) and ((4), 9) and internal cycle (1, 3), where the symbol enclosed in
parentheses signifies the desired symbol. First, we need to swap 3 and the symbol in its desired
position along internal cycle (1, 3) as following (→α means to pass the α-edge):

3219586 →3 1239586

Next, because the first symbol 1 of Ik comes in the first position, we need to swap it and the symbol
in not correct position. If there are multiple external symbols in u, we choose any one and swap
with 1. Then, we now select 8 and swap with 1 as following:

1239586 →6 8239516

In the ordinary way, this step is not included in internal and external cycles. As the result of this
step, the external cycle ((7), 6, 8) is modified to ((7), 6, 1). Now, we need to replace the external
symbol 8 with one of two candidates 7 and 4. In this case, we select a desired symbol in the external
cycle not including 1. Otherwise we will have extra steps to swap 1 with a symbol not in desired
position. Thus, we select the candidate 4, replace 8 with 4, and correct the rest of the external
symbol as following (replacing 9 with 7):

8239516 →1 4239516 →4 9234516 →1 7234516

Then to correct along external cycle ((7), 6, 1), we get

7234516→7 6234517 →6 1234567

Therefore, the routing computational complexity of (n, k)-star graph is O(k). In the routing
algorithm of the GSC(n, k,m), we can also find the path in another way, i.e., from 〈s, u〉 to 〈s, v〉 to
〈t, v〉. We can derive length of the path from 〈s, u〉 to 〈t, v〉 by summing up the length of the paths
from 〈s, u〉 to 〈t, u〉 and 〈t, u〉 to 〈t, v〉. In addition, we have the following three patterns of routing
computational complexity of the GSC(n, k,m). When cube part dominates the network, the routing
complexity of the GSC(n, k,m) is O(m). Similarly, when (n, k)-star part dominates the network,
the complexity is O(k). Otherwise it is O(m + k). Table 3 compares the routing complexities for
different networks.

Table 3: Comparison of the routing complexity for different networks

HC(m) n-Star (n, k)-Star SC(n,m) GSC(n, k,m)

O(m) O(n) O(k)

O(m) O(m)

(when cube part ≫ star part) (when cube part ≫ (n, k)-star part)

O(n) O(k)

(when cube part ≪ star part) (when cube part ≪ (n, k)-star part)

O(m+ n) O(m+ k)

(otherwise) (otherwise)
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Algorithm 1 Routing Algorithm(s, t)

1: P := [s]; /* (s1, ..., sm) and (t1, ..., tm) are hypercube address */
2: /* (u1, ..., uk) and (v1, ..., vk) are (n, k)-star graph address */
3: C := makeExternalCycle(s u); /* makeExternalCycle(c) is a function that makes external
4: cycles by label c */
5: flag LoweringPriority := 0; /* flag LoweringPriority is a flag to lower external cycles */
6: /* hypercube part */
7: for i = 1 to m do

8: if s si 6= t ti then
9: s si := s̃ si; /* a bi is ith address of label b of node a */

10: P := P ∪ [s]; /* ˜ is a bit inversion operation */
11: end if

12: end for

13: /* (n,k)-star graph part */
14: while s u 6= t v do

15: if s u1 /∈ t v then

16: if flag LoweringPriority = 1 then

17: lowerCyclePriority(C, s u1); /* lowerCyclePriority(Cycle, s) is a function that lowers
18: the priority of Cycle including symbol s */
19: flag LoweringPriority := 0;
20: end if

21: s u1 := getDesiredSymbol(C); /* getDesiredSymbol(Cycle) is a function that gets
22: a desired symbol of first cycle in Cycle then removes its cycle from Cycle */
23: P := P ∪ [s];
24: end if

25: if s u1 6= t v1 then

26: find i such that t vi = s u1;
27: else

28: if s u \ t v 6= φ then

29: assign i to the position of any external symbol;
30: flag LoweringPriority := 1;
31: else

32: find i such that s ui 6= t vi;
33: end if

34: end if

35: swap(s u, 1, i); /* swap(a, i, j) is a function that swaps ai with aj */
36: P := P ∪ [s];
37: end while

38: return P

5 Broadcasting on the Single-Port Model

In this section, we develop the broadcasting algorithm for the single-port model. This algorithm is
separated into two parts just like the shortest-path routing algorithm: hypercube part and (n, k)-star
graph part. First, we consider the broadcasting algorithm for the hypercube part. To implement
the algorithm, we use the spanning binomial tree. For the (n, k)-star graph part, we adopt an
optimal neighborhood broadcasting algorithm for developing an optimal broadcasting algorithm for
GSC(n, k,m) on the single-port model.

5.1 Spanning Binomial Tree

We can use the spanning binomial tree communication scheme for broadcasting of hypercube, be-
cause hypercube’s symmetric and binary recursive topology fits perfectly to this communication
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scheme. In general, a binomial tree is defined recursively as follows: (1) a binomial tree of order 0
is a single node; (2) a binomial tree of order m has a root node whose children are roots of binomial
trees of orders m−1,m−2, . . . , 2, 1, 0 (in this order); a binomial tree of order m has 2m nodes, height
m. Because the hypercube is both vertex and edge symmetric, we can place the root of a spanning
binomial tree in any hypercube node and use the hypercube dimensions in any order [18]. The
number of nodes that receive the message in step i is 2i−1 in the single-port model. Therefore, in
m step,

∑m

i=1 2
i−1 = 2m − 1. Hence, this scheme is transmission optimal (O(m)).

The detailed broadcast algorithm for hypercube on the single-port model is formally given in
Algorithm 2. We use 4 parameters. d is dimensions of the hypercube; my id is an ID assigned to
each node; s is the ID of a source node; and X is a message. All nodes perform this algorithm in
parallel as soon as they received the message X, sent by s originally. my virtual id and mask

are used to determine whether a node sending message or not.

Algorithm 2 ONE TO ALL BC single-port(d, my id, s, X)

1: my virtual id := my id XOR s;
2: mask := 2d − 1;
3: for i = d− 1 to 0 do

4: mask := mask XOR 2i;
5: if (my virtual id AND mask) = 0 then

6: if (my virtual id AND 2i) = 0 then

7: virtual destination := my virtual id XOR 2i;
8: send(virtual destination,X);
9: end if

10: end if

11: end for

Figure 11 shows the case of source node s = 0000 in a 4-cube broadcasting a message. It performs
broadcasting in 4 steps:

• Step 1: • Step 2: • Step 3: • Step 4:
0000 → 1000 0000 → 0100 0000 → 0010 0000 → 0001

1000 → 1100 0100 → 0110 0010 → 0011
1000 → 1010 0100 → 0101
1100 → 1110 0110 → 0111

1000 → 1001
1010 → 1011
1100 → 1101
1110 → 1111

5.2 Neighborhood Broadcasting

The neighborhood broadcasting problem, NBP for short, is a problem that a message of the source
node is sent to all its neighbors in the single-port model. This problem for both star graph and
(n, k)-star graph has been studied well and optimal algorithms were derived [9, 21, 13]. In [9], Fujita
developed the algorithm by embedding binomial trees into the star graph. In [21, 13, 14], more
simple algorithm was developed with the cycle structures. In this paper, we adopt this neighborhood
broadcast algorithm of the cycle structures. For some interconnection topologies with constant node
degrees, the time required for neighborhood broadcasting is constant. The lower bound of this NBP
on a network with degree d is Ω(log d) [14]. For example, the lower bound for NBP in Sn,k, an
(n, k)-star graph, is Ω(log n) because the degree of Sn,k is n− 1.

For simplicity, we use the notation i∗ to represent a node whose first symbol is i. Similarly, ∗i
represents a node whose last symbol is i. Let Sn−1,k−1(i) be a subgraph where all the nodes are of
the form ∗i, 1 ≤ i ≤ n, then Sn−1,k−1(i) is isomorphic to an (n− 1, k− 1)-star graph. This gives us
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Figure 11: Spanning binomial tree on single-port 4-cube

one way to decompose an Sn,k into n Sn−1,k−1(i), for 1 ≤ i ≤ n [6, 7]. Unless otherwise stipulate,
we will decompose the (n, k)-star graph at the last dimension. We efficiently utilize this property
for broadcasting on the all-port as well as the single-port model. Because the (n, k)-star graph is
vertex symmetric, without loss of generality, we assume that the source node is 12 · · ·k. Its i-edge
neighbors are shown as:

21345 · · ·k, 32145 · · ·k, 42315 · · ·k, . . . , k234 · · ·1,

and its 1-edge neighbors are shown as:

(k + 1)234 · · ·k, (k + 2)234 · · ·k, . . . , n234 · · ·k.

The neighborhood broadcasting and broadcast algorithms for the two port models are based on
the following observations on structural properties of the (n, k)-star graph. The proofs for these
observations are fairly straightforward and can be found in [14].

Observation 1 For any r 6= 1, Sr,1 is a clique Kr (a complete graph of size r).

Observation 2 In Sn,k, for any node u, u and all its 1-edge neighbors form a clique Kn−k+1.

Observation 3 For any i-edge neighbor i ∗ k = i23 · · · (i − 1)1(i + 1) · · · k and j-edge neighbor
j ∗ k = j23 · · · (j − 1)1(j + 1) · · · k of the node 12 · · ·k (we assume that i < j without loss of
generality), they are on the same cycle of length 6 as follows:

123 · · · i · · · j · · · k → i23 · · ·1 · · · j · · · k → j23 · · ·1 · · · i · · · k →

123 · · · j · · · i · · · k → i23 · · · j · · · 1 · · · k → j23 · · · i · · · 1 · · · k →

This cycle involves only i-edges. In fact, the above observation also holds true when k + 1 ≤ j ≤ n.

Observation 4 For any i-edge neighbor i ∗ k = i23 · · · (i − 1)1(i + 1) · · · k and 1-edge neighbor
j ∗ k = j23 · · ·k of the node 12 · · · k, where k + 1 ≤ j ≤ n, they are on the same cycle of length 6 as
follows:

123 · · · (i− 1)i(i+ 1) · · · k → i23 · · · (i− 1)1(i+ 1) · · · k → j23 · · · (i− 1)1(i+ 1) · · · k →

123 · · · (i − 1)j(i+ 1) · · · k → i23 · · · (i− 1)j(i+ 1) · · · k → j23 · · · (i − 1)i(i+ 1) · · · k →

This cycle involves both i-edges and 1-edges.

Observation 5 Any two 6-cycles formed as in Observations 3 and 4 with distinct 2 ≤ i1, j1, i2, j2 ≤
n are disjoint except that they share the source node 12 · · · k.
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Initially, only the source node has a message. In the first step, the source node sends a message
to one of its neighbors through the direct link. In the second step, two nodes have the message.
One of them, the source node sends the message like the first step, whereas another one sends the
message to a neighbor of the source node through a length-4 path that is part of a 6-cycle. Now
the number of neighbors having message including the source node are 4. Next, these four nodes
send the message again in the same manner. Thus, three neighbors send the message to other three
neighbors of the source node via disjoint paths of length-4 that are parts of three disjoint 6-cycles
and the source node forwards directly. This algorithm ends when all neighbors of the source node
receive the message.

The detailed neighborhood broadcast algorithm is formally given in Algorithm 3. We use 5
parameters. my id is an ID assigned to each node; flag send msg is a flag specifying whether my
node sends a message or not; s is the ID of the source node; Neighbors is a list of neighbors of
the source node; and X is a message. The key idea of this algorithm is to design in such a way
that: (1) a source node sends a message with direct links; (2) neighbors of the source node send
the message in parallel; and (3) if under four neighbors remain, the source node sends the message
by direct links; otherwise go back to step (1) and (2). Note that in (1) and (2), all neighbors of
the source node which have received the message in each step start the next iteration with other
senders. Obviously, after each step, the number of neighbors having the message is doubled (but not
done always in the last step). After finished sending the messages to all neighbors, these neighbors’
flag send msgs are assigned to 1.

For example, in an (8, 4)-star graph, for the source node s = 1234, this neighborhood broadcasting
is shown as follows:

• Step 1:
1234 → 2134

• Steps 2-5:
1234 → 3214
2134 → 4132 → 1432 → 2431 → 4231

• Steps 6-9:
1234 → 5234
2134 → 6134 → 1634 → 2634 → 6234
3214 → 7214 → 1274 → 3274 → 7234
4231 → 8231 → 1238 → 4238 → 8234

The running time for this algorithm is O(log n) [14]. Because the lower bound is Ω(log n), this
algorithm is optimal. Of course, when n is relatively small, it is better to simply forward a message
from the source node to its n− 1 neighbors in n− 1 steps.

5.3 Broadcast Algorithm on the Single-Port Model

The broadcasting problem, BP for short, is a problem a message of the source node is sent to all
the nodes in the network. For the single-port model, the BP has a lower bound of Ω(logN), where
N is the total number of nodes in the network. Therefore, the lower bound for this broadcasting
problem on single-port Sn,k is Ω(log(n!/(n − k)!)) = Ω(k logn). Several broadcast algorithms for
(n, k)-star graph have been studied [5, 16, 14]. Among them, in [14], an optimal time algorithm is
proposed by using the neighborhood broadcasting.

The idea of this scheme can be described as follows. Since Sn,k can be decomposed as n number
of Sn−1,k−1, the source node sends a message to one node in each of Sn−1,k−1(i), where 1 ≤ i ≤ n.
Now every Sn−1,k−1(i) has a node with the message, it recursively carries out the algorithm on each
Sn−1,k−1(i). Concretely, we assume that the source node is ek = 123 · · ·k and wants to broadcast a
message to all the other nodes in Sn,k. In the first step, the source node sends the message to its all
neighbors using the neighborhood broadcasting. Now all i-neighbors of the source node ek (2 ∗ k,
3∗k, . . ., (k−1)∗k and k∗1) and all 1-neighbors ((i+1)∗k, (i+2)∗k, . . ., (n−1)∗k and n∗k) have
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Algorithm 3 Neighborhood Broadcasting(my id, flag send msg, s, Neighbors, X)

1: cnt := 1;
2: total nodes := lengthof(Neighbors);
3: /* At each step, the number of neighbors which have received the message can double */
4: for i = 0 to ⌈log(total nodes/2)⌉ do

5: remaining nodes := total nodes− cnt;
6: /* Not need 4-length path for sending messages to the rest of less than 4 neighbors */
7: if 1 ≤ remaining nodes ≤ 3 then

8: for j := 0 to remaining nodes− 1 do

9: if my id = s then

10: path := Neighbors[total nodes− j];
11: send(path,X); /* send(Path,Message) is a function that sends a Message

12: through Path */
13: end if

14: end for

15: stop

16: else

17: /* Send messages in parallel */
18: if my id = s then

19: send(Neighbors[2i],X);
20: else

21: /* Neighbors of a source node which have a message */
22: index := get index(Neighbors,my id); /* get index(List, element) is a function
23: that gets index of List where element is stored */
24: if index+ 2i ≤ total nodes then

25: path := make 4 length path(my id,Neighbors[index+ 2i]);
26: /* make 4 length path(Src,Dest) is a function
27: that makes a length-4 path from Src to Dest */
28: send(path,X);
29: else

30: stop

31: end if

32: end if

33: cnt := 2cnt;
34: (All neighbors of the source node which have received the message in this step
35: start the next iteration with other senders)
36: end if

37: end for

38: if my id is included in Neighbors then

39: flag send msg := 1;
40: end if

the message. Then, these neighbors (except k ∗ 1) send the message through k-dimensional edges in
one more time unit. Now n nodes (∗1, ∗2, . . ., ∗n) have the message and these nodes belong to every
Sn−1,k−1(i), 1 ≤ i ≤ n. Therefore, we can recursively broadcast in each Sn−1,k−1(i) in parallel.
This broadcasting algorithm has O(k logn) time and is optimal in the view of the Ω(k logn) lower
bound [14].

The detailed broadcast algorithm for (n, k)-star graph on the single-port model is formally given
in Algorithm 4. We use 6 parameters. n and k are parameters for (n, k)-star graph and the rest of
4 parameters are same as in Algorithm 3. The key idea of this algorithm is to design in such a way
that: (1) a source node sends a message to its all neighbors using the neighborhood broadcasting;
(2) all neighbors (except k ∗ 1) send the message through k-dimensional edges; (3) these nodes
which received the messages in the previous step perform this broadcast algorithm recursively as
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Algorithm 4 Broadcasting single-port(my id, flag send msg, n, k, s, X)

1: if k = 1 then

2: send clique(my id,X); /* send clique(Src,Message) is a function that sends
3: Messages centered around Src by a simple broadcasting algorithm */
4: else

5: if (flag send msg = 1) and (my id = s) then
6: Neighbors := get Neighbors(my id, n− 1); /* get Neighbors(Node, n) is a function
7: that gets n neighbors of Node */
8: /* Broadcast message to neighbors of a source node */
9: Neighborhood Broadcasting(my id, f lag send msg, s,Neighbors,X);

10: end if

11: /* Send message to all subgraphs of current graph along dimension k */
12: if flag send msg = 1 then

13: if get 1st symbol(my id) ! = get kth symbol(s, k) then
14: if my id ! = s then

15: path := swap(my id, 1, n); /* swap(a, i, j) is a function that swaps ai with aj */
16: send to new source(path,X); /* send to new source(Path,X) is a function that
17: change a current source node to destination
18: node of Path (s := destination node &
19: flag send msg of destination node := 1) */
20: end if

21: if (my id ! = s) or ((my id = s) and (n = 2) and (n−k = 1)) then
22: flag send msg := 0;
23: end if

24: else

25: s := my id; /* My node becomes a new source node */
26: flag send msg := 1;
27: end if

28: end if

29: /* Perform broadcasting algorithm in a lower level subgraph */
30: Broadcasting single port(my id, f lag send msg, n−1, k−1, s,X);
31: end if

new source nodes in their subgraphs; and (4) if these subgraphs form a clique, they simply carry out
a standard broadcasting algorithm, otherwise go back to step (1). Note that after a source node gets
its neighbors by using a function Neighborhood Broadcasting, all neighbors (with some exceptions)
start to send messages to all subgraphs of current graph along dimension k. At this time, these
neighbors are checked with their flag send msgs whether they have the messages or not.

For example, in a (5, 3)-star graph, for the source node s = 123, this broadcast algorithm is
shown as follows. Note that in this example, we did not use the neighborhood broadcasting because
the number of neighbors are relatively small.

• Step 1-5 ((5, 3)-star graph):
123 → 213 → 312 123 → 321 123 → 423 → 324 123 → 523 → 325

• Step 5-9 ((4, 2)-star graph):
123 → 213 123 → 423 → 243 123 → 523 → 253 321 → 231 321 → 421 → 241
321 → 521 → 251 312 → 132 312 → 412 → 142 312 → 512 → 152 324 → 234
324 → 124 → 214 324 → 524 → 254 325 → 235 325 → 125 → 215
325 → 425 → 245

• Step 9-11 ((3, 1)-star graph):
123 → 423 123 → 523 213 → 413 213 → 513 243 → 143 243 → 543
253 → 153 253 → 453 321 → 421 321 → 521 231 → 431 231 → 531
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241 → 341 241 → 541 251 → 351 251 → 451 312 → 412 312 → 512
132 → 432 132 → 532 142 → 342 142 → 542 152 → 352 152 → 452
324 → 124 324 → 524 234 → 134 234 → 534 214 → 314 214 → 514
254 → 154 254 → 354 325 → 125 325 → 425 235 → 135 235 → 435
215 → 315 215 → 415 245 → 145 245 → 345

Consequently, we have the following three patterns of broadcasting computational complexity of
the GSC(n, k,m) on the single-port model. When cube part dominates the network, the lower bound
approaches Ω(m)(= Ω(log 2m)) and the broadcasting complexity of the GSC(n, k,m) is O(m).
Similarly, when (n, k)-star part dominates the network, the lower bound approaches Ω(k logn)(=
Ω(log(n!/(n− k)!))) and the complexity is O(k logn). Otherwise the lower bound and broadcasting
complexity are Ω(m+ k logn) and O(m+ k logn), respectively. Hence, this algorithm is optimal.
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Figure 12: Total number of steps for broadcasting on single-port model

Figure 12 plots the total number of steps required for broadcasting at single-port model on
hypercube, (n, k)-star graph, and generalized-star cube GSC(n, k,m). We can see that as k in
GSC(n, k,m) increases, the number of broadcasting steps also increases. This is because that the
communication complexity of (n, k)-star graph is O(k logn), larger than that of hypercubes.

6 Broadcasting on the All-Port Model

In this section, we develop the broadcasting algorithm on the all-port model. All-port model means
that a node can send/receive messages to/from all its neighbors simultaneously. This algorithm is
also separated into two part like the shortest-path routing algorithm and the broadcasting on the
single-port model. First, we outline the spanning binomial tree at all-port model for hypercube part.
Next, we introduce the minimum dominating set for (n, k)-star graph part. Then, we develop an
optimal broadcasting algorithm on the all-port model using the minimum dominating set.
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6.1 Spanning Binomial Tree

Recall from the previous section, we can use the spanning binomial tree communication scheme
for broadcasting of hypercube, because hypercube’s symmetric and binary recursive topology fits
perfectly to this communication scheme. The number of nodes that receive the message in step i
is

(
m
i

)
where m is the dimension of the hypercube on the all-port model. Therefore, in m step,∑m

i=1

(
m
i

)
= 2m − 1. Hence, this scheme is transmission optimal (O(m)).

The detailed broadcast algorithm for d-cube on the all-port model is formally given in Algo-
rithm 5. We use 4 parameters. d is dimensions of the hypercube; my id is an ID assigned to each
node; s is the ID of the source node; andX is a message. All nodes performs this algorithm in parallel
as soon as they have received the messageX , sent by s originally. In the first step, we convertmy id

to my virtual id. Then, each node which has the message sends to the nodes whose addresses
differ from my virtual id in a single bit of a right field whose value is zero of my virtual id.
For example, node 10100 sends a message to node 10110 and 10101; the right field has two bits 00 in
node 10100. This operation is realized by using a function send binomial tree(Addr,Message).
This function sends Messages to nodes which have such addresses.

Algorithm 5 ONE TO ALL BC all-port cube(d, my id, s, X)

1: my virtual id := my id XOR s;
2: D := [ ];
3: i := 0;
4: while ((my virtual id AND 2i) = 0) and (i < d) do
5: D := D ∪ [my virtual id AND 2i];
6: i := i+ 1;
7: end while

8: send all port(D,X); /* send X to neighbors in D simultaneously */

For example, in a 4-cube, for the source node s = 0000, this broadcast algorithm is shown as
follows and Figure 13:

• Step 1: • Step 2: • Step 3: • Step 4:
0000 → 1000 1000 → 1100 1100 → 1110 1110 → 1111
0000 → 0100 1000 → 1010 1100 → 1101
0000 → 0010 1000 → 1001 1010 → 1011
0000 → 0001 0100 → 0110 0110 → 0111

0100 → 0101
0010 → 0011

(4-bit 0) (3-, 2-, 1-bit 0) (2-, 1-, 1-bit 0) (1-bit 0)

6.2 Minimum Dominating Set of the (n, k)-Star Graph

Generally, in graph theory, a dominating set for a graph G = {V, E} is a subset V ′ ⊆ V such that
every vertex not in V ′ is adjacent to at least one member of V ′. The domination number is the
number of vertices in V ′, and the minimum dominating set is a dominating set with the smallest
domination number. The dominating set problem is to find a minimum dominating set DG of a
graph G with domination number |DG|.

Let Dn,k be a minimum dominating set of Sn,k, then every vertex set Dn,k = {i∗}, for 1 ≤
i ≤ n, and |Dn,k| = (n − 1)!/(n − k)! are a minimum dominating set and its domination number,
respectively [14]. For example, S4,2 has four different minimum dominating sets depending on the
value of i: (1) {12, 13, 14} for i = 1, (2) {21, 23, 24} for i = 2, (3) {31, 32, 34} for i = 3, and (4)
{41, 42, 43} for i = 4.

Dn,k and its neighbors contain all the nodes of Sn,k, therefore in the all-port model, we can send
a message in one time unit by using the Dn,k. We use this idea and the hierarchical structure of
Sn,k to develop a broadcasting algorithm for the all-port model in the next subsection.
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Figure 13: Spanning binomial tree on all-port 4-cube

6.3 Broadcasting Algorithm on the All-Port Model

When discussing the BP on interconnection networks of the all-port model, we need to consider
the traffic (the total number of messages exchanged) in addition to the time (the number of steps
required) [23]. Hence, it is desirable to minimize both the time and traffic. By mitigating the traffic,
we can reduce the message redundancy which is a problem that a node receives the same message
many times. Broadcast algorithms for (n, k)-star on the all-port model have been studied [16, 14].
Among them, in [14], an optimal time algorithm is proposed based on the minimum dominating set.

Now we have the minimum dominating set Dn,k (all the nodes forming i∗) from the previous
subsection. Then, a simple broadcasting algorithm on the all-port model for Sn,k can be designed
by using Dn,k as follows: (1) we decompose current subgraph at the last dimension of the source
node until forming a clique; (2) when a subgraph forms a clique, the source node sends the message
along dimension 1; (3) all nodes with the message send along an upper current dimension; and (4)
since the nodes that received the message in the previous step are the minimum dominating set in
current dimension, each node in the dominating set sends its message along all dimensions except
current dimension (if not finished, go back to step (3)). The key point of this algorithm is that every
time sender nodes go to step (3) and the current dimension increases by 1. This means that the
available node addresses are deregulated. The detailed broadcast algorithm for (n, k)-star graph on
the all-port model is formally given in Algorithm 6.

Algorithm 6 Broadcasting all-port(my id, k, s, X)

1: if k = 1 then

2: send 1edges(my id,X); /* send 1edges(Node,Message) is a function that sends
3: Messages to all 1-dimension neighbors of Node */
4: else

5: Broadcasting all-port(my id, k − 1, s,X);
6: if Node-my id has a message X then

7: path := swap(my id, 1, k);
8: send(path,X);
9: end if

10: if (Node-my id has a message X) and (get 1st symbol(my id) = get kth symbol(s,k))
then

11: send neighbors(my id, k,X); /* send neighbors(Node, k,Message) is a function that
12: sends Messages to under k-dimension neighbors of Node */
13: end if

14: end if
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Figure 14: All-port broadcasting on a (5, 3)-star graph

The optimal running time of this algorithm is proportional to the diameter of the network and
O(k) [14]. Furthermore, there is no message redundancy.

Figures 14 and 15 show two examples of the broadcast algorithm in a (5, 3)-star graph and a
(5, 4)-star graph, for the source node s = 123 and s = 1234, respectively, where the numbers near
by arrowed lines are step numbers. Note that some of arrowed lines are left out because they are
the same as the upper right subgraph in each figure.

Consequently, we have the following three patterns of broadcasting computational complexity of
the GSC(n, k,m) on the all-port model. When cube part dominates the network, the lower bound of
the GSC(n, k,m) approaches Ω(m) and the broadcasting complexity of the GSC(n, k,m) is O(m).
Similarly, when (n, k)-star part dominates the network, the lower bound approaches Ω(k) and the
complexity is O(k). Otherwise they are Ω(m + k) and O(m + k). Because this running time is
proportional to the diameter of the GSC(n, k,m), thus it is optimal; meanwhile, there is no message
redundancy.

Figure 16 plots the total number of steps required for broadcasting at all-port model on hyper-
cube, (n, k)-star graph, and generalized-star cube GSC(n, k,m). We can see that almost the numbers
of broadcasting steps of GSC(n, k,m) are less than that of hypercubes at all-port model. And, at a
given network size, we can choose different n, k, and m. The figure draws the curves for different k.
In such a case, at a constant k, when n of (n, k)-star graph is larger than m of m-cube, the number
of broadcasting steps decreases. This is because that the diameter of (n, k)-star graph is shorter
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Figure 15: All-port broadcasting on a (5, 4)-star graph

than that of hypercubes, and the communication complexity of the all-port broadcasting depends
strongly on the diameter. For example, when k is 5, GSC(6, 5, 7) has 92, 160 nodes; GSC(8, 5, 4) has
107, 520 nodes, a closer number to 92, 160. GSC(6, 5, 7) is composed of (6,5)-star graph and 7-cube
and its total number of step is 16. In contrast, GSC(8, 5, 4) is composed of (8,5)-star graph and
4-cube and its total number of step is 13.

7 Conclusion

In this paper, we proposed a new interconnection network, the generalized-star cube, and described
its topological properties. The proposed generalized-star cube retains most of the properties of the
hypercube and (n, k)-star graph. Then, we shew the comparison on the node degree and diameter.
Compared to the hypercube, star graph, (n, k)-star graph, and star-cube, GSC can change the
network size in smaller steps, therefore we can choose a more desirable network size. Also, the
network cost was shown and we found out that GSC’s cost lies in between hypercube’s and (n, k)-
star graph’s costs, similar to the cases of the node degree and diameter. Next, we gave a shortest-
path routing algorithm. We could realize simple shortest-path routing algorithm by separating
the proposed topology into hypercube part and (n, k)-star graph part and joining existing optimal
routing algorithms for them. Afterward, we discussed broadcast algorithms for both of the single-
port and all-port models. These algorithms were separated into two parts just like the shortest-path
routing algorithm. We utilized efficiently the spanning binomial tree communication scheme for
both models of hypercube part. On the other hand, we exploited (n, k)-star graph’s hierarchical
structure for both models of another part. Moreover, in the single-port model, we adopted the
neighborhood broadcast algorithm with the cycle structures. Meanwhile, for the all-port model, we
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Figure 16: Total number of steps for broadcasting on all-port model

used the minimum dominating set. As a result, we derived optimal broadcasting algorithms for both
two models.

In recent research, several product graphs have been proposed based on the star graph and cube-
based derivatives [17, 1, 2, 19]. We can also derive new topologies by replacing the star graph of those
product graphs with the (n, k)-star graph. Meanwhile, a lot of works concerning the generalized-star
cube require further research. Some of them are: (1) to find disjoint-path in a generalized-star cube;
(2) to develop fault-tolerant routing algorithms for the proposed network with faulty nodes; (3) to
develop an efficient all-to-all broadcasting algorithm; and (4) to investigate the embedding of other
frequently used topologies into this network.
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