
International Journal of Networking and Computing – www.ijnc.org
ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 3, Number 1, pages 15–36, January 2013

A dataflow-like programming model for future hybrid clusters

Jens Breitbart

Research Group Programming Languages / Methodologies, University of Kassel
Wilhelmshöher Allee 73, 34121 Kassel, Germany

Email: jbreitbart@uni-kassel.de

Received: June 4, 2012
Revised: October 27, 2012

Accepted: December 5, 2012
Communicated by Akihiro Fujiwara

Abstract

It is expected that the first exascale supercomputer will be deployed within the next 10
years, however both its CPU architecture and programming model are not known yet. Mul-
ticore CPUs are not expected to scale to the required number of cores per node, but hybrid
multicore CPUs consisting of different kinds of processing elements are expected to solve this
issue. They come at the cost of increased software development complexity with e. g., missing
cache coherency and on-chip NUMA effects. It is unclear whether MPI and OpenMP will scale
to exascale systems and support easy development and scalable and efficient programs. One
of the programming models considered as an alternative is the the so-called partitioned global
address space (PGAS) model, which is targeted at easy development by providing one common
memory address space across all cluster nodes. In this paper we first outline current and possible
future hardware and introduce a new abstract hardware model able to describe hybrid clusters.
We discuss how current shared memory, GPU and PGAS programming models can deal with the
upcoming hardware challenges and describe how synchronization can generate unneeded inter-
and intra-node transfers in case the memory consistency model is not optimal. As a major
contribution, we introduce our variation of the PGAS model allowing implicit fine-grained pair-
wise synchronization among the nodes and the different kinds of processors. We furthermore
offer easy deployment of RDMA transfers and provide communication algorithms commonly
used in MPI collective operations, but lift the requirement of the operations to be collective.
Our model is based on single assignment variables and uses a data-flow like synchronization
mechanism. Reading uninitialized variables results in the reading thread to be blocked until
data are made available by another thread. That way synchronization is done implicitly when
data are read. Explicit tiling is used to reduce synchronization overhead and to increase cache
and network utilization. Broadcast, scatter and gather are modeled based on data distribution
among the nodes, whereas reduction and scan follow a combining PRAM approach of having
multiple threads write to the same memory location. We discuss the Gauß-Seidel stencil, bitonic
sort, FFT and a manual scan implementation in our model. We implemented a proof-of-concept
library showing the usability and scalability of the model. With this library the Gauß-Seidel
stencil scaled well in initial experiments on an 8-node machine and we show that it is easy to
keep two GPUs and multiple cores busy when computing a scan.

Keywords: programming model, PGAS, data flow, distributed memory, hybrid multicore, GPU

15

A dataflow-like programming model for future hybrid clusters

1 Introduction

Each of the top ten supercomputers provides more than 1 petaflop of computing power1 and consists
of ten-thousands of nodes each with tenths of cores. Current predictions [9] state that the first
exascale system will be deployed in 2018 and is expected to consist of hundreds of thousands or
even millions of nodes each with thousands or ten-thousands of cores. These systems are expected
to raise two major problems with regard to programming model design.

Multicore scaling may end The last decade saw a large increase in single thread performance
being made available transparently, this trend came to an end. Vendors started putting mul-
tiple cores in one CPU to still be able to increase performance of the whole chip, yet the
performance increase using this technique again seems to slow down. Manycore chips such as
GPUs on the other hand continue to increase performance at a high rate and provide multi-
ple times the performance of modern CPUs. Unfortunately, not all problems are feasible for
manycore chips, and the rather slow connection between the multicore CPUs and manycore
GPUs makes it hard to effectively have both types of cores closely cooperate on solving tasks.

A possible solution for future hardware are so-called hybrid multicore chips, which combine
different kinds of cores on the same chip. This allows to increase overall chip performance and
eases the communication between different kinds of cores. Lately AMD started shipping its
CPU and GPU hybrid chip named Llano, which is currently the only hybrid chip in mainstream
market. We expect upcoming hybrid multicores to impose new challenges:

• Hybrid CPUs consist of different kinds of cores, e. g., throughput and latency optimized
cores. Having such components working together requires fine-grained pair-wise synchro-
nization, as e. g., having a latency core wait until the throughput cores have completed
their task results in poor load balancing for the latency core.

• It is unclear if future hybrid CPUs will be cache coherent.

• With chip size increasing and multiple memory controllers being added to one chip,
NUMA effects may appear between the different kinds of cores.

MPI / OpenMP may not scale Current supercomputers are often programmed with a combina-
tion of MPI for inter-node communication and OpenMP or MPI for intra-node communication,
it is unclear whether this communication mechanism will scale to the required order and allow
effective usage of upcoming architectures. Furthermore, the currently often used OpenMP like
fork-join parallelism and bulk synchronous processing like communication pattern is not ex-
pected to keep all processors of exascale systems active, but it increases idle time by requiring
global synchronization [9].

A model considered as an alternative is the so-called partitioned global address space (PGAS)
model. It assumes a global address space for all nodes in a system in the form that any node
can read and write any memory location. Furthermore the address space is partitioned and
each partition is local to a specific node, so the best performance is achieved when threads
access local data. There are different approaches for synchronization within the PGAS model.
Unified Parallel C (UPC) [6] for instance provides locks and barriers to synchronize threads
within and among nodes. The benefit of the PGAS model is that it allows direct support
for remote DMA transfers over network and rather easy programming of distributed memory
systems, as one can read data without requiring cooperation with the local program threads.
PGAS in general treats clusters as large non-cache coherent NUMA systems and is thereby
also a good match for future hybrid multicore CPUs, but the existing models are not designed
to effectively deal with such scenarios.

Our work involves contributions in three areas:

1. survey of hardware development and proposal for unified model
1http://www.top500.org/list/2011/11/100

16

International Journal of Networking and Computing

2. new synchronization model for PGAS and

3. prototype implementation of this model.

In the hardware part, we first discuss current hardware and possible future hybrid multicore chips,
and explain why fine-grained pair-wise synchronization and the abilities to deal with missing cache
coherence and NUMA aspects are essential to achieve high performance on such systems. Based
on that, we introduce a generic hardware model able to describe distributed memory systems using
multicore, NUMA, GPU and hybrid multicore nodes. The model is based on modules, which consist
of a set of uniform processors and their main memory and caches. For example, a NUMA system
composed of 4 CPUs is modeled by 4 modules, whereas a hybrid system consisting of a multicore
CPU and a GPU is modeled by 2 modules.

As a basis for the second contribution, we first discuss common shared memory, GPU and PGAS
languages and their differences regarding synchronization, remote memory accesses and memory
consistency. We furthermore detail how well they can deal with the anticipated hardware changes.
Our own PGAS variation extends the generic PGAS model with a pair-wise fine-grained automatic
synchronization mechanism, i. e., developers do not manually take care of synchronization. Memory
shared by multiple nodes is single assignment and therefore has two states: it can contain data, or
be unitialized. A thread reading unitialized memory is blocked until another thread writes to that
memory. A thread writing data automatically wakes up all threads waiting for the written data. In
the extreme, one could use this synchronization mechanism on bit level, however this would require
adding a synchronization bit to every data bit, which is obviously not feasible. We therefore apply
this mechanism on batches of data. Furthermore the model assures that the available processors are
oversaturated with threads, so that in case a thread is waiting for data the system can continue to
work. We expect this form of synchronization to be easy to use and debug, as one cannot have a
race condition when reading data as data cannot be overwritten. The worst case is a deadlock of
a thread reading data that is never written, however debugging such a case is mostly easier than
identifying race conditions, as the threads are blocked clearly naming which data dependencies are
not satisfied.

We allow distributing batches of single assignment data among all nodes, i. e., a matrix can be
stored purely locally or its data batches can be distributed among the nodes. We furthermore intro-
duce a special data distribution storing all data on every node for which writing acts as a broadcast.
Gather and scatter are modeled based on assignment of data with different data distributions. Re-
ductions with single assignment are inherently complex, so we introduce special reduction variables
following the combining PRAM approach, that is, multiple threads write to the same variable and
its value can be read as soon as all nodes have written a value. Scan is modeled similarly, except
for being defined on an array that stores all results of the scan. We show that all communication
algorithms used in MPI collective operations can be used in our model. To demonstrate the new
programing model, we discuss a set of fundamental data structures like vector and matrix and use
them to implement Gauß-Seidel stencil, and bitonic sort sorting and scan using multiple nodes.

The last part of our work describes a proof of concept library implementation of the model. Our
implementation is based on CUDA and the active messaging implementation of the GASNet [5]
library, also used for e.g. UPC and Chapel. Our matrix implementations are tile based, so that the
synchronization is based on tiles. Using tiles is required for efficient network communication. Due
to a limitation of GASNet we could not effectively oversaturate the available nodes with threads
and therefore decided to test our implementation on problems with regular memory access patterns
only. We decided to use GASNet as a starting point of our work despite this problem, as it is well
known and widely adopted. Future work may choose another library or modify GASNet to solve
this issue. We implemented the Gauß-Seidel stencil and our performance results show that it scales
well for multiple multicore nodes. The techniques used in both the model and the implementation
are mostly known and have been implemented previously, yet we expect the overall combination to
be unique.

The paper is organized as follows. First, Sect. 2 surveys current hardware and predicts possible
future hybrid multicore chips. The next section (Sect. 3) discusses our hardware model and how it
describes the hardware introduced in the previous section. Sect. 4 describes current shared memory

17

A dataflow-like programming model for future hybrid clusters

and GPU programming models regarding our hardware predicts. Sect. 5 discusses they same aspects
for current PGAS programming models. Our model is introduced in Sect. 6 and Sect. 7. We first
introduce pair wise synchronization (Sect. 6), and then data distributions and optimized commu-
nication algorithms including broadcast and reduction (Sect. 7). Based on our model we introduce
basic vector and matrix data structures in Sect. 8. In the next section (Sect. 9) we use our model to
implement example algorithms. The next two sections detail our library implementation (Sect. 10)
and discuss the Gauß-Seidel stencil implementation (Sect. 11). The paper finishes with an overview
of related work and conclusions, in Sects. 12 and 13, respectively.

2 Current and future hardware

This section first gives an overview of hardware currently used in supercomputers and afterwards
discusses hybrid multicore CPUs as we expect them to be the next step in hardware development.

Seemingly all current supercomputers are distributed memory systems consisting of multiple
shared memory nodes. In its simplest form a node has only one multicore CPU, but a node may also
incorporate multiple CPUs, typically as a NUMA system that allows to increase the total amount
of memory and memory bandwidth of the node. A CPU may also be supported by a GPU to speed
up data parallel computations. We detail these different hardware architectures next.

Multicore CPUs A multicore CPU consists of a set of cores, each of them optimized for single
thread performance. We call these cores latency oriented. Latency oriented cores use coherent
cache hierarchies to keep memory access latency down to a minimum. Communication between
multiple cores often goes through a shared last level cache. On the current Intel Sandy Bridge
architecture, for instance, the level 3 cache is shared and data used by multiple cores can be
stored in that cache. Most current CPU cores support so called SIMD instructions, which
allows the CPU to execute the same instruction on multiple values at the same time, so e. g.,
Sandy Bridge can add two single precision floating point vectors with a single instruction of
the length 9 with one instruction. Use of the SIMD units increases the efficiency of instruction
scheduling and the memory system.

NUMA A NUMA system consists of multiple CPUs each with its own local memory partition. A
memory partition local to a different CPU is called a remote partition. Every CPU can access
both its local and remote partitions, but accessing a remote partition has a higher latency. The
difference in latency between accessing the local partition and a remote partition is measured
by the so called NUMA factor. A NUMA factor of about 2 is common for e. g., small Intel
Nehalem based NUMA systems and means that a remote access has twice the latency of a
local access.

GPUs Modern GPUs are used as accelerators for data parallel workloads. GPUs have their
own memory subsystem and their main memory is called global memory. The PCI Express
bus (PCIe) is used to transfer data between (CPU) main memory and global memory, yet there
is no mechanism to keep copies consistent. PCIe is optimized for transferring large chunks of
data as the cost for initializing the transfer is rather high. GPUs are tile-based many-core
systems, which bundle sets of processors together in tiles. NVIDIA calls a tile a streaming
multiprocessor (SM). The processors of the same tile are SIMD units, so all processors of a tile
execute the same instruction at a time. NVIDIAs GF100 (Fermi) has 448 cores organized into
14 SM with 32 cores each. A SM provides fast on-chip scratch pad memory and all processors
of the SM can work together on it. A single processor does not provide high performance
and is optimized for throughput rather than latency. The latest generation of GPUs provides
caches, however they are mostly used to ease a restriction on efficient memory access patterns
and not to expose temporal locality.

As discussed, the current CPU architecture landscape is dominated by two approaches: latency
oriented cache coherent multicore CPUs and throughput oriented manycore GPUs. Multicore ar-
chitectures seem to have reached a point at which further performance increase becomes rather

18

International Journal of Networking and Computing

complicated [16, 1], especially maintaining cache coherency for all cores gets harder with each core.
Performance of manycore architectures continues to increase and currently a GPU provides multiple
times the performance of a multicore CPU, yet not all problems are suitable for manycore archi-
tectures. Furthermore, application specific processors can also be used to improve performance for
specific applications.

Future processors can be built as so-called hybrid multicore CPUs, which consist of different
kinds of cores each optimized for certain types of tasks, e. g.a latency optimized core, a throughput
optimized core and an FPGA used as an application specific processor could put in the same CPU.
Currently there are hardly any such systems on the market, however we give a brief overview next
and discuss the principle possibilities and problems of such hardware after that. We refer to hybrid
multicore CPUs as hybrid chips.

Probably the most well-known hybrid chip of the last years was the Cell Broadband Engine [7],
which achieved high performance compared to other CPUs of its time. Future development of the
Cell B.E. seems to be discontinued. A new hybrid chip is AMD’s already mentioned Llano chip [4],
which combines a quad-core CPU with a manycore GPU. The chip is focused on mainstream desktop
use and not on high performance computing. Both modules share the memory interface, however
not the same address space so data is not automatically shared [3]. We expect this limitation to be
lifted with future hardware generations, but do not expect that current shared memory programming
techniques are a good match for such systems due to the issues discussed next. Liu et al. [17] came
to a similar finding when evaluating programming models for Intel’s upcoming MIC architecture,
previously known as Larrabee. MIC consists of multiple x86 based in-order CPUs with large vector
units. We identified three major challenges crucial for a programming system for upcoming hybrid
chips.

No cache coherence As stated before, we expect hybrid chips to offer shared memory for all cores.
We furthermore assume future hybrid chips to contain caches, but not necessarily that all will
be coherent. On non cache coherent systems, memory barriers for the whole CPU will become
rather expensive, as not only values currently in registers must be written back to cache, but
caches must be written back to main memory. Communication between the non-cache coherent
cores should be minimized and well defined.

Efficient fine grained synchronization We expect hybrid systems to be most efficiently used
when all cores are busy and supplied with tasks matching their architecture. The different
kinds of cores follow different execution styles complicating synchronization: Latency cores
produce single results fast, whereas throughput cores produce a batch of results at once with
possible high latency between the batches. Synchronization must be at batch level to keep all
cores busy as otherwise latency cores may be idle longer than necessary resulting in poor load
balancing. For example, current systems use barriers for synchronization requirering the CPU
to wait for the GPU to complete its work.

NUMA Another issue with current systems is that memory bandwidth is increasing rather slowly
compared to processing power. Memory bandwidth can be increased by using multiple memory
controllers on the same chip, as it is e. g., done by Intel’s SCC [14], a manycore architecture
without a shared address space. Having multiple memory controllers on the chip may lead to
NUMA issues, i. e., accesses to a certain memory location have different latency for different
cores. For simplicity we expect there to be one memory controller per module for the rest of
this work, however the overall observations stay true even if the practical setup is changed.

In summary, the requirements stated above are similar to those of PGAS programming models
for clusters, even though the concrete performance characteristics are different.

3 Abstract hardware model

In this section, we introduce our abstract hardware model, which is designed to describe current and
future hardware in one unified model. We use the model later on to discuss how current programming

19

A dataflow-like programming model for future hybrid clusters

on-chip memory
 processing

element
local partition

Figure 1: Two modules of our abstract hardware model.

models match the expected hardware requirements. Moreover, the hardware model can be slightly
extended by a cost model to allow PRAM like algorithm design and analysis. This part of the model
is out of scope for this work, though.

Figure 1 gives a simple example of our model. The model itself does not limit the number of
elements and allows to model systems with e.g. a different number of processing elements. In the
model systems are divided in so-called modules. A module is a set of uniform processors and their
memory subsystem, e. g., a cache and its main memory partition. In case different kinds of processors
share one main memory partition they are considered as two modules. We call the main memory
partition of a module local partition. We do not limit the number of processing elements per module
and expect each to have its own set of registers. A module furthermore has caches or scratch pad
memories, which we simply call on-chip memory. On-chip memory greatly benefits from working on
batches of data.

All modules share a common address space and each module can access the local partition of
all modules. We call the the local partition of a different module a remote partition. Accesses to
remote partitions benefit from accessing blocks of data similar to accesses to the local partition. We
expect the latency (l) of the different memories to fulfill

l(registers) ≤ l(on-chip memory) ≤ l(local partition) ≤ l(remote partition)

We do not require the NUMA factor to be identical throughout the machine.
We strictly follow the relaxed memory consistency model and the OpenMP naming conventions,

i. e., we allow copies of data in different memories and require that the copies are explicitly made
consistent. We call a set of copies temporary view and define a flush operation to make the temporary
view and the original data consistent. Thus a flush implies the following actions:

• A modified temporary view is written back to the original location.

• An unmodified temporary view is marked invalid and the value must be reread when accessed
again.

Temporary views have a lower latency than the original location. We allow one temporary view
per data element in each memory and flushes between the temporary views in different memories.
This allows sharing of temporary views among multiple processing elements, similar to e. g., shared
caches. We expect support for atomic operations following a strict memory consistency model as it
is common for atomic operations. The atomic operations must be system-wide and possible on all
memories, including atomic operations on remote partitions.

The model has been designed to cover a wide variety of systems, so we hardly put any restriction
on memory consistency covering a wide variety of possible hardware implementations. This choice
is obviously motivated by the anticipated hardware changes discussed in the last section. We also
do not put any direct requirements on how certain features are implemented. We do not distinguish
between caches or scratch pad memory as their underlying concept of requiring locality is identical,

20

International Journal of Networking and Computing

nor do we care if there is direct hardware support for accesses to remote memory or it requires support
by a software layer. More requirements would complicate the model and restrict its flexibility.

In general, our hardware model treats various systems as non cache coherent NUMA systems,
which allows us to model a wide variety of systems. Thus, Fig. 1 may represent:

NUMA The hardware could be a simple NUMA system with two multicore CPUs, each with its
own local memory partition. Main memories are obviously identified with the local partitions
and on-chip memory is matched to caches. Modern CPUs have more cache levels, yet the
model does not represent the detailed on-chip memory hierarchy, but only that such memory
is available and that it benefits from blocking.

CPU + GPU Figure 1 could also describe a multicore CPU with a GPU, in which case both
modules have different kinds of processing elements, yet they match our model. We identify
CPU main memory and GPU global memory each with a local partition, and CPU caches and
GPU scratch pad memories with on-chip memory. Modern GPUs can directly access main
memory, and CPUs can directly access global memory, however data is not kept coherent
between the modules.

Hybrid multicore Of course, the figure also describes a hybrid chip, as we do not make any
assumption on how communication between the different modules is handled, and thus this
case corresponds to that of a CPU + GPU combination.

Cluster A fourth way to interpret Fig. 1 would be a cluster of nodes each with a multicore CPU.
Communication must go over network and there is no hardware shared address space, yet it
can be implemented in software.

The four architectures represented by the model differ only in their communication costs, so
e. g., smaller batches of data can be transfered effectively between the modules of a hybrid chip than
between cluster nodes. We expect application specific cores to follow the model as well, even though
they may only be used for certain tasks.

4 Shared memory and GPU programming models

In this and the following section, we discuss whether existing programming models are suitable for
hardware as represented by the model of Sect. 3. Among the most widespread today are shared
memory, GPU and PGAS systems. The various PGAS systems are discussed in the next section,
whereas in this section shared memory programming is exemplified by OpenMP and GPU program-
ming by CUDA [18]. CUDA is almost identical to OpenCL [19] for the discussed aspects and we
only refer to CUDA throughout the rest of this work. We chose OpenMP and CUDA as they are
among the most widely used programming models.

OpenMP is a pragma based shared memory parallel programming system targeting multicore
CPUs. OpenMP strictly follows a fork-join structure of creating teams of threads, so for example
#pragma omp parallel num_threads(4) creates a team of 4 threads that execute the code block
after the pragma. At the end of that code block the threads are joined and a single master thread
continues execution until the next parallel region is found or the program ends. Synchronization of
threads in OpenMP uses locks or so called criticals, which enforce mutual exclusion for code regions.
With OpenMP 3.1 threads can also be synchronized by atomic operations, however in that case
developers must manually enforce memory consistency. The OpenMP memory model allows tempo-
rary views of shared variables similar to our description in the last section. Furthermore, OpenMP
defines the flush operation at which the temporary view of the calling threads is made consistent
with memory, i. e., local changes are written back and unchanged values are invalidated. As dis-
cussed, such a definition obviously works well on cache coherent systems, on non-cache coherent
systems the whole cache must be flushed creating high communication overhead. A flush is auto-
matically included in all OpenMP constructs implying synchronization, except atomic operations.
However synchronization with atomic operations normally requires explicit flushes, as otherwise
threads hardly can exchange any data.

21

A dataflow-like programming model for future hybrid clusters

UPC X10 Chapel XcalableMP Our Model

execution model PGAS APGAS APGAS PGAS PGAS
memory

direct remote memory access X 7 X 7 X
private memory X X 7 X X
strict memory consistency X 7 X 7 X
relaxed memory consistency X X X X 7

synchronization
barrier X X 7 X 7
lock / critical X X 7 7 7
synchronization variables 7 7 X 7 X

global communication algorithms X 7 7 7 X

Table 1: Characterization of PGAS languages.

OpenMP locks and criticals impose rather high overhead due to lock management and the implicit
flush. Requiring locking for both reading and writing can easily result in contention on the lock even
if data is unchanged, yet OpenMP does not allow reading shared variables without synchronization
in most scenarios. Furthermore the lock itself must be kept consistent for all modules and accessing a
lock in remote memory is therefore rather expensive. Overall, using criticals to synchronize on small
batches of data is most likely not feasible on large systems and using OpenMP atomic operations is
rather complicated.

OpenMP by itself does currently not support NUMA optimization, so it cannot solve any of the
anticipated NUMA issues. OpenMP has been implemented for non cache coherent systems by e. g.,
Intel’s Cluster OpenMP [15], yet it has not been successful. Overall, OpenMP and similar systems
have not been designed with high costs for flush operations in mind, nor are their synchronization
constructs easy to use when trying to achieve fine-grained pair-wise synchronization. These issues
make OpenMP a bad match for our hardware model.

CUDA is NVIDIA’s GPU programming system targeting mostly hybrid systems consisting of a
CPU and GPU each with its own memory. In CUDA, developers specify a set of data parallel tasks
called threadblocks that are automatically scheduled on the GPU. It is not possible to utilize possible
data locality between tasks nor is synchronization between tasks allowed. Synchronization between
the CPU and GPU always takes the form of a barrier at which the GPU must have completed a
whole set of data parallel tasks. The barrier obviously enforces memory consistency, i. e., all writes
done by the GPU tasks are visible to the CPU. Finer grain synchronization between CPU and GPU
could be implemented using atomic operations and explicit memory fences, yet this is error prone
and on most current systems not beneficial due to the PCIe communication link.

Data from a remote partition is normally read by making an explicit copy into the local partition
and developers must make sure that the data stays up to date whenever they access it. CUDA has
no explicit flush operation for such copies, and developers must re-copy the values to be sure they
are up to date.

CUDA obviously works well for non cache coherent memory spaces, yet pure barrier synchroniza-
tion will hardly be able to keep all processors of an exascale system busy and the costs for barriers
scales with the number of cores to synchronize. Current GPU programming models lack efficient
synchronization constructs to be a good match for our hardware model.

5 PGAS programming models

In this section we first give an introduction to the PGAS model and discuss common variations of
it. We use our abstract hardware model even though some PGAS variates have defined their own
hardware model. The PGAS model itself defines a shared address space for all modules of the system,
so that each thread on each module can access every data element, even without shared memory

22

International Journal of Networking and Computing

at hardware level. The global address space is partitioned with one partition per module, which is
the local memory of that module. Accessing data within the local partition is obviously faster than
accessing data from remote partitions and developers should maximize local memory accesses. In
general, data are created on one module and live there for their lifetime. Data structures may be
local to one module or distributed among multiple modules, e. g., an array can be split in stripes and
the stripes be distributed, however data may not be redistributed. Most systems require the user to
make sure that its algorithm matches the data distribution in a way local data reads are maximized
or performance may suffer greatly. PGAS variations are often classified into the standard model
and the so called asynchronous PGAS (APGAS) model [22]. The standard model defines a SPMD
execution model so every module executes the same program, whereas the APGAS models allows
to dynamically spawn tasks/threads on specific modules. This difference, however, is not important
for the rest of this work and not further discussed.

One well known realization of the standard PGAS model is the Unified Parallel C (UPC) pro-
gramming language. In UPC memory is divided into thread local private memory and shared
memory accessible by all threads. Reads and writes to shared memory are done with standard read-
/write operations. Arrays can be distributed in various ways, e. g., cyclic, block-cyclic or blocked.
Furthermore, UPC allows developers to specify the memory consistency model on a per memory
access basis, that is, each individual memory access operation can be relaxed or strict. Strict opera-
tions act like a memory fence and previous operations must be finished before the strict operation is
completed. For synchronization among threads, UPC provides locks and barriers, which use strict
memory accesses.

IBM’s X10 is an APGAS language that does not directly allow to access remote memory, but
for its APGAS nature it is possible to spawn tasks with a data payload on a remote module and
that way access remote memory. Synchronization in X10 uses the atomic statement which enforces
module local synchronization similar to e. g., the OpenMP critical construct – that is, both read and
write accesses to data shared by multiple tasks must be within an atomic statement. X10 memory
consistency is therefore similar to that of shared memory programming models, yet it is not defined
in the specification.

Cray’s Chapel is another APGAS language, but allows to directly access remote memory. For
synchronization, Chapel supports different versions of synchronization variables with a full/empty
state including one with a single assignment syntax. Accessing such synchronization variables acts
as a fence operation, similar to UPC’s strict memory accesses. Furthermore Chapel plans to support
distributed software transactional memory, which however is currently in an experimental stage [24].

XcalableMP is a rather new directive-based PGAS language extension for C and Fortran. Version
1.0 was released in November 2011. XcalableMP calls its execution model SPMD, but allows APGAS
like spawning of tasks on specific modules – implemented similarly to OpenMP tasks. Following the
PGAS model, memory is divided into private and shared memory with the latter being distributed
across all modules based on so-called distributions. A module can only directly access data that is
stored in its private or the local partition of shared memory. In the so called global programming
model of XcalableMP one can access remote shared memory by explicitly marking the access as
remote (gmov) or have the runtime system automatically copy it to that module. The copies are not
kept consistent, that is one must manually make sure data are copied again if needed. XcalableMP
also supports the so called local programming model, which resembles the coarray model of Coar-
ray Fortran. Data of coarrays can be copied into a local array, which however must explicitly be
synchronized by a sync_memory function. The only global synchronization primitive available is a
barrier, which is the only point at which memory is consistent among all modules. Table 1 gives an
overview of the different programming models.

All existing models handle memory consistency, remote memory accesses and global synchroniza-
tion differently, however all three aspects are important for high performance in a PGAS environ-
ment. Chapel and UPC require the developers to manually use locks or synchronization variables
and all memory is consistent at these synchronization points. Every time such a synchronization
point is reached a flush must be done, that is all local data modifications must be written back
to their correct memory location and furthermore all reads after the synchronization point must
access the original location. Thus a remote value may be transferred over the network, again, even

23

A dataflow-like programming model for future hybrid clusters

if it is unchanged. It is currently not possible to prevent such communication overhead, except by
manually caching data locally, which is cumbersome.

Systems disallowing direct remote memory accesses do not face these issues, but require devel-
opers to manually mark remote accesses. In X10 remote memory access operations must be moved
into remote tasks, and use local synchronization on the remote module. In XcalableMP remote
reads must be explicitly marked and a form of global synchronization is required to make sure to
read an up-to-date value. Both X10 and XcalableMP do not directly take care of global memory
consistency, but impose this task on the developer. Managing memory consistency can be rather
complex and error-prone, depending on the concrete application.

As PGAS is expected to scale to exascale systems, fine grained synchronization among modules is
required to reduce idle time of processors. Pure barrier like synchronization will most likely not scale.
As discussed above, direct access to remote memory obviously complicates the memory consistency
model, but allows easy employment of remote DMA transfers. RDMA supports high-bandwidth
low-latency memory transfers and furthermore often removes the need of copying data into buffers.
However, flushes with direct remote memory accesses can easily generate a high amount of network
traffic not obvious to developers complicating program design.

The PGAS concept by itself is a good match for our hardware model, as it allows to easily control
NUMA issues and is targeted at non-cache coherent distributed memory systems. However at the
time of writing the upcoming systems lack an efficient memory consistency model and synchroniza-
tion is often cumbersome. Furthermore the current PGAS variants have no direct way of increasing
on-chip memory efficiency.

6 Our model - Pairwise synchronization

Our model is designed to allow efficient usage of hybrid clusters and must therefore solve the issues
discussed in the last sections. For simplicity our model expects the same program running on all
modules, however it can most likely be extended to an APGAS model. We divide memory in
private and shared memory and allow direct remote shared memory accesses. Remote accesses are
not explicitly marked as such, similar to UPC. We only discuss shared memory and expect private
memory to be used as it is typically done for the respective module type, e. g., one can use OpenMP
for a multicore module.

In contrast to the standard PGAS model we directly incorporate thread synchronization within
our model. Synchronization is tied to reading/writing shared memory. Shared data are single
assignment, so only one thread can write once to a specific shared memory location, whereas it can
be read multiple times by all threads. As memory is single assignment, we can define two states for
any memory location:

• memory is uninitialized or

• it contains data.

Synchronization is based on these states following two rules:

• If a thread tries to read from unitialized memory, it is blocked.

• A thread writing data will unblock all threads waiting for the written data.

Following these rules threads can only read memory that contains data and data cannot be
overwritten. Therefore, it is impossible to have race conditions and there is no need for a complex
memory consistency model. We expect this form of synchronization to simplify development. As
already mentioned, we could use our form of synchronization on bit level, but that is not feasible
and unnecessary for most problems. We call the batch of data to which synchronization is applied a
synchronization unit and its size the synchronization size. We refer to this concept as synchronization
granularity. For example, consider an algorithm using tiled matrices. The synchronization size can
be identical to the tile size by which a tile becomes a synchronization unit. As a result, threads are

24

International Journal of Networking and Computing

only able to read data of a completely written tile. Working on forms of data blocks is essential for
most hardware architectures and our hardware model. We expect explicit blocking to be easier to use
than an implicit mechanism as it is done for current multicore CPUs by rearranging memory accesses.
Reusing our blocking concept for synchronization again emphasizes the importance of working on
blocks of data. The synchronization size can differ for different data and the optimal synchronization
size depends on the algorithm and hardware used. For example Cray’s XMT architecture [8] supports
full/empty bits for memory in hardware, which may most likely allow smaller tiles than on, e. g.,
x86 systems.

Furthermore our model provides for a way of hiding latency by oversaturating the modules with
threads and suspending threads waiting for data. This technique follows a similar pattern as it is
e.g. widely used by GPUs for hiding off-chip memory access latency. Oversaturating the system is
required for problems with irregular memory access, as in these scenarios threads may be blocked
for a rather long time waiting for a thread to write data. In this paper we concentrate on regular
workloads and leave irregular workloads for future work.

In contrast to e. g., UPC, developers must no longer explicitly synchronize, and in contrast to
X10, one must no longer explicitly move accesses into remote tasks. In Chapel one can achieve
similar behavior by using synchronization variables, but Chapel itself does not support the concept
of synchronization granularity nor does guarding chunks of memory with synchronization variables
allow the system to cache the guarded memory without in detail code analysis, whereas single
assignment memory of course allows us to have temporary views of data in all memory spaces of
our hardware model. OpenMP also does not allow the system to cache values, as all must be reread
after a flush. CUDA and OpenCL do not allow this kind of fine-grained synchronization.

7 Our model - Data distribution and global communication
algorithms

In this section we discuss possible data distributions and optimized global communication algorithms.
Our concept allows to use algorithms from MPI collective operations with only small constant
overhead. This section again considers a partitioned global address space.

Data distribution by itself is fairly simple, a synchronization unit can be in the local module or in
a remote module. A data structure can combine both types of placement e. g., the synchronization
units of an array can be distributed among all modules. Regardless of its location, a synchronization
unit can be read by all modules. In case a module has successfully read data from a remote module
it can keep a temporary view in all its memory spaces without ever having to reread the value.
Based on this, we can also define data that is in all partitions, that is the data are local to all
modules. We call this distribution everywhere and it is expected to be implemented by having
writes broadcast the synchronization unit to all modules. The implementation can of course use
the broadcast algorithms used in MPI, however in contrast to MPI our broadcast implementation
is not collective. Only one module writes a synchronization unit and the other modules do not
directly participate, but internally e. g., a RDMA transfer can write the data to the correct memory
location. In general, MPI global communication algorithms rely on the fact, that every module
calls a collective operation. We can circumvent this requirement by using so called active messages.
Active messages automatically trigger code execution when a message is received at a module, which
can be used to continue distribution of data. We discuss active messages in detail in our Sect. 10.

Scatter is modeled by copying local data to a distributed data structure e. g., a local array is
assigned to one with stripe-wise distribution. This is a straightforward approach, yet still allows us
to use global communication algorithms. Gather is modeled the other way round, that is by assigning
a distributed array to a local one. The optimal communication algorithm obviously depends on the
concrete distribution of data, but in all cases the MPI algorithms can be used.

To allow efficient reduction, we extend our model by an approach similar to combining PRAMs.
We add so called reduction variables to our model. Reduction variables closely follow the concept
of our single assignment memory, except that all modules must have written to a synchronization
unit before the value can be read. The reduction is performed while the data are written and the

25

A dataflow-like programming model for future hybrid clusters

reduction operation is defined per reduction variable, so e. g., one variable can be used to compute
a sum and another computes a minimum. One can also define an array of reduction variables, in
which multiple reduction variables are in the same synchronization unit. Such an array is reduced
by reducing whole synchronization units that is as soon as every module has written to all variables
in one synchronization unit the variables are reduced.

Scan is modeled similarly, except that it is not be defined on a single element, but an array. A
scan array consist of one synchronization unit per module. The values of synchronization unit i can
be read after values have been written to all synchronization units with indexes ≤ i.

Data distribution is independent from the scan and reduce behavior, so synchronization units of
e. g., reduction variables can be distributed among the system or use the everywhere distribution,
in which case MPI all-reduce is accomplished.

8 Basic data structures

In this section we describe a set of basic data structures realized using our model. We refer to
the data structures throughout the rest of the paper and have implemented them in our prototype
library. The model itself is not limited to these data structures.

First, for a tile based local matrix all data is stored on one module only. The data is stored
in tiles, which are the synchronization units. The data of such a local matrix can be accessed by
all threads knowing their address, which however is not automatically known to all threads. We
use a vector with the everywhere distribution called shared vector (see below) to give all threads
the address of the matrix. We could change our model and provide a common namespace for all
variables, however this would complicate the implementation of the model as a C++ library by a
great deal and hide possible important communication costs. Future work may decide to lift this
limitation.

The shared vector is a vector using the everywhere distribution. The creation of a shared vector
must be done by all modules collectively and results in communication, in contrast to the creation
of a local matrix. To give other threads access to a local matrix the creator thread must write its
address into a previously created shared vector.

The third data structure is called distributed matrix, and it is essentially a combination of both
previous data structures. The distributed matrix distributes its data on all modules, by using a
shared vector and local (sub-)matrices on every module. The vector stores the addresses of all local
matrices, which enables every thread to read all data. The data structure supports arbitrary data
distributions, for which one must only define a mapping of the global matrix indexes to sub-matrix
indexes.

As an optimization, all data structures cache remote data locally.
We have defined our model without a notion of groups of modules. Future work may introduce

module-groups into our model, which is obviously a requirement for exascale systems. Other PGAS
programming models do not support groups at the time of writing either, nor do OpenMP or CUDA.

As an example one can use our data structures to parallelise I/O and computation in matrix
multiply, i. e., one module is used for I/O and multiple modules for computation. The two input
matrices can be stored as distributed matrices that equally distribute the data among the compute
modules and no data on the I/O module, whereas the result matrix is local to the I/O module.
The I/O module reads the input matrices from file and writes them into the input data structures.
Storing the data of the input matrices on the compute modules allows the input modules to use
remote writes, which can easily be implemented as fire-and-forget operations and are therefore more
efficient than remote reads. As soon as the input module has read the input matrices, the module
can start writing the result matrix to file. The compute modules will start computing by reading
from the input matrices and writing the results into the result matrix. Synchronization is implicit
and compute modules are blocked in case the required tile is not yet read from file, whereas the
I/O module is blocked in case the required result is not yet computed. Storing the result matrix
on the I/O module again allows for remote writes. Developers may choose to use a module with
throughput cores for their computation.

26

International Journal of Networking and Computing

0 1 2

3

4

2

2

1

3

iteration 0

2 3 4

5

6

3 4

4 5

iteration 1

Figure 2: Wavefront pattern for multiple dimensions. The elements with the same number can be
computed in parallel.

A common issue with single assignment memory is its high memory requirements since memory
cannot be reused. Many scientific algorithms use double buffering, that is after every iteration
input and output are swapped and memory is reused. It is possible to allocate new memory for
every iteration in our model, however depending on the overhead of memory allocation this may
not result in reasonable performance. To prevent unneeded reallocation, we allow modules to mark
data structures as unused. If all modules have marked a data structure as unused, it can be reused.
If a thread tries to reuse a data structure before all modules have marked it as unused, it gets
blocked. This technique allows direct use of double buffering and gives all modules the ability to
clear their local caches, since they must actively participate in reuse. This feature has been put
in place to allow easy implementation of the model and may be removed at a later date. For
example efficient memory pools may minimize the overhead of memory allocation so reallocating
memory may be feasible. When a data structure is in its unused form it is possible to change the
data distribution. Implementing this feature is rather complex and it is therefore not yet available.
The ability to change the distribution of an existing data structure is considered future work and
evaluated together with techniques to solve the high memory requirements, however we discuss its
potential usage in the next section.

9 Example Algorithms

In this section we discuss four algorithms:

1. Gauß-Seidel stencil

2. Scan (all prefix sums)

3. Bitonic sort

4. FFT

Gauß-Seidel stencil The Gauß-Seidel stencil is well known and requires a non-trivial parallel
solution. The calculations of the stencil are applied on a two-dimensional data matrix V of the
size N2 with the borders having fixed values. The non-border element with the coordinates
(x, y) in the kth iteration is calculated by

V k
x,y =

V k
x−1,y + V k−1

x+1,y + V k
x,y−1 + V k−1

x,y+1

4
.

The computation is done row-wise starting at the top left non-border element (1, 1) and is
repeated for a fixed number of iterations or until it converges. We discuss the version running
I iterations. We furthermore expect I > N for our algorithm analysis. It is important to
notice that the upper (x, y − 1) and the left (x − 1, y) values are from the current iteration,
whereas the right (x + 1, y) and bottom (x, y + 1) value are from the previous iterations.
These data dependencies result in a non-trivial parallel solution. It is possible to compute

27

A dataflow-like programming model for future hybrid clusters

+ +

C

P

U

C

P

U

G

P

U

0

G

P

U

1

every threadblock
stores its last sum in an

auxiliary array (SUM)

block wise scan

scan block sums

add scanned block sum
to scanned blocks

fill input array with data0

1

2

3

Figure 3: Overview of the scan algorithm.

multiple elements in one iteration in parallel and to compute multiple iterations in parallel.
Both dimensions of the parallel solution follow the wavefront pattern [21]. See Fig. 2 for a
visualization of which elements can be calculated in parallel. In one iteration only the elements
in the same diagonal can be processed in parallel. Computing multiple iterations in parallel
follows the same pattern, but the next iteration is always two diagonals behind the previous
one. We use both dimensions in our solution.

Our solution uses one distributed matrix for every iteration. We expect the program to run
at P modules. The matrices are distributed by giving each module a batch of rows, that is
the first module stores the top N/P = m rows, whereas the next module stores the next m
rows. For simplicity we expect m threads to be available at each module. Every module will
compute its local m rows for all iterations by using one thread per row, for less threads the m
rows can be split equally among the available threads. Synchronization among the threads on
different modules is done automatically, as threads reading matrix tiles not yet calculated will
be blocked until the data are made available. We use the same synchronization among local
and remote threads as the whole matrices are stored in shared memory. This form of pair-wise
synchronization between the threads will not result in a strict wavefront pattern, but threads
may calculate ahead. Overall this algorithm requires O(I ∗ N2

m) network transfers – the first
and last rows of a module must be transfered to the neighbor module for every module except
the first and last one. Furthermore it requires up to O(N2 ∗m) memory, when using a form
of multi-buffering with m matrices. When using m matrices at the same time a thread does
not need to wait for memory to be available to be filled, yet the memory requirement is rather
high. It is possible to further limit the number of of matrices, however this will not only reduce
the total memory requirement but also limit parallelism. As the algorithm works on matrix
tiles it can easily utilize on-chip memory.

Scan All prefix sums – also known as scan – is an important parallel building block used in a wide
variety of algorithms. Scan takes an input array [x0, x1, ..., xn−1] and a binary associative
operator + with the identity I as input and returns [I, x0, (x0 + x1), ..., (x0 + x1 + ...xn−2)].
Harris et al. [13] suggested a work-efficient implementation for CUDA, which is split in three
steps. In the first step the whole array is subdivided into blocks and a local scan is performed on

28

International Journal of Networking and Computing

PE 0

PE 1

PE 3

PE 2

1.1
 2.2
 2.1
 3.3
 3.2
 3.1

Figure 4: Bitonic sort. The color shows both the data distribution and which module reads which
data elements, that is data read is always local but may be written to a remote partition.

every block. In this step the block sums of every block are written to an auxiliary array (SUM).
In step 2, SUM is scanned and in a third step, the result of the scan are used to update the
original array, so it contains the final result. Figure 3 gives a basic overview of the algorithm
in which we added the filling of the input array as a step 0. We discuss a manual scan
implementation in our model despite the fact that we have defined a global communication
algorithm simply because it is a well known algorithm allowing demonstrate use of our model.

We can parallelize scan by using e.g. one vector and one module per step. Synchronization
is done automatically. As soon as module 0 has generated the first batch of data in step 0,
module 1 can start to compute the block wise scan. Module 2 can start as soon as the first
block sum is available and module 3 starts computing after the first block sums are scanned.
Thereby all four steps form a pipeline and can be executed in parallel. Scan is often used as
a final processing step, so that step 0 takes the most time and we could use multiple modules
to compute step 0.

Bitonic sort Bitonic sort by itself has rather high communication costs and is therefore most
likely not a good choice for large non cache coherent systems. Nevertheless we consider it a
good example to illustrate use of our model due to its non-trivial data dependencies shown in
Fig. 4. We start by using one vector per iteration and discuss optimization by multi-buffering
afterwards. We ignore the start of the algorithm, which merges single elements without the
need of communication, and begin our discussion when two synchronization units are to be
merged. We expect there to be N elements to sort and P modules. Furthermore we expect
P to be a power of two and that the array consists of P ∗ 2 synchronization units. In step
1.1 of the algorithm module p merges the synchronization units 2 ∗ p and 2 ∗ p + 1. Step 2.2
then merges elements further away from each other, whereas step 2.1 is essentially identical to
1.1. This pattern continues with 3.2 being identical to 2.2 and 3.1 to 2.1 and 1.1. The access
pattern changes over time and we choose a distribution allowing for remote writes and local
reads. The distribution follows the colors in Fig. 4, that is, in the vector of step 1.1 the first
and second blocks are local to module 0, whereas in step 2.2 the first and third blocks are local
to module 0.

We can apply a form of multi-buffering by allowing the distribution to be changed whenever
the vector is unused. We consider changing the distribution to be simpler than modifying the

29

A dataflow-like programming model for future hybrid clusters

access pattern of the algorithm, which obviously is also a possible solution to that problem.
Overall the algorithm has O(log2N) steps and thereby O(N ∗ log2N) communication costs.
Note that in contrast to most bitonic sort implementations we use pair-wise synchronization
and no barriers.

FFT FFT has the so called butterfly data dependency graph, which is similar to the one of bitonic
sort. One can create the butterfly graph from Fig. 4 by removing steps 2.1, 3.2, 3.1. We can
therefore reuse our approach for computing an FFT as well.

10 Implementation

Our implementation is currently only a proof of concept and has not been optimized for maximum
performance and consists of two branches one for hybrid CPU/GPU systems and one for distributed
memory systems. We first describe the generic approach for both hybrid and distributed memory
systems and afterwards detail the concrete implementations.

We have implemented our model in a set of data structures described in Sect. 8 available as
a C++ library. The library has been tested on a x86 based cluster and on NVIDIA GPUs. As
the current target architectures do not have direct support for our synchronization mechanism, we
implemented it by adding a flag, to each synchronization unit. The flag is stored directly in front of
the synchronization unit. We put a memory barrier before setting the flag to make sure all data is
written before another thread can read the flag as available. The flag is set using volatile variables, so
the flag itself is directly made available. The flag need not be set atomically, as in a correct program
it is not changed by multiple threads, however our implementation uses atomic operations to try
to detect possible developer errors. In case two threads try to change the same flag, an assertion
is triggered and the program is stopped. It is only a best effort approach, as there is no atomic
operation for both CPUs and GPUs in current hardware.

Our flag based implementation is rather lightweight. The costs for writing a synchronization
unit are increased by the cost of setting the flag. There is no contention on modifying the flag nor
will there be any false sharing with reasonable large synchronization sizes. In case the flag is not yet
set, reading a synchronization unit will spinloop until the flag is set. Note that after the loop reads
may be cached, as data is single assignment.

In our library, data placement is managed by distributions, which essential follow the concept
described in Sect. 7. Distributions must be supplied whenever a data structure is created. They are
used as both an allocator and a random access iterator, that is the distribution allocates all data
required for the data structures and manages all accesses to it. Data access is managed by three
basic functions:

• get() manages reads of the synchronization unit and blocks in case data is not yet written.

• get_unitialized() returns a pointer to the location data can be written to.

• set() marks the synchronization unit to after all writes have finished.

Data writes are in general done in three steps.

1. get_unitialized() is called. The functions returns a pointer to a synchronization unit.

2. Data is written to the pointer returned in step 1.

3. set() is called marking the data as available.

The optimal distribution most likely depends on the specific task, so we made distributions easy
to create. We supply low level allocators and pointer like random access iterators, which take care of
memory allocation and synchronization, as well as data access itself. When the low level constructs
are used, a distribution must only implement a mapping of a linear address space to the allocated
memory blocks.

30

International Journal of Networking and Computing

As an example, a minimal distribution maps a linear address space to a single block of CPU
memory, but the memory will still be accessible by all modules. A distribution could also allocate
memory on multiple modules and distribute the data stripe-wise.

We use NVIDIA’s CUDA to program hybrid systems and use its so-called unified virtual address
space. By using the virtual address space, CPU main memory and the global memories of all GPUs
are mapped to the same address space. In general each device can access every memory location:

• GPUs can access CPU main memory, if allocated as page locked memory, also known as
pinned memory. Developers can allocate memory to be cache coherent with the CPU, or
allocate memory as write combined, which prevents the CPU from caching it. Accessing write
combined memory can result in a performance increase of up to 40% [18] for the GPU at the
cost of increased CPU access latency.

• The CPU can access GPU memory by explicitly making a partial copy of GPU memory into
main memory using a CUDA specific memcpy function.

• If both GPUs are Tesla cards they can directly read and write each others global memory.

Memory accesses from a GPU to main memory or from a CPU to global memory are DMA
transfers over PCIe, which has a rather high latency and a maximum bandwidth of 8 GB/s. Remote
memory accesses are therefore obviously more expensive than for hybrid multicore systems.

The concrete implementation using CUDA follows the concept outlined before and we can define
distributions that e. g., store data on the CPU or distribute data among the global memories of mul-
tiple GPUs. Our hybrid implementation does not yet support optimized communication algorithms
as described in Sect. 7.

Our implementation for clusters uses so-called active messages, a message based communication
primitive for communication in distributed memory systems. In contrast to, e. g., MPI messages
active messages do not only contain a data payload, but automatically trigger code execution when
received. We use the active message implementation of the GASNet library, which works as follows:

1. Module A sends a request to module B. The request contains both a handler-id and a possible
data payload.

2. When the request is received by module B, it automatically executes code defined by the
handler-id to process the request. The code is executed in background and will not directly
influence the threads of the main program written by the developer. The handler code can
send a reply to module A. The reply again consists of a handler-id and possible data payload.

3. A reply at module A is handled identical to the initial request, but must not send any active
message.

Memory reads from remote partitions are implemented by sending a request to the remote module
including the memory address to be read. The remote module checks if the memory contains data.
In case data are available, a reply with the data is sent. In case memory is unitialized, a thread
waits until the data are available and afterwards sends them. Due to a GASNet limitation the
thread cannot be awakened by a signal, but a spinlock must be used. As described before, we use
flags to identify availability of data. To allow for high network utilization, we always send whole
synchronization units over the network.

The optimized communication algorithms are implemented using the matching MPI functions.
This is done by using an active message that triggers the MPI collective function call on all remote
modules. Unfortunately this implementation using both the latest version of GASNet and Open-
MPI is unstable and regularly crashes. We therefore also implemented inefficient trivial fall-back
functions. Future work may directly implement more efficient algorithms.

Not all features of both of our branches work well with each other at the time of writing, for
example the PGAS implementation cannot access memory of remote GPUs. Communication with
remote GPUs is only possible by using main memory that can be accessed by the GPU as well.
Future work will unify both branches and offer uniform memory accesses.

31

A dataflow-like programming model for future hybrid clusters

Problem size (in 256 element blocks) 50 100 200 400 500 1000

Time (ms) 5.833 11.595 23.537 46.528 58.126 116.958
Input (ms) 5.806 11.553 23.468 46.404 57.974 116.668
Pure computation (ms) 0.027 0.042 0.069 0.124 0.152 0.29

Table 2: Runtime for a single scan computation with different input sizes.

11 Experiments

We implemented the scan algorithm using the GPU based branch and the Gauß-Seidel stencil using
the distributed memory branch.

Scan was tested on a system consisting of an Intel Core i7 920 with both a NVIDIA GeForce
GTX 480 and a NVIDIA Tesla C2050:

• Core i7 920 is a quadcore CPU based on Intel’s Nehalem architecture running at 2.66 GHz.

• GeForce GTX 480 is a GPU based on NVIDIA’s Fermi architecture and consists of 15 so-called
multiprocessors each with 32 cores resulting in a total of 480 cores. The GPU has access to
1.5 GB global memory.

• Tesla C2050 is a GPU based on NVIDIA’s Fermi architecture as well, but only consists of
14 multiprocessors resulting in a total of 448 cores. The GPU has access to 3 GB of global
memory.

Our scan implementation uses the CPU for filling the input array and the scan of the block
sums (Fig. 3: steps 0 and 2), whereas one GPU performs the block wise scan and the other produces
the final results. This way the system automatically forms a pipeline. Our scan code uses 5 vectors,
all storing the data in pinned main memory:

• The input array filled in step 0 uses a synchronization size of 256, which is reasonable for a
block local scan on the GPU.

• The scanned blocks are stored in another vector, again with a synchronization size of 256.

• The block sums are stored in a vector with a synchronization size of 1, so the CPU can compute
the scan as soon as possible.

• The scanned block sums are again stored with a synchronization size of 1.

• The final result vector uses a synchronization size of 256.

Whereas this distribution of work does not provide high performance on the used system due to
the slow communication link, it demonstrates that using multiple modules in parallel must hardly
increase overall programming complexity. As a downside, the algorithm uses a rather high amount
of memory. Previous dataflow architectures solved such issues by treating all but the final result as
transient memory, which was automatically removed when no longer needed. Implementing such a
feature in software may turn out to be rather complex and future work is required to identify if,
e. g., a reference counting approach offers sufficient results. Experiments with reference counting in
the PGAS model seem to provide a reasonable usability. The current implementation requires the
program to free the memory when it is no longer used, e. g., in the scan algorithm the input data
can be deleted as soon as the block sum scan is complete.

Scan is normally computed on intermediate values to get the final result. To simulate such a
computation we slowed down the generation of input by doing 50,000 additions per generated tile.
We measured performance of our implementation with several input sizes (Tab. 2). The table shows:

Time The total running time including generation of input data.

32

International Journal of Networking and Computing

tim
e

(s
)

0

75

150

225

300

modules

1 2 4 8

running time (s)

Figure 5: Gauß-Seidel performance for a matrix size of 32768 ∗ 32768

Input The time required to generate the input data.

Pure computation The time required to complete the computation after the input was generated.

We can see that the time required for input generation increases with larger problem sizes, but
pure computation time remains constant. This gives a clear indication that the pipeline works as
expected and almost all computations are done while the input data is generated.

The Gauß-Seidel stencil implementation in the distributed memory branch follows the schema
outlined before. We used multiple distributed matrices to store the different iterations and reused
them when no longer in use. Marking matrices as unused has been implemented with a shared
counter that was increased every time a thread marked a matrix as unused. As soon as every
module had increased the counter, the distributed matrix was reused.

We tested our implementation on a cluster connected by gigabit Ethernet. Each module is a
NUMA system consisting of two six core AMD Opteron 2427 CPUs with 32 GB of RAM. The
GASNet active messages are sent using an MPI back-end. This back-end is available for portability
and does not offer the same level of performance as highly tuned back-ends such as the Infiniband
back-end. Using Infiniband is expected to reduce network transfer time by a great deal, as e. g.,
Infinibands RDMA hardware support is a good match to the active message semantics2.

Figure 5 shows the overall performance of the Gauß-Seidel stencil running at up to 8 systems.
We used one CPU for simplicity and limited the number of threads to 4, as the PGAS system
regularly spawns additional threads in background, which may have to spin-loop until data gets
available. Synchronization of threads on the same module uses the same interface as on different
modules, however internally no active message handler is called. Figure 5 shows the speedup and
total runtime of our implementation. We can see that our Gauß-Seidel implementation scales well
for up to 8 modules. As already said, our library is a proof-of-concept implementation and has not
been tuned for absolute performance. The implementation on one module is rather efficient as it
is lock and barrier free, however communication between different modules can be improved and

2http://gasnet.cs.berkeley.edu/performance/

33

A dataflow-like programming model for future hybrid clusters

we have therefore not tested the performance on larger systems. Future work, however, will try to
increase performance and measure it on larger systems.

12 Related work

In addition to the programming models discussed before, the topic of this paper is related to a
large spectrum of research. Dataflow hardware has been an active area of research in the 1970s and
1980s, as exemplified by the Manchester dataflow architecture [12] and the Goodyear STARAN [11].
From a current viewpoint these approaches were unable to scale effectively and were replaced by
other architectures. However, the techniques partially returned in, e. g., out of order architectures,
although at a smaller scale than originally planned. Single assignment memory is not used in
mainstream languages, but of course in functional programming. For example, SISAL (Streams
and Iteration in a Single Assignment Language) [10] is a functional programming language using
implicit parallelism extracted from a dataflow graph. SISAL relies on compilers to generate dataflow
graphs and targets SMP systems. Haskell uses so-called MVars [20], which are atomically filled
communication channels between threads that block the reading thread in a similar fashion to our
single assignment memory, however this mechanism is not targeted at distributed memory systems
either and MVars may be refilled. One of the first hardware architectures supporting synchronization
bits was the Denelcor HEP [23], which marked values as unavailable after they have been read. After
working on the HEP, Smith has been following the concept of tying synchronization to memory
accesses for a longer time [2], yet the concept has not been used in any major HPC programming
system. A modern architecture supporting synchronization bits is Cray’s XMT [8]. We are not aware
of any previous work combining global communication algorithms with synchronization variables.
MPI 3 will feature improved one-sided communication, but the specification is not yet available.

13 Conclusion

This paper consists of three major contributions. We described a new abstract hardware model
capturing on current predictions for future hardware. The model emphasizes the problems arising
from the memory subsystem getting more complex, possibly missing cache coherency and NUMA
effects. We used our model to judge how well current programming models match the anticipated
future hardware. We furthermore described a novel approach of integrating synchronization in PGAS
languages that allows efficient communication and synchronization for various hardware platforms.
Our programming model is designed to be able to cope with upcoming hardware restrictions and
to be easy to use. We use a global partitioned address space to cope with NUMA effects and tie
synchronization directly to accessing single assignment memory. Threads are suspended when they
try to read data that has not yet been made available. This approach removes the need for a complex
memory consistency model and still allows caching of remote data on non cache coherent systems. We
furthermore provide global communication algorithms as they are used in MPI collective operations.
The model has been implemented in a proof-of-concept library and we have shown that it yields
reasonable speedups. While the library is only a prototype, we believe our model to be an easy to
use approach for programming non-trivial data parallel applications.

Future work has been outlined throughout the paper. Since the model is rather new, future
research must address a wide variety of topics, for example test our model on hybrid multicore
chips, tune the implementation, and test its performance on larger systems.

References

[1] Dennis Abts, Steve Scott, and David J. Lilja. So Many States, So Little Time: Verifying
Memory Coherence in the Cray X1. In Proceedings of the 17th International Symposium on
Parallel and Distributed Processing, 2003.

34

International Journal of Networking and Computing

[2] Gail Alverson, Robert Alverson, et al. Exploiting heterogeneous parallelism on a multithreaded
multiprocessor. In Proceedings of the 6th International Conference on Supercomputing, pages
188–197.

[3] AMD. AMD Accelerated Parallel Processing OpenCL., 2011.

[4] AMD. AMD Fusion Family of APUs, 2011.

[5] Dan Bonachea. GASNet Specification, v1.1. Technical report, 2002.

[6] William W. Carlson, Jesse M. Draper, and David E. Culler. Introduction to UPC and Language
Specification, 1999.

[7] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell broadband engine architecture and its
first implementation: a performance view. IBM J. Res. Dev., 51:559–572, 2007.

[8] Cray Inc. Introducing the Cray XMT Supercomputer, 2010.

[9] Jack Dongarra. Impact of Architecture and Technology for Extreme Scale on Software and
Algorithm Design, August 2010. Euro-Par 2010 keynote.

[10] John T. Feo, David C. Cann, and Rodney R. Oldehoeft. A Report on the Sisal Language
Project. Journal of Parallel and Distributed Computing, 10:349–366, 1990.

[11] Goodyear Aerospace Cooperation. STARAN APPLE Programming Manual, 1972.

[12] J. R Gurd, C. C Kirkham, and I. Watson. The Manchester prototype dataflow computer.
Commun. ACM, 28:34–52, January 1985.

[13] Mark Harris, Shubhabrata Sengupta, and John D. Owens. Parallel prefix sum (scan) with
CUDA. In Hubert Nguyen, editor, GPU Gems 3, chapter 39, pages 851–876. Addison Wesley,
August 2007.

[14] Jim Held. ”Single-chip cloud computer”, an IA tera-scale research processor. In Euro-Par 2010
Proceedings of the 2010 Conference on Parallel Processing, pages 85–85, 2011.

[15] Intel Corporation. Cluster OpenMP User’s Guide, 2006.

[16] Rakesh Kumar, Victor Zyuban, and Dean M. Tullsen. Interconnections in Multi-Core Architec-
tures: Understanding Mechanisms, Overheads and Scaling. In Proceedings of the 32nd annual
international Symposium on Computer Architecture, pages 408–419, 2005.

[17] Wei Liu, Brian Lewis, Xiaocheng Zhou, Hu Chen, Ying Gao, Shoumeng Yan, Sai Luo, and
Bratin Saha. A balanced programming model for emerging heterogeneous. multicore systems.
In Proceedings of the 2nd USENIX Workshop on Hot Topics in Parallelism, 2010.

[18] NVIDIA Corporation. NVIDIA CUDA compute unified device architecture programming guide.
Version 4.1, 2012.

[19] The OpenCL Specification. Version 1, revision 43, May 2009.

[20] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell. In Proceedings
of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
1996.

[21] Gregory F. Pfister. In search of clusters (2nd ed.). Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1998.

[22] Vijay Saraswat, Gheorghe Almasi, et al. The Asynchronous Partitioned Global Address Space
Model. In 1st ACM SIGPLAN Workshop on Advances in Message Passing, 2010.

35

A dataflow-like programming model for future hybrid clusters

[23] Burton J. Smith. Architecture and applications of the HEP multiprocessor computer system.
In Society of Photo-Optical Instrumentation Engineers Conference Series, pages 241–+, 1981.

[24] S. Sridharan, J.S. Vetter, et al. A Scalable Implementation of Language-Based Software Trans-
actional Memory for Distributed Memory Systems. Technical report, 2011.

36

