International Journal of Networking and Computing — www.ijnc.org
ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 5, Number 1, pages 105-121, January 2015

Self-Stabilizing Algorithms for Maximal 2-packing and General k-packing (k > 2) with Safe
Convergence in an Arbitrary Graph

Yihua Ding, James Wang and Pradip K Srimani

School of Computing, Clemson University
Clemson, SC, 29634, USA

Received: July 9, 2014
Revised: October 22, 2014
Accepted: December 3, 2014
Communicated by Akihiro Fujiwara

Abstract

In a graph or a network G = (V, E), aset S C V is a 2-packing if Vi € V : [N[{]N S| < 1,
where N[i] denotes the closed neighborhood of node i. A 2-packing is maximal if no proper
superset of S is a 2-packing. This paper presents a safely converging self-stabilizing algorithm
for maximal 2-packing problem. Under a synchronous daemon, it quickly converges to a 2-
packing (a safe state, not necessarily the legitimate state) in three synchronous steps, and then
terminates in a maximal one (the legitimate state) in O(n) steps without breaking safety during
the convergence interval, where n is the number of nodes. Space requirement at each node is
O(logn) bits. This is a significant improvement over the most recent self-stabilizing algorithm
for maximal 2-packing that uses O(nz) synchronous steps with same space complexity and that
does not have safe convergence property. We then generalize the technique to design a self-
stabilizing algorithm for maximal k-packing, k& > 2, with safe convergence that stabilizes in
O(kn?) steps under synchronous daemon; the algorithm has space complexity of O(knlogn)
bits at each node; existing algorithms for k-packing stabilize in exponential time under a central
daemon with O(logn) space complexity.

Keywords: Self-stabilization, Maximal 2-packing, Maximal k-packing, Safe Convergence, Syn-
chronous Daemon

1 Introduction

Self-stabilization: Self-stabilization is an optimistic paradigm to provide decentralized autonomous
tolerance against an unlimited number of transient faults (transient faults corrupt data but not the
program code) in distributed systems. An algorithm is self-stabilizing iff it reaches some legitimate
global state starting from an arbitrary state [1]. In a self-stabilizing algorithm, each node maintains
a set of local variables, that determine the local state of the node. The global system state is made
of the union of local states of all nodes in the system. A self-stabilizing algorithm is specified as an
uniform set of rules at each node. Each rule consists of a condition and an action and is written as
“if condition then action”. A condition is a boolean predicate involving the local states of the node
and its neighbors. A node, at any step of execution, is called privileged iff at least one condition
is true. The daemon (runtime scheduler) selects node(s) from among the privileged nodes to take
an action (also called move) at each step. The central daemon selects exactly one privileged node

105

Self-Stabilizing Algorithms for Maximal 2-packing and General k-packing (k > 2)

to move at each step; the distributed daemon selects a non-empty subset of the privileged nodes
to move at each step; the synchronous daemon selects all the privileged nodes to move at each
step. A detailed exposition of self-stabilizing algorithms can be found in [2] and a recent survey of
self-stabilizing algorithms for graph theoretic problems is given in [3].

Safe Convergence: Recently, a new concept of safe convergence has been introduced in [4].
In a traditional self-stabilizing algorithm, the desired global property (hence, the relevant service
in the system) is not guaranteed during the convergence interval starting from an arbitrary state
to a legitimate global system state. The concept of safe convergence was introduced to limit this
inconvenience to a minimum possible. A self-stabilizing algorithm is said to have safe convergence
property iff it first converges to a safe state quickly (O(1) time is expected), and then converges to
a legitimate state without breaking safety during the process. A safe state guarantees a minimum
quality of service, and the legitimate state guarantees the desired service. Safe convergence property
is especially attractive since it provides a measure of safety during the convergence interval of the self-
stabilizing algorithm. Various self-stabilizing algorithms with safe convergence have been proposed
in the literature, such as minimal independent dominating set, connected dominating set and so on
[4, 5, 6, 7]. All of these algorithms use synchronous daemon to reach the safe states in constant time.
Recently, two other self-stabilizing algorithms [8, 9] for minimum connected dominating sets in unit
disk graphs and (f, g) alliances in arbitrary graphs respectively enjoy the self convergence property
using unfair distributed daemon and distinct node IDs; but, starting from an arbitrary initial state
the number of steps needed by the algorithms to reach a safe state can be quadratic in n in the
worst case, where n is the number of nodes in the graph.

Graph Packing: In this paper, we are interested in the maximal 2-packing of a network graph.
The concept of 2-packing and that of packing in general, k-packing, k& > 2, have been used in
various applications like network security, facilities location and others [10]. Authors in [11, 12]
designed the first two self-stabilizing algorithms for maximal 2-packing, that stabilize in exponential
time and O(n?) time respectively using a central daemon, where n is the number of nodes in the
graph. Subsequently, other self-stabilizing algorithms have appeared [13, 14, 15]. The most recent
self-stabilizing algorithm for maximal 2-packing is given in [16] that stabilizes in O(n?) synchronous
steps (using a synchronous daemon). All of the above algorithms require O(logn) bits at each node
and they assume that each node has a unique ID; none of them enjoys safe convergence property. Self-
stabilizing k-packing algorithms are presented in [13, 14]; both algorithms stabilize in exponential
time under a central daemon.

Contribution: In this paper, we assume a synchronous daemon and nodes with unique IDs and
propose the first self-stabilizing algorithm with safe convergence to compute the maximal 2-packing of
an arbitrary network graph; starting from an arbitrary state, the proposed algorithm first converges
to a 2-packing (a safe state, not necessarily the legitimate state) in three synchronous steps, and then
converges to a maximal one (the legitimate state) in O(n) steps without breaking safety rule during
the stabilization interval. Space requirement at each node is O(logn) bits. We then generalize the
technique to design a self-stabilizing algorithm for maximal k-packing, k > 2, with safe convergence
that stabilizes in O(kn?) steps under synchronous daemon; the algorithm has space complexity of
O(knlogn) bits at each node.

2 Model and Terminology

A network or a distributed system is modeled by an undirected graph G = (V, E), where V is the
set of nodes, and F is the set of edges. For a node i, N(i), its open neighborhood, denotes the set of
nodes adjacent to node i; N[i] = N (i) Ui denotes the closed neighborhood of node i. For a node
i, N'i) = Ujenig N[, £ > 1, where N'[i] = Ni], its £-hop closed neighborhood, denotes the
set of nodes that are at most distance of £ from node i. Each node j € N (i) is called a neighbor of
node i. The distance dist(z,) is the number of edge(s) in the shortest path between nodes ¢ and

VE

Definition 1 In a graph G = (V,E), |V| = n and |E| = m, (a) a set S C V is a 2-packing iff
Vi,j € S :dist(i,j) > 3 where dist(i, j) denotes the shortest distance from node i to j; A 2-packing

106

International Journal of Networking and Computing

Figure 1: A graph with 10 nodes

is maximal if no proper superset of S is a 2-packing, i.e., Vi € {V — S} 35 € S : dist(i,5) < 2 [16].
(b) A set S C V is a k-packing if Vi,j € S : dist(i,j) > k+ 1; S is a maximal k-packing if no
proper superset of S is a k-packing, i.e., if Vi € {V — S} 3j € S : dist(i,5) < k [14].

As an example, consider the graph shown in Figure 1, where the values inside the nodes give the
identifiers. n = 10, m = 12. N(2) = {4,6}, N[2] = {2,4,6}, dist(2,9) = 2. In this graph, {1,7},
{4,8}, {5,6}, and {1,8,10} all are 2-packings, but only {5,6} and {1,8,10} are maximal among
these four 2-packings; {1,8}, {6,7}, and {7, 8} all are 3-packings, but only {6, 7} is maximal among
these three 3-packings.

Execution Model: We assume that each node has a unique identifier and the set of identifiers is
totally ordered; we assume identifiers are 1 through n, for convenience. The execution of the protocol
at each node is managed by a synchronous scheduler (daemon), that selects all privileged nodes in
a system state to move synchronously and atomically (we use composite atomicity as opposed to
read /write atomicity [17]) in each step; a synchronous step is also called a round [4, 5, 6, 7, 16]. Note
that such a round is different from the concept of a round used in fair central or distributed daemons.
We denote a global system state, the union of the local states of all nodes, by 3;, i = 0,1,2,-- -,
where Yy denotes the initial arbitrary state and 3, denotes the system state after the r-th round of
the protocol, r = 1,2, -; r-th round executes on ¥,_; to generate X,.

A node is privileged in a given system state iff it is enabled to move by at least one rule of
the protocol. The protocol terminates in a system state when no node is privileged. The protocol
assumes a shared-memory model and each node knows only its own state and the local states of its
immediate neighbors (distance-one model) as is customary in the most self-stabilizing algorithms.

3 Maximal 2-packing with Safe Convergence

In our proposed self-stabilizing maximal 2-packing algorithm with safe convergence (we call it algo-
rithm M2PSC), each node 4,1 < i < n, maintains the following variables:

e A boolean flag s;; at any time (system state) S is the current set of nodes with s; = 1.

e A nonnegative integer variable ¢; to count the number of S nodes in the closed neighborhood
of node i, i.e., ¢; = [N[{] N S|, at any given system state.

e A pointer p; (which may be null) that points to a node j € NJi], indicated by p; = j. If, in a
system state, p; = ¢ for a node ¢, we say node i has a self-pointer.

e A boolean flag d;; node i sets this bit to delay some activity by one round only.
Definition 2
1. A node i is called consistent in a (global) system state if |[N[i]]NS| < 1.

2. A system state is safe if S = {i]i € V As; = 1} denotes a 2-packing, i.e, each node in V is
consistent. A system state is legitimate if S denotes a maximal 2-packing.

107

Self-Stabilizing Algorithms for Maximal 2-packing and General k-packing (k > 2)

3. In any system state, minSP; of a node i, 1 < i < n, is defined to be the smallest 1D
node among the nodes in N[i] with self-pointer, i.e., minSP; = min{j|j € N[i] A p; =
j},where min{} = null.

Remark 1 (Node Consistency)

1. The stored variable ¢; at node ¢ is a measure of the local consistency of node i in a system
state. If ¢; is correct in a system state, i.e., ¢; = |[N[i] N S|, node i is consistent iff ¢; < 1.

2. If ¢; is not known to be correct in a system state, node i is deemed to be inconsistent iff
C; Z 2.

The approach underlying the algorithm M2PSC is to quickly converge to a safe state, by allowing
nodes to exit S to eliminate all inconsistent nodes in the system state and thereafter to transition
through safe states, by allowing nodes only to enter S appropriately (so that inconsistencies are
not introduced), to reach the legitimate state to obtain the maximal 2-packing. We assume a
synchronous daemon where at any round all privileged nodes are selected to move. The underlying
approach consists of two logical sets of actions:

3.1 Exit S

A node i € S exits S in a round of execution of the protocol iff at least one neighbor j € N(i) is
deemed to be inconsistent (Remark 2.2), as evidenced by the content of the variable ¢;; the rationale
is that exiting of ¢ may not decrease but never increase the number of inconsistent nodes j € N[i|
even ¢;’s are erroneous in a system state causing ¢ to exit S (Remark 2.2). Also, by the same reason,
simultaneous exit of multiple nodes from & cannot increase the number of inconsistent nodes in the
system; our objective is to reach a safe state (Definition 2.2) as quickly as possible starting from an
illegitimate state.

Definition 3 For a node i, a Boolean predicate nowExit; = 1 iff i € & and at least one of its
neighbors is deemed to be inconsistent (Remark 2.2):

Q.
h

€

nowExit; = (s; =1)A(3j € N(i) : ¢; > 2)

3.2 Enter S

The protocol requires that after a node i ¢ S enters S in a round, node i is guaranteed to be
the unique S mode within its 2-hop neighborhood at the end of current round, and thus each node
J € N[i] remains consistent after node 7 enters S. To accomplish this requirement we use a locking
mechanism and delay technique.

A locking mechanism (implemented by stored variable p;) is employed such that when a node
enters S in a round, all other nodes in its 2-hop neighborhood are prohibited to enter S. Specifically,
when a node ¢ needs to enter S, it first requests a lock by setting self-pointer (i.e., p; = ¢). We say
node i is locked or gets the lock iff all nodes in N[i] point to . The neighbor j of ¢ grants the
lock by updating its pointer to ¢, i.e., p; = 4. It is possible that two adjacent nodes request locks
simultaneously. In order to break the tie, the node grants the lock (by updating its pointer) to the
smallest ID neighbor with self-pointer.

After a node i becomes locked, it sets d bit to delay its enter move by one round only. It should
be noted that in delayed round: (a) each node j € N[i] must have no locked neighbor except i (See
Definition 4.2 below) and hence no neighbor entering S; (b) each neighbor j € NJi] gets chance to
update c¢;, such that ¢; > |N[j] N S| are guaranteed when node ¢ enters (it is possible that some
neighbor of j € N[i] exits S in delayed round, hence the inequality). After the delayed round, node
i is guaranteed to be safe to enter (i.e., after node i enters S, it is the unique S node within its 2-hop
neighborhood of node i, and hence each node j € N[i] remains consistent).

We begin by defining a few predicates in the following two definitions to facilitate the stepwise
development of the proposed protocol.

108

International Journal of Networking and Computing
Definition 4 In a system state, a node ¢ can locally compute each of the following Boolean predi-
cates:

1. For a node ¢, a Boolean predicate needEnter; = 1 iff i ¢ S and there does not exist S node
within distance-2 of node i, as evidenced by the content of the variable ¢; on each j € N(i):

[N
._.,

€

needEnter; = (s; =0) A (Vj € N(i) : ¢; = 0)

2. To implement locking mechanism, two more Boolean predicates requestLock, and locked;
on node i are defined as:

def
requestLock;, = needEnter; A (Vj € NJ[i] 1 p; = null)

def
locked; = Vj € NJi] tp; =1
Note: In a system state, if node 4 is locked, no node in N2(i) can be locked in the same state.

3. In any system state, a node i requests a delay iff the Boolean predicate requestDelay, = 1

where
d
requestDelay, = (di = 0) A needEnter; A locked;

=N

4. In any system state, a node i can enter S iff the Boolean predicate nowEnter; = 1 where

[oR
el

f

nowEnter; (d; = 1) AneedEnter; A locked;

Note: In any system state, if a node i is ready to enter (nowEnter; = 1), no node in N?2(7)
is ready to enter in the same state since no node in N2(i) can be locked in that state (Defini-
tion 4.2).

Definition 5 For a node ¢ in any system state:

1. The predicate updateC; is true iff its ¢; is not correct, i.e.,
updateC; o ¢i 2 |N[i]NS]

2. The predicate updateP, is true iff its p; is not equal to minSF;, i.e.,
updateP, déf pi # minSP;

3. The predicate clearD; is true iff d; = 1 and it does not need to enter S or is not locked, i.e.,

o
=

€

clearD; = (d; = 1) A —~(needEnter; A locked,)

4. The predicate releaseLock; is true iff it has the self pointer and its pointer is equal to min.SP;
but does not need to enter S, i.e.,

def

releaselock; = —needEnter; A (p; = i) A (minSP; = 1)

The complete pseudo code of algorithm M2PSC is shown in Figure 2. We highlight a few simple
characteristics of the algorithm in the following remark.

Remark 2 In a given round r, r > 1, of execution:

1. If node 7 has incorrect ¢; in X,._1, it must update ¢; in round r.

109

Self-Stabilizing Algorithms for Maximal 2-packing and General k-packing (k > 2)

RA: if nowExit; V requestLock, V releaselock; V updateP; V updateC, V clearD;
if nowExit;
then s; + 0; [Exit S]
if requestLock;
then p; + i; [Request_Lock]
then if releaselock;
then p; < null; [Release Lock]
if updateP;
then p; < minSP;; [Update_Pointer]
¢; < |N[i] N SJ; [Update_Counter]
d; < 05 [Clear Delay]
RB: if requestDelay,
then { d; < 1; ¢; « [N[i|NS]; [Request_Delay]
RC: if nowEnter;
then { s; < 15 p; < nully d; < 05 ¢; < |[N[i]| N S|; [Enter S]

Figure 2: The Algorithm M2PSC at Node 7, 1 <i<n

2. For anode ¢, nowEnter;, requestDelay, and nowExit; are pairwise mutual exclusive; requestLock,,
releaselock; and updateP, are pairwise mutual exclusive.

3. The membership of node i is changed only by rules RA (Exit S move) and RC (Enter S move).
If a node 7 is privileged to make Exit S move, it must exit S successfully under synchronous
daemon (see part(2)).

4. If node i exits S, its neighboring nodes can concurrently exits S if they are eligible to do so; If
node i enters S, no node j € N2(i) can concurrently enter S in the same round (Definition 4.4).

5. A node i can acquire a self-pointer (p; = ¢) only by making Request_Lock move in rule RA
when it needs to enter S to maximize |S| and all its neighbors have null pointers. Note: a
node cannot acquire a self-pointer by making Update_Pointer move in rule RA.

6. A node i releases its self-pointer when it does not need to enter S (needEnter; = 0) by making
Release_Lock move, or when it has at least one smaller ID neighbor with self-pointer by making
Update_Pointer move.

7. After a node ¢ with needEnter; = 1 becomes locked, i.e., locked; = 1, it delays its enter move
by one round only by making Request_Delay move (setting d; = 1) such that its neighbors
have time to correct their c-variables.

8. If d; =1 in X,_1, then node 7 will clear delay by making either Enter S or Clear_Delay move
such that d; = 0 in X, (Definitions 4.4 and 5.3).

Definition 6 In any system state X,.,7 > 0:
1. A node i is privileged if it is enabled by any of the rules of the algorithm.
2. The execution of the algorithm terminates when no node is privileged.

We first prove that S is a maximal 2-packing when algorithm M2PSC terminates, and then we show
the algorithm is safely converging in the sense that starting from an arbitrary state, it first converges
to a 2-packing (a safe state) in 3 rounds, and then stabilizes in a maximal one (the legitimate state
) in O(n) rounds without breaking safety, where n is the number of nodes.

Lemma 1 If algorithm M2PSC terminates, then for each node i € V

(a) ¢; is correct, i.e., ¢; = |N[i]NS].

110

International Journal of Networking and Computing

(b) d; =0.
(¢c) pi =null.

(d) nowExit; = 0 and needEnter; = 0.

Proof: (a) This lemma immediately follows from the fact that no node is privileged by the rule
RA at the termination of the algorithm.

(b) Assume, by contradiction, there exists some node(s) j with d; = 1. Node j must have
needEnter; = 1 and locked; = 1 (otherwise node j is privileged by rule RA to make Clear_Delay
move). Thus, node j is privileged by rule RC, a contradiction.

(¢) If no node j has self-pointer, then minSP; = null for all i € V and hence the lemma holds since
p; = minSP; (otherwise node 4 is privileged by rule RA to make Update_Pointer move). So the key
point here is to show that there is no node with self-pointer. Assume, by contradiction, there exists
some node(s) with self-pointer. Consider the node with minimum ID from among those nodes, say
node j; minSP;, = j for each node k € N[j]. Also each node k € N[j] must have p; = minSP; = j
(otherwise node k& would be privileged by the rule RA to make Update_Pointer move). Thus, node j
is locked (i.e., locked; = 1). Also, node j must have needEnter; = 1 (otherwise node j is privileged
by rule RA to make Release_Lock move). Thus, we get node j is privileged by rule RB to make
Request_Delay move (by part(b)), a contradiction.

(d) No node i is privileged by rule RA to make Exit & move and Request_lock move; the claim
follows from parts (a) and (c). O

Theorem 1 Starting from an arbitrary system state, if algorithm M2PSC terminates using syn-
chronous daemon, then S is a mazximal 2-packing.

Proof: First, we show S is a 2-packing. Assume, by contradiction, S is not 2-packing, i.e., there
exists some node(s) ¢ such that [N[{]NS| > 2, i.e., ¢; > 2. Thus nowExit; = 1 for each j € N(i)NS;
node j is privileged by the rule RA (Exit S), a contradiction. Thus S is a 2-packing.

Next, we claim S is maximal. Assume otherwise, i.e., there exist some node(s) i € {V — S}
such that #j € S : dist(i,j) < 2. Thus needEnter; = 1 and node i is privileged by RA to make
Request_Lock move (by Lemma 1(c)), a contradiction. O

Lemma 2 In any system state X, v > 1, if a node i is enabled by the rule RC to enter S, each
node j € N[i] must have ¢c; > |N[j] N S].

Proof: In the system state ¥,._1, node ¢ must have had d; = 0, needExit; = 1 and locked; = 1;
otherwise it is impossible for node ¢ to have d; = 1 in ¥, (Remark 3.8 and Request_Delay move).
Since locked; = 1 in X,_1, no node j € N?(i) was locked (Definition 4.2) and hence entered S in
round r. Coupled with the fact that each node j € NJi] corrected its ¢; in round r (Remark 3.1),
thus, in ¥, each node j € N[i] must have ¢; > |[N[j] N S|. Note: it is possible that some neighbor
of node j exits S in round r (hence the inequality). o

Lemma 3 In round r > 2, if a node i enters S (by executing rule RC), each node j € NJi] has
IN[j]NS| =1 at the end of round.

Proof: If node ¢ enters S in round r, then node j € N[i] must have had ¢; = 0 in ¥,_; (Defini-
tion 4.4), and thus |[N[j] N'S| = 0 by Lemma 2. Coupled with the fact that no other neighbors of
node j € N[i] can enter S in the same round by Definition 4.4, the lemma holds. a

Lemma 4 At the end of round r > 2, if there exists some node(s) i such that |[N[i] N S| > 2, then
c; must be > 2.

111

Self-Stabilizing Algorithms for Maximal 2-packing and General k-packing (k > 2)

Proof: Consider a node ¢ with |[N[i] NS| > 2 at the end of round r > 2. We observe that no
neighbor of node ¢ entered S in round r (otherwise |N[i] N S| would be 1 at the end of round r
by Lemma 3). But some neighbor(s) of node ¢ may exit & in round r. Thus node ¢ must have
¢; > |N[i] N8| > 2 at the end of round r by Remark 3.1. O

Theorem 2 Starting from any initial illegitimate state, algorithm M2PSC converges to a safe state
(S denotes a 2-packing, i.e., each node i has |[N[i]NS| < 1) after 3 rounds.

Proof: We show that each node i has |[N[i]NS| < 1 after 3 rounds of execution; we consider three
cases:

(a) Consider any node ¢ with |[N[{]]NS| = 0 in Xy: If any node j € N|[i] enters S in the round 3,
by Lemma 3 node ¢ will still have |N[i] N S| < 1 after round 3.

(b) Consider any node i with |[N[i] S| = 1 in X3: no node j € NJi] enters S in the round 3
(Definition 4.4 and Lemma 2), node 4 will still have |[N[i]] N S| < 1 after round 3.

(¢) Consider any node ¢ with |[N[i] N S| > 2 in ¥a: ¢; must be > 2 by Lemma 4, each neighbor j
of node 7 has nowExit; = 1. Thus, in the round 3 each neighbor j of node i must exit S by executing
the rule RA (Remark 3.3). It follows that node ¢ will have |N[i] N S| < 1 after round 3. O

Theorem 3 After round 3, algorithm M2PSC maintains safety in all subsequent rounds before con-
verging to a legitimate state.

Proof: After round 3, we reach a safe state. In any safe state, any node ¢ in V has |[N[i]]NS| < 1.
If any neighbor of 7 enters S, node ¢ will remain having |[N[i{]NS| < 1 in the next state by Lemma 3,
thus we reach another safe state. O

Lemma 5 Starting from a safe state X, v > 4, no node will ever make Exit S move in subsequent
rounds.

Proof: In a safe state, each node ¢ € V has |N[{] N S| < 1. The algorithm M2PSC always in the
safe state after round 3 (Theorem 3), thus each node ¢ always has |N[i] N S| < 1 after round 3 and
each node 7 always has ¢; < 1 after round 4 by Remark 3.1. The lemma holds. m|

Lemma 6 In any safe state X, 7 > 5, rules RA, RB and RC are pairwise mutual exclusive.

Proof: It is easy to show requestDelay and nowEnter are pairwise mutual exclusive with each
of nowExit, requestLock, releaselock, updateP and clearD, we here omit the details. Coupled
with the fact that requestDelay and nowEnter are pairwise mutual exclusive (Remark 3.2). Thus,
to prove the lemma, it suffices that show that requestDelay and nowEnter are pairwise mutual
exclusive with updateC.

For any node 1, if requestDelay, = 1 or nowEnter; = 1 in ¥,, no node j € N[i] entered S in the
round r (otherwise node i cannot have self-pointer in ¥,.). Coupled with Lemma 5 and Remark 3.1,
¢; must be correct in 3,. Thus, requestDelay, and nowEnter; are pairwise mutual exclusive with
updateC, in X,. O

Lemma 7 In any system state ¥, where r > 1, two adjacent nodes i and j have self-pointers (i.e.,
p; =14 and p; = j), then (a) the larger ID node will lose the self-pointer (i.e., if say i < j, pj # j)
in the next rounds; (b) nodes i and j must have concurrently acquired the self-pointers in round r.

Proof: (a) In X,, node j has p; = j # minSP; and thus UpdateP; = 1. Coupled with the fact
that UpdateP; is pairwise mutual exclusive with each of requestDelay; and nowEnterj, in the next
round node j must be selected by daemon to make Update_Pointer move in rule RA. (b) If p; =4
but p; # j, then node j cannot make Request_Lock move to get the self-pointer in the next state
(Definition 4.2). m|

Lemma 8 In a safe state X, v > 3, for two adjacent nodes i and j, if p, = i and p; = j, then
needEnter; = needEnter; = 1.

112

International Journal of Networking and Computing

Proof: It follows from Lemma 7 that nodes ¢ and j had concurrently made Request_Lock move
to get self-pointers in round 7. In ¥,_;, needEnter; = 1, needEnter; = 1, p; = p; = null, and for
each k € N(i)UN(j), pr = null (nodes i and j are enabled for rule RA to make Request_Lock move;
Definition 4.2). We argue that:

(a) Node ¢ cannot enter S (execute rule RC) in round r since locked; = 0 in X,y (p; = null).

(b) Any node k € N(i) cannot enter S (execute rule RC) in round r since locked; = 0 in X,
(pr = null).

(c¢) Any neighbor k' of k € N(4) cannot enter S (execute rule RC) in round r since lockedy = 0
in X1 (pr = null).

Thus, needEnter; remains 1 in ¥, (by similar reasoning, needEnter; remains 1 in %,.). O

Definition 7 In any system state,

1. We define an island Z to be a maximal set of nodes {i € V|needEnter; = 1 A p; = i} such
that the subgraph of G induced by the set Z is connected.

2. We use ¢ to denote the number of islands and B to denote the number of nodes ¢ with
needEnter; = 1.

Remark 3 In any system state:

1. An island may consist of a single or multiple nodes; a node ¢ with needEnter; = 1 and p; # ¢
is not a member of any island.

2. For a node ¢ in an island of size > 2, locked; = 0 since it has a neighbor j with p; = j # ¢
(Definition 4.2).

3.a<Ba<n; f<n
4. After round 4, § is non increasing in subsequent rounds (Definition 4.1 and Lemma 5).

5. When algorithm M2PSC terminates, « = 8 = 0.

Lemma 9 If a node i enters S (by executing rule RC) in a round, node i constitutes a single node
island at the beginning of the round.

Proof: Node i enters S; thus needEnter; = 1 and locked; = 1 (rule RC). Since p; = 4, node ¢
belongs to an island (Definition 7.1); node ¢ does not belong to an island of size > 2 (Remark 4.2).
O

Lemma 10 In any round v, r > 5 (starting from a safe state ¥,_1), (a) o cannot decrease if 3
remains constant; (b) a decreases at least by 1 and at most by £, if 8 decreases by £ (1 <0< 3).

Proof: (a) If 8 remains constant, no node i changes needEnter; from 1 to 0. (1) Any island Z
cannot disappear since the smallest ID node in Z, say node ¢, cannot change its pointer in round r
(pi = i = minSP; in ¥,_; [no neighbor j of i with needEnter; = 0 has a self-pointer by Lemma 8
and node ¢ does not have any island node neighbor with a smaller ID]). (2) Two islands cannot merge
into one: consider any 2 islands Z; and Zo; since Z; U Zy =), for the two islands to merge, there
must be a node j € N(Z; UZ,) such that needEnter; =1 in ¥,_; and node j acquires self-pointer
in ¥, (j becomes an island node in ¥,.) by executing rule RA to make Request_Lock move in round
r; this is impossible since j has neighbor(s) with non null pointers in 3,._; (see Definition 4.2).

(b) Starting in a safe state X,._1, if 5 decreases by £ in X,., £ nodes have changed their needEnter
bits from 1 to 0. Consider any node i whose needEnter; is changed from 1 to 0. At least one of
the two must occur in round r (Definition 4.1): (1) node 4 enters S by executing rule RC; (2) some
neighbor(s) of node j € N (i) enters S by executing rule RC such that ¢; > 0. If all £ nodes change

113

Self-Stabilizing Algorithms for Maximal 2-packing and General k-packing (k > 2)

their needEnter from 1 to 0 because of (1), then « is decreased by £ by Lemma 9; If some node(s) ¢
changes needEnter; from 1 to 0 because of (2), then it is possible that node 7 does not belong to any
island. Although the change of needEnter; on node i causes (§ to decrease in X, it does not cause
a to decrease (if node 7 is not an island node in 3,_1); but, for the possibilities (2), at least some
other node must enter S (change s bit to 1) by executing rule RC in the round, thereby causing «
to decrease (Lemma 9). Thus, « decreases by at most ¢ and at least by 1 in %,. |

Lemma 11 Starting from a safe state %, r > 4, with 5 # 0,
(a) either « increases in at most 3 next rounds, if 5 remains constant;

(b) or B decreases in at most 4 next rounds.

Proof: Starting from a safe state ¥, r > 4, any node ¢ with needEnter; = 0 and p; = ¢ must
either make Update_Pointer or Release_Lock move in round r + 1 to make p; # 4 in 3,41. Then,
Y,41 does not have a node j with needEnter; = 0 A p; = j (otherwise, node j had needEnter; =1
in ¥, and hence 3 has decreased by at least 1 in one round). There are two possibilities:

(1) There is no island node: In 3,1, each node i has minSP; = null (no node with self-
pointer and Definition 2.3). Also, since 8 # 0, there must be a node k with needEnter; = 1; node
k, in the worst case, must make Update_Pointer move in round r 4+ 2 and Request_Lock move in
round r + 3 in that sequence to get pr, = k. Thus, there is a new island {k}, i.e., a has increased in
at most 3 rounds starting in ¥,.

(2) There is at least one island node: If there are multiple such island nodes, let ¢ be the node
with minimum ID among those. In the worst case, each node j € N (i) makes Update_Pointer move
in round r +2 to update their pointers to ¢; node 7 becomes locked, i.e., locked; = 1 (Definition 4.2),
in ¥,49. Also, if d; = 1 in 3,41, node i makes Clear_Delay move in round r + 2 such that d; = 0 in
Y4+2. Now, there are two possibilities:

(i) At least one j € N(i) has minSP; = k in ¥, ;5 where k € N(j) (Definition 2.3), py = k, and
k < i. Node k must have acquired its self-pointer by making Request_Lock move in round
r+2 and so, needEntery, = 1A (VK' € N(k) : prr = null) in ¥,41, i.e., node k is not connected
to any island nodes. Thus, {k} is a newly formed single node island in 3,9, i.e., a increases
in at most 2 rounds.

(ii) Each j € N(i) has minSP; =i in X, 2; in round 7 4 3, node i makes Request_Delay move to
delay its Enter move by one round only. Thus, node ¢ executes rule RC to enter S in round
r +4; so needEnter; = 0 in 3,14, i.e., B decreases in at most 4 rounds.

O

Lemma 12 After round 4, algorithm M2PSC reaches a safe state with o = 8 = 0 in at most Tn
rounds under a synchronous daemon.

Proof: In a safe state where a = f3, if 5 decreases by 1, @ must decrease by 1 (Lemma 10); 8 <n
and f is non-increasing (Remarks 4.3 and 4.4). Recall that 8 decreases by at least 1 in at most 4
rounds (Lemma 11(b)). Thus, from any safe system state with o = /3, the system will be in a safe
state with @ = 8 = 0 in at most 4n rounds. Also, if 5 remains constant, o must increase by 1 in at
most 3 rounds (Lemma 11(a)); in at most 3n rounds, o will be equal to 5. Thus, the system will be
in a safe state with @ = 5 = 0 in at most 4n 4+ 3n = 7n rounds. a

Theorem 4 Starting in any arbitrary state, the algorithm M2PSC terminates in at most O(n) rounds
under a synchronous daemon.

Proof: The system reaches a safe state with a = 8 =0 in 7n +4 = O(n) rounds in the worst case
(Theorem 2 and Lemma 12). In the next round: all node pointers will be null, all ¢ variables will
be correct and all d variables will be 0; thus the algorithm terminates. O

114

International Journal of Networking and Computing

4 Maximal k-packing with Safe Convergence

We generalize the basic idea of algorithm M2PSC to propose a self-stabilizing maximal k-packing
algorithm with safe convergence (we call it algorithm MKPSC). As before, starting from an arbitrary
state, the system first converges to a k-packing (a safe state) by allowing nodes to exit S quickly,
and thereafter moves through safe states until S is a maximal k-packing (the legitimate state) by
allowing nodes only to enter S appropriately. We assume a synchronous daemon where in any round
all privileged nodes are selected to move. In algorithm MKPSC, each node 4,1 < ¢ < n, maintains the
following variables:

e An array of nonnegative integer sets T,-[O, ek —1]; TZ-[E], 0 < /¢ < k, is intended to keep
track of the IDs of S-nodes (as a set) in N*[i], ¢-hop closed neighborhood of node i in any
system state. In a system state S is the current set of nodes ¢ with 7;[0] = {i}.

e A pointer array j 2 [0,...,k —1]; P, [¢] (which may be null) points to a node j, indicated by
P;[f] = j. We say node i has a self-pointer iff P;[0] = i; F;[¢], 0 < £ < k, keeps track of the
minimum ID node with self-pointer in N*[i] at any system state.

e A nonnegative integer variable d;; node ¢ uses this variable to delay some activity by 2k rounds.

Remark 4 In any system state, for any node 1, (a) T is correct iff (1) T [0] is either {4} or §), and
T;[¢—1]; (b) P, is correct iff (1) P;[0] is either i or null,

(2) for each £,1 < ¢ < (k—1), T;[(] = U
_JEN] .
and (2) for each £,1 < ¢ < (k—1), B[l = ‘Hl]%I[l‘]Pj[é —1].
JEN

Definition 8 A system state is safe if S = {ili € V A T;[0] = {i}} denotes a k-packing, i.e, each
node i € § is the unique S-node within distance-k of node i. A system state is legitimate if S
denotes a maximal k-packing.

The underlying approach consists of two logical sets of actions: (a) Exit 8: The protocol requires
that A node i € S exits S in a round of execution of the protocol iff there exists some S-node(s)
within distance-k of node ¢, as evidenced by the content of the variable Tj [k — 1] at each node
J € N (7). This quick exit of nodes from S facilitates quick convergence to a safe state. (b) Enter S:
Once in a safe state, a node ¢ needs to enter S without violating safety in the process to eventually
converge to a legitimate state (S is a maximal k-packing). The protocol requires that after a node
1 ¢ S enters S in a round, node i is guaranteed to be the unique S-node within distance-k of node i
at the end of current round. To accomplish this requirement we generalize the concepts of locking
mechanism and delay technique in algorithm M2PSC such that (1) when a node enters S in a round,
all other nodes in its k-hop neighborhood are prohibited to enter S in the same round; (2) no S-node
exists in k-hop neighborhood of node i at the beginning of the round, i.e., after node ¢ intends to
enter S, it must communicate with nodes in its k-hop neighborhood to make sure [N¥~1[j]NS| = 0
for each j € NJi] and none of those nodes enter S; (3) in case more than one node in a k-hop
neighborhood intends to enter S, a tie resolution mechanism is needed. The entire process takes 2k
rounds in the proposed protocol and is facilitated by the delay variable d;. We need to define a few
predicates to facilitate the stepwise development of the proposed protocol.

Definition 9 In any system state, a Boolean predicate nowExit; = 1 for a node i is defined as

Q.
h

e A~

nowExit; = (1;[0] = {i}) A (35 € N(i) : |Tj[k —1]| > 2)
Definition 10 In a system state, for a node 4

1. The Boolean predicate needEnter; = 1 iff i ¢ S and there does not exist S-node within
distance-k of node 14, as evidenced by the content of the variable Tj[k — 1] on each j € N(i):

Q.

needEnter; = (T3[0] # {i}) A (Vj € N(i) : |Tj[k — 1]| = 0)

115

Self-Stabilizing Algorithms for Maximal 2-packing and General k-packing (k > 2)

2. A node i requests a lock (to express its intent to enter S) when its own P;[0] is null as well
as all nodes in NJi] have their respective pointers (for distance k — 1) are null. A node i is
locked when it has a self-pointer as well as all nodes in N[i] have their k — 1-distance pointers
pointing to <.

requestLock; o needEnter; A (P;[0] = null) A (Vj € N[i] : Pj[k — 1] = null)

locked; = (B,[0] = i) A (Vj € N[i] : Pj[k — 1] = 4)

3. A node i needs to request a delay when it needs to enter S and is locked and has not yet
waited for 2k rounds to ensure correctness of T; variables, i.e.,

def
requestDelay, = (d; # 2k) A needEnter; A locked,;

4. A node i can immediately enter S when it has waited for 2k rounds maintaining its readiness
to enter and locked, i.e., iff the Boolean predicate nowEnter; = 1 where

Q.
@

£
nowEnter;

(d; = 2k) A needEnter; A locked;

Definition 11 For a node 7 in any system state:
1. The predicate updateTi is true iff its 7} is not correct (Remark 4), i.e.,

updatel; = (T3[0] # {i} ATi[0] £ 0) v (Ti[z] + E%[,](Tj[e — 1)) for some £ € {1,2, ...k — 1})
J %

2. The predicate updatepi is true iff its P; is not correct (Remark 4), i.e.,

updatel; L (By]0] # i A B[0] # null) v (PM # min (P;[¢— 1)) for some £ € {1,2, ...k — 1})
JENI[{]

3. The predicate clearD; is true if the delay indicator d; # 0 and either the node i is not eligible
to enter S or it is not locked, i.e.,
def

clearD; = (d; # 0) A ~(needEnter; A locked;)

4. The predicate releaselock; is true iff it has the self pointer but it is not eligible to enter S,
ie.,

def .
releaseLock; = —needEnter; A (P;[0] = i)

The complete pseudo code of algorithm MKPSC is shown in Figure 3. We highlight a few simple
characteristics of the algorithm in the following remark.

Remark 5 In a given round r, r» > 1, of execution:
1. If node 7 has incorrect TZ in ¥,_1, it must update Tl in round r.
2. For a node 7, nowEnter;, requestDelay,; and nowExit; are pairwise mutual exclusive.

3. The membership of node 7 is changed only by rules RA (Exit S move) and RC (Enter S move).
If a node 7 is privileged to make Exit S move, it must exit S successfully under synchronous
daemon (see part(2)).

4. If node 7 exits S, its neighboring nodes can concurrently exits S if they are eligible to do so.

5. A node i can acquire a self-pointer (F;[0] = 4) only by making Request_Lock move in rule RA.
Note: a node cannot acquire a self-pointer by making Update_P move in rule RA.

116

International Journal of Networking and Computing

RA: if nowExit; V requestLock, V releaseLock; V updatepi \Y updateTi V clearD;
if nowExit;
then T;[0] + 0

[Exit S]

if requestLock;
then P;[0] « i3 [Request_Lock]

if releaselock;
then P;[0] < null; [Release_Lock]

if updateP;

then if P;[0] # i then P;[0] = null;
then

A= mj\ifr[l](Pj[E —1) for 1 <l <k-—1; [Update_P]
JENTi
if updateTz-

if Ti [O] 7é {Z} t}len Tl[O] = @; [Updateff]
then ¢ 7. U (B0~ 1)) for 1< E<k—1;
d; < 0; Jent [Clear Delay]

RB: if requestDelay,
d; < d; + 1 mod (2k + 1);
then 7}[0] =0 A [Request_Delay]
Till] < U (T3¢ —1]) for 1 <L <k-—1;
FENII]
RC: if nowEnter; .
Till) < {i} for 0 <L <k —1;
then ¢ P;[0] <_ null; [Enter S]
d; +

Figure 3: The Algorithm MKPSC at Node i, 1 <i<mn

6. A node i releases its self-pointer when it does not need to enter S (needEnter; = 0) by making
Release_Lock move.

7. After a node ¢ with needEnter; = 1 becomes locked, i.e., locked; = 1, it delays its enter move
by 2k rounds by making 2k Request_Delay moves such that nodes within its distance-k have
time to correct their T' and P-variables.

8. Node i either (1) increases d; by 1 in modulo 2k + 1 by making Request_Delay move (Defini-
tions 10.3), or (2) clears delay by making Enter or Clear_Delay move such that d; = 0 in X,
(Definitions 10.4 and 11.3).

Lemma 13 If algorithm MKPSC terminates, then for each node i € V

(a) If T;[0] # {i}, then T;[0] = 0; T;[(] = jEL]JV[i](Tj[f = 1)) for1 <t <k-1.

(b) d; =0.
(¢) Pilf] = null for 0 <€ <k—1.
(d) nowExit; = 0 and needEnter; = 0.
Proof: (a) This lemma immediately follows from the fact that no node is privileged by rule RA to
make Update_T move at the termination of the algorithm.
(b) Assume, by contradiction, there exists some node(s) j with d; # 0. Node j must have

needEnter; = 1 and locked; = 1 (otherwise node j is privileged by rule RA to make Clear_Delay
move). Thus, node j is privileged by rule RB or RC, a contradiction.

117

Self-Stabilizing Algorithms for Maximal 2-packing and General k-packing (k > 2)

(¢) If no node j has self-pointer (i.e., Pj [0] # j), then I:’l[ﬂ] =null,0 </l <k-—1,forallieV
(otherwise node i is privileged by rule RA to make Update,l6 move). So the key point here is to show
that there is no node with self-pointer. Assume, by contradiction, there exists some node(s) with
self-pointer. Consider the node with minimum ID from among those nodes, say node i; Pj [= 1,
1 <¢< k-1, for each node j € NJi] (otherwise node j would be privileged by the rule RA to make
Update_P move). Thus, node i is locked (i.e., locked; = 1). Also, node i must have needEnter; = 1
(otherwise node i is privileged by rule RA to make Release_Lock move). Thus, we get node i is
privileged by rule RB to make Request_Delay move (by part(b)), a contradiction.

(d) No node i is privileged by rule RA to make Exit & move and Request_lock move; the claim
follows from parts (a) and (c). O

Theorem 5 Starting from an arbitrary system state, if algorithm MKPSC terminates using syn-
chronous daemon, then S is a mazximal k-packing.

Proof: First, we show S is a k-packing. Assume, by contradiction, S is not k-packing, i.e., there
exists two S-node(s) ¢ and j such that the length of the shortest path between i and j, dist(i, j), is
< k. Consider node p € N (i) on the shortest path, it must have |T,[k —1]| > 2 (Lemma 13(a)), thus
nowExit; = 1; node ¢ is privileged by the rule RA (Exit §), a contradiction. Thus § is a k-packing.

Next, we claim S is maximal. Assume otherwise, i.e., there exist some node(s) i € {V — S}
such that A5 € S : dist(i,j) < k. Thus needEnter; = 1 and node i is privileged by RA to make
Request_Lock move (by Lemma 13(c)), a contradiction. O

Lemma 14 In any system state X, r > 2k, if a node i is enabled by the rule RC to enter S, (a)
no node in N*(i) is enabled by the rule RC to enter S in system state X,y to ¥,; (b) each node
j € N[i] must have |T;[k —1]| > [N*=1[j]n S|.

Proof: In the system state X,_ox, node ¢ must have had d; = 0, needExit; = locked; = 1; Also,
node i made Request_Delay move in each round from r—2k+1 to r [otherwise it is impossible for node
i to have d; = 2k in ¥, (Remark 6.8 and Request_Delay move)]. Thus, needExit; = locked; = 1 in
system states X, _ox to X,

(a) Node i must be the minimum ID node with self-pointer within its distance-k in X, o, and no
node j < 4 within distance-k of 7 got the self-pointer during the rounds [r — 2k + 1, — k] (otherwise
locked; cannot remain 1 in system state 3, _op to ¥,.); Thus Pj[k — 1] # j for all nodes j in N* (i)
in ¥,_. The lemma holds.

(b) During the rounds [r — k + 1, 7], no node j in N*(i) can Enter S by Part(a), and each node
j € NI[i] corrected its Tj (Remark 6.1); thus, in ¥,, each node j € N[i] must have |Tj[k — 1]| >
|INk=1[j] N S|). Note: it is possible that some node(s) within distance-k of i exits S during the
rounds [r — k + 1, 7] (hence the inequality). O

Lemma 15 In round r > 2k + 1, if a node i enters S (by executing rule RC), node i is guaranteed
to be the unique S-node within distance-k of node i at the end of current round.

Proof: If node i enters S in round 7, then node j € NJi] must have had |T}[k — 1]| = 0 in 2, _;
(Definition 10.4), and thus [N¥~1[j] N S| = 0 by Lemma 14(b). Coupled with the fact that no other
nodes in j € N*(i) can enter S in the same round by Lemma 14(a), the lemma holds. O

Lemma 16 At the end of round r > 2k+1, if there exists some node(s)i € S such that |N*[i]nS| >
2, then no nodes in N*~1[i] can make Enter move.

Proof: This lemma immediately follows from Lemma 15. a

Theorem 6 Starting from any initial illegitimate state, algorithm MKPSC converges to a safe state
(S denotes a k-packing, i.e, each node i € S is the unique S-node within distance-k of node i) after
3k + 1 rounds.

118

International Journal of Networking and Computing

Proof: Consider any node i € S with [N*[{jNS| > 2 in oxy1: Tj[k —1] on j € N(i) must be > 2
in Y3, by Lemma 16 and Remark 6.1, thus node ¢ has nowExit; = 1 in ¥gg. In the round 3k + 1,
i must exit S by executing the rule RA (Remark 6.3). Thus all nodes i € S with |[N*[i] N S| > 2 in
Yok+1 will be out of S at the end of round 3k + 1. Coupled with the fact that each newly created
S-node must be the the unique S-node within its distance-k (Lemma 15), the lemma holds. ad

Theorem 7 After round 3k + 1, algorithm MKPSC maintains safety in all subsequent rounds before
converging to a legitimate state.

Proof: After round 3k + 1, we reach a safe state. If any node i enters S, then it is guaranteed to
be the unique S-node within distance-k of node i by Lemma 15; thus we reach another safe state. O

Lemma 17 Starting from a safe state ¥, r > 4k, no node will ever make Ezit S move in subsequent
rounds.

Proof: In a safe state, there are no two S-nodes i and j such that dist(i,j) < k. The algorithm
MKPSC always in the safe state after round 3k+1 (Theorem 7), thus each node i always has |[N*~1[i]N
S| < 1 after round 3k 4 1 and each node i always has T;[k — 1] < 1 after round 4k by Remark 6.1.
The lemma holds. a

Lemma 18 Starting from a safe (not legitimate) state ¥,., r > 4k, the number of S-node increases
in at most k(n +4) + 2 rounds.

Proof: (a) No node makes Update_T moves after round r+k: this is true because there is no
Exit move after round 4k (Lemma 17) and each node i corrects its 7 during the rounds [r+1, 7+ k).

(b) No node makes Release_Lock move after round r + k + 1: each node i has correct T;
at the end of round r + k (part(a)). After another round, all nodes ¢ with needEnter; = 0 release
locks simultaneously.

(c) No node makes Request_Lock and Update_P moves after round r + k(n + 2) + 1:
After round r + k4 1, no node makes Release_Lock move, thus the number of nodes with self-pointer
is non-decreasing. Each Request_Lock move increases the number of nodes with self-pointer by 1,
so there are at most n Request_Lock moves after round r + k + 1. In between any two consecutive
Request_Lock moves, there are at most & Updaute,fD moves.

(d) No node makes Request_Delay and Clear_Delay moves after round r+k(n+4)+1:
After round r + k(n + 2) + 1, Request_Delay and Clear_Delay moves can be made in at most 2k
subsequent rounds by parts (a), (b) and (c).

Thus, at least one node makes Enter move in round r + k(n + 4) + 2. a

Theorem 8 Starting at an arbitrary state, algorithm MKPSC terminates in O(kn?) rounds under the
synchronous daemon.

Proof: After round 4k, the number of S-nodes is non-decreasing by Lemma 17, and the number
of S-nodes increases in at most k(n + 4) + 2 = O(kn) rounds by Lemma 18. Thus, the algorithm
terminates in 4k +n x O(kn) = O(kn?) rounds. O

5 Conclusion

In this paper, we propose a self-stabilizing maximal 2-packing algorithm with safe convergence using
a synchronous daemon. Starting at an arbitrary state, it first converges to a 2-packing (a safe
state) in three synchronous steps, and then converges to a maximal one (the legitimate state) in
O(n) steps without breaking safety during the self-stabilization interval, where n is the number
of nodes in the network. Space requirement at each node is O(logn) bits. This is a significant
improvement over the most recent self-stabilizing algorithm for maximal 2-packing in [16], that uses
O(n?) synchronous steps with the same space requirement at each node and that does not have safe

119

Self-Stabilizing Algorithms for Maximal 2-packing and General k-packing (k > 2)

convergence property. We then generalize the technique to design a self-stabilizing algorithm for
maximal k-packing, k > 2, with safe convergence that stabilizes in O(kn?) steps under synchronous
daemon; the algorithm has space complexity of O(knlogn) bits at each node.

We note that a straightforward application of our k-packing algorithm to the case of k = 2 will
result in a self-stabilizing algorithm of O(n?) time complexity while that of our first algorithm is
O(n). We observe:

e The underlying principle in both of our algorithms M2PSC and MKPSC is similar: (1) The
algorithms, in the first phase, allow a node to execute an “exit §” action if it violates the
definition of k-packing (k > 2) without checking if any other node in its k-hop neighborhood
is also executing an “exit 8” action, in the same step; this idea does not violate the definition
of k-packing. The effect is we reach a safe state (k-packing, but not necessarily maximal)
quickly. (2) In the second phase, once we have reached a safe state, we need nodes (not in S)
to enter S towards the goal of making the k-packing maximal such that other nodes in the
k-hop neighborhood do not execute the same action concurrently to maintain the safety of the
resulting global state (k-packing is maintained); thus, in the second phase, for a node to enter
S, it must make sure its k-hop neighborhood is locked (i.e., no such node is eligible to enter S
in the same synchronous state).

e In algorithm M2PSC (k = 2), locking the 2-hop neighborhood is implemented by using the
combination of the single pointer variable and the unique node IDs; this is possible because
a node can be given permission to enter S by all nodes in its 2-hop neighborhood using
their minSP; (determined by unique ID of nodes with self-pointers). This simple “locking
mechanism” fails when k£ > 2. In algorithm MKPSC, while we generalize the basic concept, we
needed more information to be stored at each node resulting in O(knlogn) space complexity,
a different mechanism to update that information and a different locking mechanism; these
resulted in increased space and time complexity.

Our time complexity result is only an upper bound; it may be possible to get a tighter upper
bound. So, we pose an open question, “design an O(kn) self-stabilizing algorithm for maximal
k-packing with safe convergence with O(klogn) space complexity”.

Acknowledgment

The presentation in the paper was improved by detailed comments of the reviewers. This research
was partly supported by National Science Foundation [DBI-0960586 and DBI-0960443]; Guangzhou
Science and Technology Fund of China [2012J4300038, LCY 201206, and 2013J4300061]; and Guang-
dong Science and Technology Fund of China [2012B091100221].

References

[1] E.W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of the
ACM, 17(11):643-644, Nov. 1974.

[2] S. Dolev. Self stabilization. MIT Press, 2000.

[3] N. Guellati and H. Kheddouci. A survey on self-stabilizing algorithms for independence, dom-
ination, coloring, and matching in graphs. Journal of Parallel and Distributed Computing,
70(4):406-415, 2010.

[4] H. Kakugawa and T. Masuzawa. A self-stabilizing minimal dominating set algorithm with safe

convergence. In 20th IEEE International Parallel and Distributed Processing Symposium, pages
25-29, 2006.

120

International Journal of Networking and Computing

[5]

[7]

S. Kamei and H. Kakugawa. A self-stabilizing approximation for the minimum connected
dominating set with safe convergence. In Proceedings of the 12th International Conference on
Principles of Distributed Systems, pages 496-511, Luxor, Egypt, 2008. Springer-Verlag.

S. Kamei and H. Kakugawa. A self-stabilizing 6-approximation for the minimum connected
dominating set with safe convergence in unit disk graphs. Theoretical Computer Science, 428:80—
90, April 2012.

Y. Ding, J.Z. Wang, and P.K. Srimani. Self-stabilizing minimal global offensive alliance algo-
rithm with safe convergence in an arbitrary graph. In 11th Annual Conference on Theory and
Applications of Models of Computation, LNCS 8402, pages 366-377, April 2014.

S. Kamei, T. Lzumi, and Y. Yamauchi. An asynchronous self-stabilizing approximation for
the minimum connected dominating set with safe convergence in unit disk graphs. In 15th
International Symposium on Stabilization, Safety, and Security of Distributed Systems, volume
8255, pages 251-265, 2013.

F. Carrier, A.K. Datta, S. Devismes, L.L. Larmore, and Y. Rivierre. Self-stabilizing (f, g)-
alliances with safe convergence. In 15th International Symposium on Stabilization, Safety, and
Security of Distributed Systems, Osaka, Japan, Nov. 2013.

R. Gallant, G. Gunther, B. Hartnell, and D.F. Rall. Limited packing in graphs. Discrete Applied
Mathematics, 158:1357-1364, 2010.

M. Gairing, R.M. Geist, S.T. Hedetniemi, and P. Kristiansen. A self-stabilizing algorithm for
maximal 2-packing. Nordic Journal of Computing, 11:1-11, 2004.

M. Gairing, S.T. Hedetniemi, P. Kristiansen, and A.A. McRae. Distance-two information in
self-stabilizing algorithms. Parallel Processing Letters, 14:387-398, 2004.

W. Goddard, S.T. Hedetniemi, D.P. Jacobs, and P.K. Srimani. Self-stabilizing global optimiza-
tion algorithms for large network graphs. International Journal of Distributed Sensor Networks,
1(3-4):329-344, 2005.

F. Manne and M. Mjelde. A memory efficient self-stabilizing algorithm for maximal k-packing.
In Proceedings of the 8th International Conference on Stabilization, Safety, and Security of
Distributed Systems, pages 428-439, Berlin, Heidelberg, 2006.

Z. Shi. An updated self-stabilizing algorithm to maximal 2-packing and a linear variation under
synchronous daemon. In 2011 International Conference on Parallel and Distributed Processing
Techniques and Applications, volume 1, pages 262-267, 2011.

Z. Shi. A self-stabilizing algorithm to maximal 2-packing with improved complexity. Information
Processing Letters, 112:525-531, Jul. 2012.

S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming only
read /write atomicity. Distributed Computing, 7(1):3-16, Nov. 1993.

121

