
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 5, Number 1, pages 26–60, January 2015

A Novel Computational Model for GPUs with Applications to Efficient Algorithms

Atsushi Koike

Information Systems Architecture Research Division, National Institute of Informatics, 2-1-2
Hitotsubashi

Chiyoda-ku, Tokyo, 101-8430, Japan
and

The Department of Informatics, The Graduate University for Advanced Studies, 2-1-2 Hitotsubashi
Chiyoda-ku, Tokyo, 101-8430, Japan

and

Kunihiko Sadakane

Department of Mathematical Informatics, Graduate School of Information Science and Technology,
The University of Tokyo, 7-3-1 Hongo
Bunkyo-ku, Tokyo, 113-8656, Japan

Received: July 31, 2014
Revised: September 29, 2014
Accepted: December 3, 2014

Communicated by Susumu Matsumae

Abstract

We propose a novel computational model for GPUs. Known parallel computational models
such as the PRAM model are not appropriate for evaluating GPU-based algorithms. Our
model, called AGPU, abstracts the essence of current GPU architectures such as global and
shared memory, memory coalescing and bank conflicts. Using our model, we can evaluate
asymptotic behavior of GPU algorithms more efficiently than the known models and we can
develop algorithms that run fast on real GPU devices.

As a showcase, we analyze the asymptotic behavior of basic existing algorithms including
reduction, prefix scan, and comparison sorting. We further develop new algorithms by detecting
and resolving performance bottlenecks of the existing algorithms. Our reduction algorithm has
the optimal time and I/O complexities and works with non-commutative operators. Our com-
parison sorting algorithm has the optimal I/O complexity. Additionally, we show our algorithms
run faster than the existing algorithms not only in theory but also in practice.

Keywords: GPU, GPGPU, parallel computational models, reduction algorithms, prefix scan
algorithms, sorting algorithms

1 Introduction

Parallel architectures are becoming more important as processor clock speeds are beginning to
reach a limit. Graphics Processing Units (GPUs) were originally designed for efficient processing
of graphics, but nowadays they are widely used for a variety of parallel computation applications

26

International Journal of Networking and Computing

because they are equipped with high memory bandwidth and high parallelism. This approach is
known as General-purpose GPU (GPGPU).

GPUs have unique architectures for efficient processing with many cores. We therefore have
to consider the architectures carefully to develop fast algorithms. NVIDIA [1] provides a parallel
computing platform and programming model called Compute Unified Device Architecture (CUDA).
Although it enables us to develop programs that can be executed on various GPU architectures,
this model is less useful to obtain the optimal performance. In the case of sequential algorithms,
Random-Access Machine (RAM) model is commonly used to estimate computational complexities
of algorithms. Because the RAM is a unifying abstracted machine for all sequential machines, the
complexities are useful for all sequential machines. On the other hand, no unifying machines for
all parallel machines exist because parallel machines have a wide variety of architectures. Parallel
Random-Access Machine (PRAM) [2, 3, 4] models, which consist of multiple cores and a single shared
memory unit, are standard computational models for parallel algorithms. However, algorithms
developed on the models do not always show good performance on GPUs because the PRAM models
are substantially different from actual GPU architectures. For estimating the performance of GPU-
based algorithms, several models have been proposed [5, 6, 7, 8]. Hong et al. [9] and Kothapalli et
al. [5] have proposed analytical models to estimate actual running time of GPU-based algorithms
without executing applications on GPUs. Ma et al. [7] and Nakano [8] have proposed memory access
models that take memory access latency into account.

In this paper, we propose a novel parallel computational model called AGPU. The AGPU model
focuses on analyzing asymptotic computational complexities of GPU-based algorithms, while the
previous models relatively focus on predicting actual running time of the algorithms. The purpose of
the analyses using the AGPU model is to grasp where the bottleneck for performance is. Therefore
the AGPU model aims to be simple and able to takes account of a lot of factors affecting the
performance such as coalescing, bank conflict, multithreading. Complexities on GPUs depend on
device specifications, but they are within a constant factor of complexities on the AGPU model.
Sitchinava and Weichert [10] have proposed an algorithmic model for GPUs independently of the
AGPU model. The AGPU model is simpler than their model and therefore it can analyze the
asymptotic complexities more easily. Moreover, we can show the AGPU model has a lot of relations
to other models, which is useful for designing effective algorithms.

We next analyze some basic algorithms. First, we analyze GPU-based reduction algorithms.
There exist two main algorithms for reduction: tree-based algorithm and cascading algorithm. The
latter is faster than the former in practice, and we give evidence using the AGPU model; the latter
has a lower time complexity than the former. We also give a novel and efficient algorithm for
reduction with non-commutative operators. Next, we analyze a prefix scan algorithm. We prove the
algorithm has a tradeoff between the time complexity and the effect of multithreading in the AGPU
model, and check that the running time of the algorithm in practice shows the same tendency. Next,
we analyze comparison sorting algorithms. We show the I/O complexities of existing algorithms are
not optimal and develop a new algorithm that has the optimal I/O complexity.

The rest of the paper is organized as follows. Section 2 gives a brief overview of GPU architectures
and GPU programs. In Section 3, we describe our computational model AGPU. In Section 4, we
explain the relations between the AGPUmodel and other computational models. Section 5 deals with
reduction algorithms. Section 6 deals with prefix scan algorithms. Section 7 deals with comparison
sorting algorithms. Section 8 concludes the paper.

2 GPU Architectures and GPU Programs

We briefly explain GPU architectures. A lot of GPU architectures are proposed recently, but most
architectures have similar characteristics. In this paper, we explain Tesla architecture [11] proposed
by NVIDIA.

The Tesla architecture is a hybrid system of CPU and GPU devices. The GPU device comprises
multiple cores called streaming processors (SPs) organized as multiprocessors called streaming mul-
tiprocessors (SMs). For instance, C1060 model comprises 128 SPs organized as 16 SMs. Each SM

27

A Novel Computational Model for GPUs with Applications to Efficient Algorithms

SM	 ・・・・・・	
・・・・・・	
・・・・・・	
・・・・・・	
・・・・・・	

・・・・・・	
・・・・・・	
・・・・・・	
・・・・・・	
・・・・・・	

・・・・・・	
・・・・・・	
・・・・・・	
・・・・・・	
・・・・・・	 Time	

Wait	 due	 to	 global	 memory	
access	

Shared 
Memory	

SPs	

Warp	

Figure 1: An example of Multithreading

individually executes programs and it does not have communication means with other SMs. The
CPU invokes GPU programs and only the CPU can synchronize SMs. On the other hand, all SPs
in an SM execute the same instruction at the same time. The Tesla architecture has mainly three
types of memory. The first one is a global memory, which can be accessed from all SMs. The global
memory is stored in DRAM. Therefore accesses to the global memory take longer time than arith-
metic operations. The second one is a shared memory, which can be accessed only from SPs in an
SM. Each SM has a shared memory that is stored in SRAM inside the SM. The third one is registers
in SPs. The Tesla architecture has a large set of registers that can be used for storage space for
internal process.

NVIDIA provides a programming model called CUDA. Programs implemented using CUDA can
be executed on all NVIDIA GPUs. GPU programs launched by CPU are called kernels. A kernel
has a hierarchy of sets of threads: grids, blocks, and threads. One grid is assigned for a kernel, that
is, the grid contains all threads in a kernel. A grid consists of blocks. A block is a set of threads
that are executed by the same SM. An SM may be assigned more than one blocks. Programmers
are unconscious of the assignment of blocks to SMs. One thread is executed by a single SP, and
each SP concurrently executes multiple threads.

Each SM executes threads in a block in groups of 32 threads called warps. In the C1060 model, the
8 SPs in an SM execute an instruction for 32 threads in four cycles. Though we cannot directly specify
how to process warps by SMs using CUDA, it is important to design programs with consideration
for warps to obtain high performance, for example, high execution efficiency by designing programs
so that all threads in a warp go through the same path at conditional branches. It is also important
to consider memory access patterns including bank conflicts and coalescing, which will be described
in Section 3.1.

Each multiprocessor executes multiple warps concurrently, namely, each multiprocessor can
switch the processing warp dynamically at the hardware level. In the C1060 model, each SM can
execute up to 24 warps concurrently. It is called hardware multithreading or multithreading. Multi-
threading is a key factor for GPUs to efficiently access the global memory. When a warp waits for
data to load from the global memory, the multiprocessor executes the other warps in the meantime.
Thus, global memory load latency can be hidden by multithreading. Figure 1 shows an example.
Note that the maximum number of warps executed concurrently is constrained by the amount of
shared memory and register used by warps. Because all warps in an SM share the same memory,
the number is limited by the amount of memory used.

3 AGPU Model

3.1 Architecture

We propose a new computational model Abstract GPU (AGPU). It is an abstracted computational
model that captures the essence of common GPU architectures. We focus on features related to

28

International Journal of Networking and Computing

Host	

Global	
memory	 ・・・	

Mul0processor	

・・・	

・・・	

Cores	

Shared	
memory	
(M	 words)	

b	 cores	

b	 banks	

・・・	

b	 words	 b	 words	 b	 words	
Device	

w	 bits	

Mul0processor	

・・・	

・・・	

b	 cores	

b	 banks	

w	 bits	

Mul0processor	

・・・	

・・・	

b	 cores	

b	 banks	

w	 bits	

Total	 p	 cores	 (k=p/b	 mul0processors)	

Figure 2: The architecture of AGPU model

performance and make the model as simple as possible. Figure 2 shows the architecture of the
AGPU model. AGPU consists of a host (CPU) and a device (GPU). The device consists of p cores
and one global memory unit. Each core handles a single thread and executes one instruction per
unit time. The word length of the device is w bits. A group of b cores forms a multiprocessor. The
device has k multiprocessors, that is, p = kb. Each multiprocessor has its own shared memory unit
with M words and individually executes programs launched by the host.

The multiprocessors have no means of communicating with each other. The host can synchronize
the multiprocessors by waiting for all multiprocessors in the device to complete executing programs.

All cores in a multiprocessor execute the identical instruction at the same time, but data addresses
of their operands can be arbitrary. In other words, all cores must take the same execution path.
When cores diverge via a data-dependent conditional branch, the multiprocessor serially executes
each branch path.

The global memory unit is high-capacity, low-speed and can be accessed by the host and all
multiprocessors in the device, whereas the shared memory units are low-capacity, high-speed and
can be accessed by only cores in the multiprocessor. The global memory unit is divided into blocks
with b words. The AGPU model has only two instructions to access the global memory unit; one
is a read instruction that copies all words in a block to a shared memory unit, and the other is a
write instruction that copies b words in a shared memory unit to a block. Real GPU devices have
the same mechanism as these instructions, which are called coalescing. Figure 3 shows examples of
global memory accesses. In Figure 3(a), all memory access instructions coalesce and are executed in
a unit time. On the other hand, in Figure 3(b), the instructions are executed in 4 unit times because
the words are spread out among 4 blocks. Furthermore, the number of multiprocessors that can
access the global memory simultaneously is limited, that is, the bandwidth of the global memory is
within a constant factor of b · w bits.

The shared memory unit in each multiprocessor is divided into b banks. All b cores in a multipro-
cessor can access b distinct banks simultaneously. If multiple cores are accessing the same bank, the
accesses are serialized, which is called bank conflict. Figure 4 shows the examples of shared memory
accesses. The columns of the shared memory unit represent the banks. In Figure 4(a), all cores
access distinct banks, therefore bank conflicts do not occur. On the other hand, in Figure 4(b), the
second column is accessed by two cores, therefore the instruction is divided into two instructions.

We denote this model by AGPU(p, b,M,w). We may omit the parameters w and M if they do

29

A Novel Computational Model for GPUs with Applications to Efficient Algorithms

Core	

Global 
memory	

Block	Block	 Block	 Block	

(a) : 1 instruction 	 (b) : 4 instructions	

Figure 3: Examples of global memory accesses. Each block can store b word. (a) All instructions
coalesce. (b) These instructions do not coalesce because the words are spread out among 4 blocks.

Cores	

Shared	
memory	

(a) : 1 instruction 	 (b) : 2 instructions	

Figure 4: Examples of shared memory accesses. Each column of the shared memory units represents
a memory bank, and each cell can store one word. (a) Bank conflicts do not occur since no banks
are accessed by multiple cores. (b) The instruction is divided into two instructions since the second
column is accessed by two cores (bank conflict).

not affect the performance of algorithms. In this case we denote the model by AGPU(p, b,M) or
AGPU(p, b).

We consider two variations of the model; volatile AGPU and non-volatile AGPU. In the volatile
AGPU, all data in the shared memory units are erased when the host synchronizes multiprocessors,
while in the non-volatile AGPU, all data in the shared memory units are kept after synchronization.
In the volatile model, if some variables in a shared memory unit are necessary for the following
process, the multiprocessor has to write the variables to the global memory unit at the end of
execution. The CUDA environment uses the volatile model. Therefore we denote the volatile model
as AGPU, and the non-volatile model as AGPU′.

3.2 Metrics

To evaluate the performance of algorithms, we use four metrics: the time complexity, the I/O
complexity, the amount of the global memory used and the amount of the shared memory used. The
time and I/O complexities are used to evaluate the running time of algorithms. The time complexity
is the number of instructions each multiprocessor executes. When cores in a multiprocessor diverge,
we count the instructions in all branch paths. If the time complexity varies by multiprocessors, the
largest complexity is adopted. The I/O complexity is the total number of the global memory access
instructions issued by all multiprocessors. The reason why we analyze the I/O complexity separately
from the time complexity is that the execution time of the instructions to access the global memory
is quite larger than the time for other instructions, and this may be a bottleneck. Since the number
of multiprocessors accessing the global memory simultaneously is limited by the bandwidth of the
global memory, the I/O complexity is defined as the summation of the number of global memory
access instructions issued by each multiprocessor.

The amounts of the global and shared memory are used to evaluate the memory usage of algo-
rithms. If the amount of the shared memory varies according to the multiprocessors, the largest

30

International Journal of Networking and Computing

amount is adopted. It is important to reduce the amount of the global memory used, especially if the
input size is large. Furthermore, if the amount of the shared memory used is larger than M words,
the algorithm cannot be implemented on GPU. Additionally, as we discuss later, a large amount of
the shared memory used makes multithreading less effective.

3.3 The Effect of Multithreading

As mentioned in Section 2, real GPU devices have a mechanism called multithreading. Altough it
has a huge impact for the efficiency of global memory accesses, the I/O complexity is useless to
estimate the effect of multithreading because multithreading does not change the value of the I/O
complexity. Therefore, we need a new metric. In this section, we define multiplicity to evaluate
the effect. Since we assume that each core executes a single thread in the AGPU model, we cannot
directly evaluate the number of threads each real GPU core executes concurrently. However, we
provide a simple method to evaluate the efficiency of multithreading of programs on the AGPU
model.

Each core in the real GPU devices handles multiple threads concurrently. The way to make
multithreading more effective is to increase the number of threads per core. The number is limited
by device specifications. When the maximum number of threads is assigned, multithreading is most
effective.

Supposing m is the amount of the shared memory used by a multiprocessor on the AGPU model,
the multiplicity M is defined as M := M/m. As mentioned in Section 2, the number of threads
assigned to a core is limited by the amount of memory used. When m is small, the multiplicity
becomes large. In CUDA terms, occupancy is defined as the number of assigned threads divided by
the maximum number of threads. The multiplicity corresponds to the occupancy, but it is simplified
and can be calculated only using other AGPU metrics.

Finally, we discuss the value of the multiplicity. In real GPUs, the number of warps each
multiprocessor concurrently executes is limited by device specifications. In NVIDIA GPUs, the
maximum value is larger than M/b2, but at most M/b. Namely, when m = O(b), we can assign
the maximum number of warps to the multiprocessors. Therefore, when m = O(b), we say the
multiplicity is optimal. On the other hand, when m = Ω(b2), we consider the multiplicity is not
optimal.

3.4 Divergence from Real Architectures

Since our model is designed for analyzing time and I/O complexities, it is rather simplified. We
discuss the divergence between our model and real GPU architectures.

Firstly, we do not take memory caches into account. Though many GPU devices have caches,
their specifications differ a lot and it is difficult to analyze cache behavior. The aim of using the
AGPU model is not to predict the actual running time of programs but to analyze the asymptotic
behavior of algorithms when the input size grows. Therefore, we do not consider caches in the AGPU
model. This makes it easy to analyze the I/O complexities of algorithms. In the RAM model, it is
common that memory caches are not considered to analyze the asymptotic complexities of sequential
algorithms. Nevertheless, the obtained complexities are very useful for designing algorithms. We
therefore consider that complexity analyses using the AGPU model are also useful for designing
GPU-based algorithms.

Secondly, real GPU architectures have many parameters such as the number of cores in a mul-
tiprocessor, the number of banks on the shared memory unit, the block size of the global memory,
while these are fixed to b in the AGPU model. However, it dose not affect asymptotic behavior
of algorithms because we can consider that the differences of the parameters are within a constant
factor of b. The time and I/O complexities in the AGPU model are therefore at most a constant
factor of those in real GPU devices.

Thirdly, the AGPU model does not consider synchronization of threads in a multiprocessor. In
real GPU devices, cores execute multiple threads concurrently to improve the efficiency of global

31

A Novel Computational Model for GPUs with Applications to Efficient Algorithms

memory accesses, which is called multithreading. CUDA supports synchronization in a multipro-
cessor, while the AGPU model does not support it to simplify the model. We consider that this is
not a severe restriction. The reason that CUDA has the mechanism of synchronization in a mul-
tiprocessor is that the number of cores is normally smaller than that of executed threads. In the
AGPU model, we analyze the complexities of algorithms by assuming that the number of cores is
equal to that of threads. However, using Theorem 4.9, we can easily obtain the complexities when
algorithms are executed on multiprocessors with fewer cores. We can also estimate the effect of
multithreading using the AGPU model as discussed in Section 3.3. Therefore it is not necessary to
use synchronization in a multiprocessor.

3.5 Notation for Pseudo-codes

We explain notation for pseudo-codes on AGPU(p, b,M). Let MP[0..k− 1] be an array of multipro-
cessors, where k = p/b. Let Core[0..b − 1] be an array of cores in a miltiprocessor. When multiple
multiprocessors execute programs in parallel, we write as follows:

1: for all ρ ∈ MP[x..y] in parallel do
2: carry out some processing
3: end for

where x..y represents the range of multiprocessors that execute a program. “for all” loops are
launched by a host. Namely, codes outside of “for all” loops are executed by the host. All multipro-
cessors are synchronized at the end of “for all” loops by the host. Although a real multiprocessor
may execute multiple multiprocessors on AGPU(p, b,M), programmer do not need to care the as-
signment.

When all cores in the multiprocessor execute programs in parallel, we write as follows:

1: for all ϵ ∈ Core[0..b− 1] in parallel do
2: carry out some processing
3: end for

We cannot specify the range of cores because all cores in the multiprocessor must execute the same
instruction.

Next, we explain the instructions to access the global memory; the symbols “⇒” and “⇐”
represent global memory access instructions. We can access at most b contiguous words in the
global memory per instruction. Since a multiprocessor in the AGPU model can access one block of
the global memory in a unit time, the multiprocessor may access the global memory two times to
execute the instruction. However, it do not change the asymptotic I/O complexity.

The symbols “→” and “←” represent shared memory access instructions. The symbol “:=”
represents an assignment of a pointer. Variable names begin with a capital letter if they are in the
global memory. Otherwise, they begin with a lower-case letter.

3.5.1 Implementations Using CUDA

We discuss the implementation of the algorithms designed with the AGPU model. When we imple-
ment programs using CUDA, the followings are effective to make the programs fast.

1. The data referred from a single core are moved to the register.

2. The number of the warps in a block is increased to more than one.

3. The communication inside a block is done using the shared memory.

If we use the register instead of the shared memory, the amount of shared memory used is
reduced, which leads to make the multiplicity large. Since the number of blocks assigned to an
SM is limited, it is also effective for large multiplicity to make the number of the warps in a block
increased to more than one. We can reduce the I/O complexity by the last item. It is also effective
for performance improvements to adjust the number of threads and blocks depending on hardware
architectures.

32

International Journal of Networking and Computing

4 Relations between the AGPU Model and Other Compu-
tational Models

In this section we discuss relations between the AGPU model and other computational models in
order to evaluate the power and limitation of the models. First we give a notation.

Definition 4.1 Let X,Y be computational models. If for any algorithm AY on Y , there exists an
algorithm AX for the same problem on X such that the time (I/O) complexity of AX is equal to
or less than the value that is α times the time (I/O) complexity of AY , we denote this by X ≤ αY
(XIO ≤ αYIO). If it holds that X ≤ O(1)Y and Y ≤ O(1)X, we denote this X = Y . We define
XIO = YIO analogously.

4.1 PRAM Model

Parallel random access machine (PRAM) model [2, 3, 4] has p processors that can execute arbitrary
instructions with a constant number of operands simultaneously. The p processors have a shared
memory unit of M words. Each of the processors can read/write from/to an arbitrary address in
parallel. We consider only EREW (exclusive-read, exclusive-write) PRAM model; all processors
access distinct addresses on the memory at the same time. We denote the model by PRAM(p,M).

The difference between the PRAM model and the AGPU model is the following. First, in the
PRAM model, p processors can execute different instructions at the same time (MIMD), while in
the AGPU model, processors in a multiprocessor execute an identical instruction (SIMD). Secondly,
the PRAM model does not have memory hierarchy; the PRAM model has only a shared memory.
Thirdly, memory access of the AGPU model is more restrictive than that of the PRAM model. In
the AGPU model, the number of multiprocessors that access the global memory simultaneously is
limited. Moreover, unless all cores inside a multiprocessor access contiguous elements in the global
memory, the accesses do not coalesce. Additionally, when the cores inside the multiprocessor access
the shared memory, bank conflicts occur unless the cores access distinct banks.

For any algorithm on AGPU(p, b,M) using g-word global memory, there is a corresponding
PRAM(p, g + pM

b) algorithm running in the same time complexity, that is, PRAM(p, g + pM
b) ≤

O(1)AGPU(p, b,M). This means that a lower bound on the time complexity in EREW PRAM
model also holds in AGPU. This is useful for algorithm analyses.

On the other hand, for any algorithm on the PRAM model, the following theorem holds:

Theorem 4.2 Consider any algorithm on the EREW PRAM(p,M) model that has an instruction
set of a constant number of instructions. Then it holds that AGPU(p, p,M) ≤ O(Mp)PRAM(p,M).

Proof. We simulate the EREW PRAM model by AGPU(p, p,M), that is, all the p cores belong
to a single multiprocessor, and they use the same shared memory. An algorithm on PRAM model,
in which cores can execute different instructions at the same time, can be converted to that on
AGPU(p, p,M) by sequentially executing all types of instruction in each cycle. The time complexity
increases, but is multiplied by only a constant factor. We also have to solve the bank conflict
problem. Since the PRAM algorithm uses M contiguous words of the shared memory, at most
⌈M/p⌉ words belong to the same bank. Therefore, the degree of bank conflict is at most ⌈M/p⌉ in
each memory access. Then the running time of the AGPU algorithm is bounded by

⌈
M
p

⌉
. ⊓⊔

If M is linear to p, then it holds that AGPU(p, p,M) ≤ O(1)PRAM(p,M). The theorem indi-
cates that we can use known PRAM algorithms to design efficient algorithms executed by a single
multiprocessor.

4.2 Bulk Synchronous Parallel Model

Bulk Synchronous Parallel (BSP) model [12] is one of the parallel programming models to make
it possible to write programs without conscious of physical processors. The number v of virtual
processors in the BSP model is larger than the number p of physical processors, and users need

33

A Novel Computational Model for GPUs with Applications to Efficient Algorithms

not take processor assignment into account. This helps users write general parallel programs. In
the BSP model, a computation proceeds in a series of supersteps, each of which consists of con-
current computation, communication, and barrier synchronization steps. The cost of a superstep is
determined by the maximum computation time of the p processors, the maximum size of sent and
received messages among the processors, and the time for synchronization.

We can implement a BSP algorithm using AGPU′(p, 1), that is, each multiprocessor has only one
core. Each of p the multiprocessors corresponds to a processor of the BSP model. Communication
between processors in the BSP model is done by using the global memory of the non-volatile AGPU
model. However the cost of communication in the simulation by the AGPU model is higher than
that in the BSP model because the global memory cannot be accessed by multiple multiprocessors
in the AGPU model.

4.3 I/O Model

The standard I/O model [13] consists of a single processor, an internal memory that can hold M
words, and an external memory (a disk). The external memory is divided into blocks with B words,
and the processor can read/write a single block per unit time. Algorithms are evaluated by only the
sum of read and write instructions. We call the number I/O complexity and denote this model by
I/O(B,M).

Lemma 4.3 For the volatile and the non-volatile models,

I/OIO(b,M) = AGPUIO(b, b,M) = AGPU′
IO(b, b,M).

Proof. A multiprocessor in AGPU(b, b,M) corresponds to a processor in I/O(b,M) and shared
memory in AGPU(b, b,M) corresponds to internal memory in I/O(b,M). The both memory can keep
M words. The global memory access instructions in AGPU(b, b,M) correspond to block transfers
in I/O(b,M). Therefore, I/OIO(b,M) = AGPUIO(b, b,M) Because AGPU(b, b,M) has only one
multiprocessor, it is not necessary to synchronize. Therefore the claim holds for both volatile and
non-volatile models. ⊓⊔

Lemma 4.4 For the volatile AGPU model,

AGPUIO(p, b,M) = AGPUIO(b, b,M).

Proof. AGPUIO(b, b,M) comprises only one multiprocessor equipped with a shared memory unit of
M words while AGPUIO(p, b,M) comprises p/b multiprocessors, each of which has a shared memory
unit of M words. It is trivial that for any algorithm on AGPU(b, b,M) there exists an algorithm
on AGPU(p, b,M) that has same I/O complexity as the algorithms on AGPU(b, b,M). Then we
consider simulating any AGPU(p, b,M) algorithm on AGPU(b, b,M). As mentioned in Section 3.1,
the host can synchronize multiprocessors. Let a phase be duration from a synchronization to the
next synchronization. If there is no synchronization in a program, the program has a single phase.
Suppose one multiprocessor in AGPU(b, b,M) sequentially executes tasks that p/b multiprocessors
in AGPU(p, b,M) are supposed to execute in parallel in a phase. Since multiprocessors have no
means of communication with each others and all data in shared memory units are deleted at the
time of synchronization, the multiprocessor in AGPU(b, b,M) can always refer the same data as a
multiprocessor in AGPU(p, b,M). Therefore, it can execute any instructions the multiprocessor in
AGPU(p, b,M) executes. Since I/O complexity is defined as the total number of global memory
access instructions issued by all multiprocessors, the tasks the multiprocessor in AGPU(b, b,M)
executes has the same I/O complexity as the tasks all multiprocessors in AGPU(p, b,M) execute. It
holds for any phase. Therefore, for any algorithm on AGPU(p, b,M) there exists an algorithm on
AGPU(b, b,M) that has same I/O complexity as the algorithms on AGPU(p, b,M). ⊓⊔

From Lemmas 4.3 and 4.4, it is obvious that:

34

International Journal of Networking and Computing

Theorem 4.5 For the volatile model,

I/OIO(b,M) = AGPUIO(p, b,M).

Next we consider the case of the non-volatile AGPU model. Lemma 4.4 does not hold in this
case.

Lemma 4.6 For the non-volatile AGPU model, it holds

AGPU′
IO(b, b,

pM

b
) ≤ AGPU′

IO(p, b,M).

Proof. We consider one phase as is the case with Lemma 4.4. Suppose one multiprocessor in
AGPU(b, b, (p/b)M) sequentially executes tasks that k = p/b multiprocessors in AGPU(p, b,M) are
supposed to execute in parallel in a phase. Since data in the shared memory can be used in the
next phase, the multiprocessor has to keep all data in the shared memory for the following phase.
A multiprocessor in AGPU′(b, b, (p/b)M) can keep all data that k multiprocessor in AGPU(p, b,M)
store in the shared memory. As with Lemma 4.4, the multiprocessor in AGPU(b, b, (p/b)M) can
execute any instructions the multiprocessor in AGPU(p, b,M) executes. ⊓⊔

Note that it is not always true that for any algorithm on AGPU′(b, b, (p/b)M) there exists an al-
gorithm on AGPU′(p, b,M) that has same I/O complexity as the algorithms on AGPU(b, b, (p/b)M).

From Lemmas 4.3 and 4.6, we have:

Theorem 4.7 For the non-volatile AGPU model, it holds

I/OIO(b,
pM

b
) ≤ AGPU′

IO(p, b,M).

We can also relate the volatile and non-volatile AGPUmodels. It is obvious that AGPU′
IO(p, b,M) ≤

AGPUIO(p, b,M), and we also obtain:

Theorem 4.8 For any algorithm on the non-volatile AGPU using s synchronizations,

AGPUIO(p, b,M) ≤ AGPU′
IO(p, b,M) +O

(
spM

b

)
.

Proof. We can simulate any non-volatile AGPU algorithm on the volatile AGPU as follows. At
each synchronization, we save all the contents of shared memory to the global memory, and before
executing a program in a multiprocessor, the contents of its shared memory are restored. Therefore

extra O
(

spM
b

)
I/Os are enough for the simulation. ⊓⊔

4.4 Multithreading in AGPU

Finally, we discuss the complexities in the case that algorithms designed with AGPU(v, b,M) is
executed on AGPU(p, b,M).

Theorem 4.9 Supposing v > p, for the volatile AGPU model,

AGPUIO(p, b,M) = AGPUIO(v, b,M)

AGPU(p, b,M) ≤
⌈
v

p

⌉
AGPU(v, b,M)

Proof. Due to Lemma 4.4, AGPUIO(p, b,M) = AGPUIO(v, b,M) = AGPUIO(b, b,M). We con-
sider the time complexity. In AGPU(v, b,M), the number of multiprocessors used by the algorithm
is v/b, whereas, in AGPU(p, b,M), the number of multiprocessors is p/b. Therefore, the ratio of the

35

A Novel Computational Model for GPUs with Applications to Efficient Algorithms

number of multiprocessors is at most ⌈v/p⌉. Suppose the multiprocessors on AGPU(p, b,M) simu-
late the multiprocessors on AGPU(v, b,M). Since the multiprocessors on the AGPU model have no
means of communication with each others and all data in the shared memory are deleted at the time
of synchronization, a multiprocessor on AGPU(p, b,M) can always execute the same instructions as
a multiprocessor on AGPU(v, b,M). Therefore, the multiprocessors on AGPU(p, b,M) can simulate
the multiprocessors on AGPU(v, b,M) by simulating a multiprocessor on AGPU(v, b,M) at most
⌈v/p⌉ times. If the time complexity varies by multiprocessors, the largest complexity is adopted.
Therefore, the time complexity on AGPU(p, b,M) can be smaller than ⌈v/p⌉ factor of the time
complexity on AGPU(v, b,M). ⊓⊔

When we develop the algorithms taking multithreading into account, the number of threads
in the algorithms must be larger than the number of cores. We can estimate the time and I/O
complexities of the algorithms by applying Theorem 4.9. For example, if the time complexity of an
algorithm on AGPU(v, b,M) is O(n/v + log v), the time complexity in case that the algorithm is
executed on AGPU(p, b,M) is O(n/p+ v log v/p).

5 Reduction Algorithms

5.1 Reduction with a Commutative Operator

In this section, we analyze reduction algorithms as an example of algorithm analyses using the
AGPU model. The reduction operation is defined as follows. Given an array T [0..n − 1] of n
elements, reduction r(T,⊕) is defined as

r(T,⊕) :=
n−1⊕
i=0

T [i],

where the operator ⊕ is associative in this paper. For instance, r(T,+) represents the summation
of all the elements in an array T . We assume the input array is allocated on the global memory
and an element of the array stores a w bit number. In this section we assume the operator ⊕ is
commutative. We will present a novel algorithm for non-commutative operators in the next section.

We describe two algorithms suggested by Harris [14] using the AGPU model and analyze the
time and I/O complexities and the amount of memory used. Harris suggested seven algorithms for
reduction [14]. We can divide them into two types. The first six algorithms are called tree-based
algorithms, and the last one is called a cascading algorithm. The cascading algorithm is faster than
the six tree-based algorithms in a real GPU. In this section we show that the cascading algorithm
has lower time complexity than the tree-based algorithms in the AGPU model.

We only explain the case where n is equal to or larger than p. When n < p, some cores are not
used. In particular, when n ≤ b, we can omit some processes from the algorithms since we always
use a single multiprocessor. However, we do not go into the detail of this case because we do not
take full advantage of GPUs in this case. We mainly consider the cases where the input size n is
much larger than p. In this section, if p = o(n) holds, we say the input size is sufficiently larger
than the number of cores.

5.1.1 Tree-based Algorithm

We describe the tree-based algorithm that is the fastest among the six algorithms. We first explain
the outline of the tree-based algorithm. The input T [0..n − 1] is divided into blocks with 2b words
and the reduction of each block is calculated by a single multiprocessor. When the reduction of all
blocks is done, we obtain n/2b elements. The same calculation is repeatedly done to the resulting
values until the size of the elements becomes one. The result is the reduction value of the input.

The reduction inside a multiprocessor is done as follows. Each multiprocessor reads the first half
and the second half of a block in turn and carries out the operation to those elements two by two
using b cores in the multiprocessor. Since each block has 2b elements, the size of the result is b. We

36

International Journal of Networking and Computing

Algorithm 1 CalculateReductionUsingTreeBased(T, n)

Input: An array T [0..n− 1]
Output: The reduction value of T [0..n− 1]

1: Q := &T [0]
2: Ω := &W [0] {Reduction values so far}
3: d← n
4: while (d > 1) do
5: s← ⌈d/2kb⌉ {The number of serialization}
6: for (j = 0; j < s; j ++) do
7: for all ρ ∈ MP [0 ..k − 1] in parallel do
8: for all ϵ ∈ Core[0 ..b − 1] in parallel do
9: d1[ϵ]⇐ Q[2b(jk + ρ) + ϵ] {Each multiprocessor reads the first half of the 2b elements}

10: d2[ϵ] ⇐ Q[2b(jk + ρ) + b + ϵ] {Each multiprocessor reads the second half of the 2b
elements}

11: x[ϵ]← d1[ϵ]⊕ d2[ϵ]
12: δ ← b/2
13: while (δ > 0) do
14: x[ϵ]← x[ϵ]⊕ x[ϵ+ δ]
15: δ ← δ/2
16: end while
17: if (ϵ == 0) then
18: Ω[jk+ρ]⇐ x[0] {Each multiprocessor writes the reduction value of the 2b elements}
19: end if
20: end for
21: end for
22: end for
23: Q := Ω {The same calculation is repeatedly done to the resulting values}
24: d← ⌈d/2b⌉ {The number of elements is reduced to 1/2b}
25: Ω := &Ω[d]
26: end while
27: return Q[0]

repeat the same operation until the size becomes one and we get the reduction value of the block.
In this procedure, cores in a multiprocessor access b contiguous elements in each step. This means
that cores access distinct banks, therefore there are no bank conflicts. A pseudo code for tree-based
algorithm is shown in Algorithm 1.

We analyze the time complexity of this tree-based algorithm. The loop on lines 13-16 runs log b
times. So it takes O(log b) times to calculate the reduction for one block. The loop on lines 4-26
runs ⌈log2b n⌉ times. Let s(i) be the number of times that the loop in lines 6-22 are executed at the
i-th iteration of the for loop in lines 4-26. We have

s(i) =

⌈
n

(2b)i
1

k

⌉
=

⌈
n

2p(2b)i−1

⌉
.

Therefore, the time complexity of the algorithm is

⌈log2b n⌉∑
i=1

s(i) log b ≤
⌈log2b n⌉∑

i=1

log b

(
n

2p(2b)i−1
+ 1

)
=

n log b

2p

⌈log2b n⌉∑
i=1

(
1

2b

)i−1

+ log b⌈log2b n⌉.

Since b ≥ 1, we have
⌈log2b n⌉∑

i=1

(
1

2b

)i−1

≤
∞∑
i=1

(
1

2b

)i−1

=
1

1− 1
2b

≤ 2.

37

A Novel Computational Model for GPUs with Applications to Efficient Algorithms

b = 4	
p = 12	

n/ p rows	

Core	
0	

Core	
11	

Figure 5: Input sequence arranged as a matrix with p columns.

Thus, the time complexity is O(n log b
p +log n). If the data size is sufficiently larger than the number

of cores, the time complexity is O(n log b
p).

We analyze the I/O complexity. Since each block is accessed three times in the loop of lines 8-20
and the number of blocks is

⌈
n/(2b)i

⌉
, the multiprocessors access the global memory 3

⌈
n/(2b)i

⌉
times at the i-th iteration. Therefore, the I/O complexity is

⌈log2b n⌉∑
i=1

3

⌈
n

(2b)i

⌉
≤

⌈log2b n⌉∑
i=1

3

(
n

(2b)i
+ 1

)
= O

(
n

b
+

log n

log b

)
.

If the data size is sufficiently larger than the number of cores, the I/O complexity is O(nb). Addi-
tionally, the amount of the shared memory used is O(b) words and the amount of the global memory
used is n+O(n/b) words. The multiplicity is M/b.

5.1.2 Cascading Algorithm

We describe the cascading algorithm. The input is represented as a matrix with p columns. We use
the row-major order; the first p elements in the input array are considered to be stored in the first
row. Each of p cores is assigned to one of the columns in the matrix. Figure 5 shows an example
for b = 4 and p = 12.

Each core calculates the reduction of one column sequentially. Then, cores in a multiprocessor
calculate the reduction of b resulting values in a multiprocessor and write the result to the global
memory. We call this step “local reduction”. After that, we calculate the reduction of p/b resulting
values using the tree-based algorithm. We call this step “global reduction”. As a result, we obtain
the overall reduction value. Algorithm 2 shows a pseudo code for the cascading algorithm. The
details of the local reduction is shown in Algorithm 3.

We analyze the time complexity. Lines 1-17 in Algorithm 3 can be computed in O(n/p+ log b)
times. The global reduction can be computed in O(log k) times using the tree-based algorithm for
the k resulting values. Thus, the time complexity is O(np + log p). If the data size is sufficiently

larger than the number of cores, the time complexity is O(np).
Next, we analyze the I/O complexity. Since each multiprocessor can always get b values at a

time, lines 1-17 in Algorithm 3 accesses to the global memory O(n/b) times. The global reduction
algorithm accesses to the global memory O(k/b) times using the tree-based algorithm. Since we

38

International Journal of Networking and Computing

Algorithm 2 CalculateReductionUsingCascading(T, n)

Input: An array T [0..n− 1]
Output: The reduction value of T [0..n− 1]

1: W [0..p/b− 1] = CalculateLocalReductionUsingCascading(T, n) {Local reduction}
2: return CalculateReductionUsingTreeBased(W,p/b) {Global reduction}

Algorithm 3 CalculateLocalReductionUsingCascading(T, n)

Input: An array T [0..n− 1]
Output: The array W [0..p/b − 1] of the local reduction values each of which is calculated by a
multiprocessor

1: for all ρ ∈ MP [0 ..k − 1] in parallel do
2: for all ϵ ∈ Core[0 ..b − 1] in parallel do
3: x[ϵ]← 0 {Reduction value so far}
4: for (i = 0; i < n/p; i++) do
5: d[ϵ]⇐ T [ip+ bρ+ ϵ] {Each multiprocessor reads the i-th row}
6: x[ϵ]← x[ϵ]⊕ d[ϵ]
7: end for
8: δ ← b/2
9: while (δ > 0) do

10: x[ϵ]← x[ϵ]⊕ x[ϵ+ δ]
11: δ ← δ/2
12: end while
13: if (ϵ == 0) then
14: W [ρ]⇐ x[0] {Each multiprocessor writes the reduction value so far}
15: end if
16: end for
17: end for
18: return W [0..p/b− 1]

assume n > p, the I/O complexity is O
(
n
b

)
. The amount of the shared memory used is O(b) words

and the amount of the global memory used is n+O(p/b) words. The multiplicity is O(M/b).

To sum it up, we confirmed that the cascading algorithm is faster than the tree-based algorithm
not only in practice but also in the AGPU model. If the data size is sufficiently larger than the
number of cores, the cascading algorithm is O(log b) times faster than the tree-based algorithm.

5.2 Reduction with a Non-commutative Operator

The two algorithms described in the previous section use commutativity of the reduction operator for
efficient memory access. Therefore, these algorithms do not work if the operator is non-commutative.
In this section, we propose a novel reduction algorithm for a non-commutative operator. The
basic idea is that reduction procedure is divided into several pipeline stages and the cores in each
multiprocessor are assigned to pipeline stages. We call this pipeline algorithm.

As shown in Figure 6(a), the input array is represented as a matrix with b columns and n/b rows
in the row-major order. The n/b rows are divided into k groups, each of which has n/p rows. Each
of the k multiprocessors calculates the reduction of a group.

Next, we explain how each multiprocessor calculates the reduction of a group. Figure 6(b) shows
an example of shared memory allocation for b = 4 and Figure 7 shows the process of calculating the
reduction in this example. We suppose that we can carry out one operation per unit time t1, t2, · · ·.

Each multiprocessor uses 2b words of the shared memory. The elements in the first row are

39

A Novel Computational Model for GPUs with Applications to Efficient Algorithms

b	

n/	 p	 rows	
n/	 b	
rows	

b	 =	 4	
2b	

1	0	
0	 1	 2	 3	

4	
=	
+	 3	2	

5	
=	
+	 5	4	

6	
=	
+	 7	6	

7	
=	
+	

Input	 data	 read	 from	
the	 global	 memory	

Values	
in	 calculaCon	

ReducCon	 value	
so	 far	

(a)	 (b)	

Figure 6: Memory allocation of the pipeline algorithm. (a) Input sequence arranged as a matrix
with b columns. (b) An example of the shared memory allocation for b = 4.

processed at time t = t1 to t6. First, the row is copied to 0⃝ 1⃝ 2⃝ 3⃝ in the shared memory at t = t1.
Then b/2 cores carry out the operation to b/2 pairs of values and store the resulting b/2 reduced
values to the shared memory. In this example, the resulting values are stored to 4⃝ 5⃝ in the shared
memory at time t = t2. Next, b/4 cores carry out the operation to b/4 pairs of values and store the
resulting b/4 reduced values to the shared memory. In this example, the resulting value is stored to
6⃝ in the shared memory at t = t4. This procedure is repeated until the number of the resulting
values becomes one. Finally, one core carries out the operation to the resulting value and the reduced
value so far, and it stores the resulting value to the shared memory. In this example, the resulting
value is stored to 7⃝ in the shared memory at time t = t6.

The elements in the second row are processed similarly at time t3, t4, t6, t8, and those in the third
row are processed at time t5, t6, t8, t10. It is clear that anytime only b cores are used simultaneously.
Therefore this pipelining works.

When we calculate the reduction of one block using tree-based algorithm, the number of active
cores decreases as the calculation proceeds. On the other hand, using the pipeline algorithm, all
cores are always active. Therefore the pipeline algorithm is fast.

Next, we explain the shared memory layout to avoid bank conflicts. Each multiprocessor stores
2b values in the shared memory according to the following rules.

1. Arrange values with even indices in Figure 6(b) to the first row of the shared memory in
ascending order.

2. Arrange values with odd indices to the second row so that values with indices from b/2 to b−1
are to the first half and those with indices from 0 to b/2− 1 are to the second half.

Figure 8 shows an example of shared memory layout for b = 4.
In order to prove this arrangement does not cause bank conflicts, we prove there exists a one-

to-one mapping between cores and banks of the shared memory at any time. The cores access the
shared memory three times.

1. When we store the input elements to the shared memory, the core with index i handles the
element with index i. In this case, if the bank index β is smaller than b/2, the corresponding
core is 2β. Otherwise, the corresponding core is 2(β − b/2) + 1.

40

International Journal of Networking and Computing

Carry out the operation to the first row	

Read the first row	

Carry out the operation 
to the first and second rows	

Read the second row	

Carry out the operation 
to the first, second and third rows	

Read the third row	

Carry out the operation  
to the second, third and fourth rows	

Read the fourth row	

Shared memory	 Cores	

0	 1	 2	3	

t	

t1	

t3	

t4	

t2	

t5	

t6	

t7	

t8	

0	 1	2	3	 4	 5	6	 7	

呍
呍
呍	

Figure 7: An example of the procedure of the pipeline algorithm.

b	 =	 4	

0	

1	

2	

3	

4	

5	

6	

7	
Shared	
memory	

Figure 8: An example of the shared memory layout to avoid bank conflicts.

2. When we load the first elements to carry out the operation, the core with index i handles the
element with index 2i. In this case, the core corresponding to the bank β is β.

3. When we load the second elements to carry out the operation, the core with index i handles
the element with index 2i + 1. In this case, if the bank index β is smaller than b/2, the
corresponding core is β + b/2. Otherwise, the corresponding core is β − b/2.

Thus, the mapping from the cores to the banks is bijective in all cases. Consequently, we conclude
bank conflicts do not occur. Algorithm 4 shows a pseudo code for the pipeline algorithm. The
details of the local reduction is shown in Algorithm 5. Algorithm 4 uses the tree-based algorithm
for the global reduction. We need to change Algorithm 1 slightly for non-commutative operation.
A pseudo code for the tree-based reduction algorithm with non-commutative operators is shown in
Algorithm 6. Algorithm 6 always carries out the operation to two consecutive elements. Asymptotic
behavior of Algorithm 6 is the same as that of Algorithm 1.

Next, we analyze the complexities of the algorithm. Lines 1-29 in Algorithm 5 can be computed

Algorithm 4 CalculateReductionUsingPipeline(T, n)

Input: An array T [0..n− 1]
Output: The reduction value of T [0..n− 1]

1: W [0..p/b− 1] = CalculateLocalReductionUsingPipeline(T, n) {Local reduction}
2: return CalculateReductionUsingTreeBased2(W,p/b) {Global reduction}

41

A Novel Computational Model for GPUs with Applications to Efficient Algorithms

Algorithm 5 CalculateLocalReductionUsingPipeline(T, n)

Input: An array T [0..n− 1]
Output: The respective reduction values of n/b blocks generated by dividing T [0..n− 1]

1: for all ρ ∈ MP [0 ..k − 1] in parallel do
2: for all ϵ ∈ Core[0 ..b − 1] in parallel do
3: if (ϵ%2 ! = 0) then
4: is ← ϵ/2 + 3b/2
5: ir ← ϵ/2 + b
6: else
7: is ← ϵ/2
8: ir ← ϵ/2 + b/2
9: end if

10: i1 ← ϵ
11: if (ϵ < b/2) then
12: i2 ← ϵ+ 3b/2
13: else
14: i2 ← ϵ+ b/2
15: end if
16: for (j = 0; j < n/p; j ++) do
17: x[ϵ]⇐ T [ρnb/p+ bj + epsilon] {Each multiprocessor reads the j-th row}
18: y[is]← x[ϵ] {Each multiprocessor copies input to y[is]}
19: y[ir]← y[i1] + y[i2] {Each multiprocessor carries out the operation}
20: end for
21: for (j = 0; j < log b; j ++) do
22: y[is]← 0
23: y[ir]← y[i1] + y[i2]
24: end for
25: if (ϵ == 0) then
26: W [ρ]⇐ y[3b/2− 1] {Each multiprocessor writes the reduction value so far}
27: end if
28: end for
29: end for
30: return W [0..p/b− 1]

in O(n/p+log b) time. The global reduction can be computed in O(log k) time using the tree-based
algorithm for the k resulting values. Thus, the time complexity is O(np + log p). If the data size is

sufficiently larger than the number of cores, the time complexity becomes O(np). As is the case with

the cascading algorithm, the I/O complexity is O
(
n
b

)
. The amount of the shared memory used is

O(b) words and the amount of the global memory used is n+O(p/b) words. Finally, the multiplicity
isM/b. Table 1 shows the I/O and time complexities and multiplicity of these algorithms. Algorithm
“Matrix-based” will be explained in the next section.

5.2.1 Importance of multithreading

If the data size is sufficiently larger than the number of cores, the pipeline algorithm has the optimal
time and I/O complexities and the multiplicity is considered to be optimal in NVIDIA GPUs. If
we do not care the value of multiplicity, we can easily develop an algorithm that has the optimal
time and I/O complexities by modifying the cascading algorithm. We first read b2 elements to a
matrix with b columns and b rows, then transpose the matrix. We can avoid bank conflicts by
using the same method as the algorithm that we will describe in Section 6.1. We call this algorithm
“matrix-based”. While the time and I/O complexities of this algorithm are optimal, the multiplicity

42

International Journal of Networking and Computing

Algorithm 6 CalculateReductionUsingTreeBased2(T, n)

Input: An array T [0..n− 1]
Output: The reduction value of T [0..n− 1]

1: Q := &T [1]
2: Ω := &W [1] {Reduction values so far}
3: d← n
4: while (d > 1) do
5: s← ⌈d/2kb⌉ {The number of serialization}
6: for (j = 0; j < s; j ++) do
7: for all ρ ∈ MP [0 ..k − 1] in parallel do
8: for all ϵ ∈ Core[0 ..b − 1] in parallel do
9: x[ϵ]⇐ Q[b(jk + ρ) + ϵ] {Each multiprocessor reads b elements}

10: for (j = 0; j < log b; j ++) do
11: if (ϵ < b/2j+1) then
12: x[ϵ]← x[2ϵ]⊕ x[2ϵ+ 1]
13: end if
14: end for
15: if (ϵ == 0) then
16: Ω[jk+ ρ]⇐ x[0] {Each multiprocessor writes the reduction value of the b elements}
17: end if
18: end for
19: end for
20: end for
21: Q := Ω {The same calculation is repeatedly done to the resulting values}
22: d← ⌈d/2b⌉ {The number of elements is reduced to 1/2b}
23: Ω := &Ω[d]
24: end while
25: return Q[0]

is smaller than the other algorithms. In the next section, we will experimentally show the running
time of reduction algorithms.

5.3 Experimental Evaluation

5.3.1 Experimental Comparisons of Running Time

We have implemented the reduction algorithms using CUDA and have measured their running time
using NVIDIA k20c GPU. The reduction operator is the summation of integers.

Figure 9 shows the bandwidth of the reduction algorithms, which represents the amount of
elements processed per one second. Let “Tree”, “Cascading”, “Pipeline”, “Matrix“ denote tree-
based algorithm, cascading algorithm, pipeline algorithm, matrix-based algorithm respectively. The
bandwidth is limited by the bandwidth of the global memory. The value is 208GB/s.

The cascading algorithm is fastest among these algorithms. The pipeline algorithm is slower than
the cascading algorithm, but sufficiently fast. The tree-based algorithm is slower than the cascading
algorithm and the pipeline algorithm when n is larger than 221. This is considered due to the large
time complexity. The matrix-based algorithm is slowest among these algorithms. This is considered
due to the small multiplicity.

43

A Novel Computational Model for GPUs with Applications to Efficient Algorithms

Table 1: Complexities and multiplicity of reduction algorithms on AGPU(p, b,M). Here n is the
number of elements to be reduced. We assume p = o(n). Pipeline and Matrix-based can be used
with non-commutative operator, whereas the others cannot.

Algorithms Time complexity I/O complexity Multiplicity
(Optimal) Θ(np) Θ(nb) −
Tree-based O(n log b

p) O(nb) O(M/b)

Cascading O(np) O(nb) O(M/b)

Pipeline (Ours) O(np) O(nb) O(M/b)

Matrix-based O(np) O(nb) O(M/b2)

0	

20	

40	

60	

80	

100	

120	

140	

1048576	 2097152	 4194304	 8388608	 16777216	 33554432	 67108864	 134217728	 268435456	

Ba
nd

w
id
th
	 (G

B/
se
c)
	

Tree	 Cascading	

Pipeline	 Matrix	

220	

Number	 of	 elements	
222	 224	 226	 227	 228	225	223	221	

Figure 9: The comparison of processing time of several reduction algorithms.

6 Prefix Scan Algorithms

In this section, we deal with a prefix scan (prefix sum) algorithm. It aims to show that we can
predict the performance of GPU-based algorithms using the AGPU model. After we analyze the
asymptotic behavior of the algorithm, we measure the actual running time of the algorithm with
various parameter values.

Prefix scan is defined as follows. Given an array T [0..n− 1] of n elements, prefix scan returns an
array U [0..n− 1] such that:

U [k] =

{
I⊕, (if k = 0)⊕k−1

i=0 T [i], (Otherwise)

where the operator ⊕ is associative and commutative and I⊕ is the identity element for the operator.
This definition is also known as exclusive scan or prescan.

Dotsenko et al. [15] proposed a matrix-based algorithm for prefix scan on GPUs. Input data are
partitioned into matrices with α rows and b columns and each matrix is processed by a multiproces-
sor. We can choose an arbitrary value of the parameter α. Thrust [16], which is one of the standard
CUDA libraries, uses a similar algorithm for prefix scan. We analyze the prefix scan algorithm in
Thrust.

6.1 Description and Analysis of Prefix Scan Algorithms

A pseudo-code for the prefix scan algorithm used in Thrust is shown in Algorithm 7. The code is
slightly modified to make the algorithm suitable for the AGPU model. In addition, for simplicity,

44

International Journal of Networking and Computing

Local	 Reduc+on	

Global	 Prefix	 Scan	

Local	 Prefix	 scan	

Input	

Output	

Figure 10: The outline of prefix scan algorithm

b	 =	 8	

0	

1	

2	

3	

4	

5	

6	

7	

pad	

α	 =	 3	

0	

1	

2	

3	

4	

5	

6	

7	

0	

1	

2	

3	

4	

5	

6	

7	

Figure 11: An example of the data alignment

we omit the process of rounding of fractions. In the pseudo-code, parameter k represents the total
number of multiprocessors, namely, k = p/b. Algorithms 8 is a subroutine invoked by Algorithm 7.

Figure 10 shows the outline of the algorithm. First, input data are partitioned into k blocks and
each multiprocessor calculates the reduction of a block. This process is called “local reduction”.
The algorithm for the local reduction is shown in Algorithm 3. The result of reductions is stored
in an array C. Then, one multiprocessor calculates the prefix scan of the array C. This process is
called “global prefix scan”. Finally, each multiprocessor calculates the prefix scan of a block. This
process is called “local scan”. The value of index i in the global prefix scan array is equal to the
final output value of the first element of i-th block. Therefore, each multiprocessor can concurrently
calculates the prefix scan of a block using the result of the global scan.

Algorithm 8 shows the detail of the global and local prefix scan. Each multiprocessor calculates
the prefix scan of a single block. At the local prefix scan, the number of blocks is k, whereas
the number of blocks is one at the global prefix scan. In order to let the multiple multiprocessors
calculate the prefix scan concurrently, we want to know the prefix scan value of the first element of
each block. Actually, the output C of the global prefix scan represents the values.

In Algorithm 8, each block is divided into subblocks with αb elements. Each subblock is rep-
resented as a matrix with α rows and b columns (α ≤ b). Each multiprocessor repeats calculating
the prefix scan of a matrix. We use column-major order, namely, first α elements in a block are
stored in the first column. First, all elements in a matrix are transferred from the global memory
to the shared memory. At this time, we rearrange the matrix in the shared memory as a matrix
with α rows and b+1 columns such that the i-th column in the original matrix is stored in the i-th
column and (b + 1)-th column in the new matrix does not store any elements. Figure 11 shows an
example for α = 3 and b = 8. The first α elements are stored in distinct banks because the number
of columns is b+1. However, if α < b, the (α+1)-th element is stored in the same bank as the first
element. Thus, bank conflicts occur. On the other hand, if α is equal to b, bank conflicts do not
occur because the α = b elements are stored in distinct banks. Next, each core in a multiprocessor
calculates the reduction of the α elements in one column in parallel. Then, we calculate the prefix
scan of this b resulting values. Finally, each core calculates the prefix scan of one column. Since the
prefix scan values of the first element of the columns is represented as the above b resulting values,
each core can do it in parallel.

We analyze the complexities of the algorithm. First, we analyze the time complexity. It takes

45

A Novel Computational Model for GPUs with Applications to Efficient Algorithms

Table 2: Complexities and multiplicity of the prefix scan algorithm adopted by Thrust on
AGPU(p, b,M). Here n is the number of input elements. We assume n is much larger than the
number of cores p.

Algorithms Time complexity I/O complexity Multiplicity

Matrix-based O((np + p
b2)(min{⌈ bα⌉, α}+

log b
α)) 3n

b +O(pb) O(Mαb)

Algorithm 7 CalculatePrefixScan(T,U, n)

Input: An input array T [0..n− 1]
Output: The prefix scan U [0..n− 1] of T [0..n− 1]

1: // Local reduction
2: C[0..p/b− 1] = CalculateLocalReductionUsingCascading(T, n)
3:

4: // Global prefix scan
5: for all ρ ∈ MP [0 ..0] in parallel do
6: for all ϵ ∈ Core[0 ..b − 1] in parallel do
7: CalculateBlockPrefixScan(C,C, k,NULL)
8: end for
9: end for

10:

11: // Local prefix scan
12: for all ρ ∈ MP [0 ..k − 1] in parallel do
13: for all ϵ ∈ Core[0 ..b − 1] in parallel do
14: CalculateBlockPrefixScan(&T [n ∗ ρ/k],&U [n ∗ ρ/k], n/k,&C[ρ])
15: end for
16: end for

O(n/p+log b) time to calculate the local reduction because each core calculates n/p rows and it takes
O(log b) time to merge the result of each core. Note that bank conflict does not occur because b cores
in a multiprocessor always access b contiguous elements in the shared memory. Next, we analyze
the time complexity of global and local prefix scan. Bank conflicts may occur when elements in a
matrix are transferred from global memory to shared memory. Each multiprocessor repeats copying
b elements α times. Although all elements in the same column are in distinct banks due to padding,
elements in different columns can be in the same bank. The degree of conflicts is min{⌈ bα⌉, α}
because the degree is equal to or smaller than the number of columns used by b elements and it is
also equal to or smaller than α. Since a multiprocessor reads b elements α times, time complexity of
reading a matrix is O(min{⌈ bα⌉, α} · α). Writing the resulting values of a matrix to global memory
has the same time complexity. In addition, it takes O(α + log b) time to calculate the prefix scan
of one matrix in the shared memory. Therefore, the time complexity to calculate the prefix scan of
a matrix is O(min{⌈ bα⌉, α} · α + log b) in total. To calculate the global prefix scan, this process is
serially repeated k/(αb) times. To calculate the local prefix scan, this process is serially repeated

n
k(αb) times. Therefore, the total time complexity is O((np + p

b2)(min{⌈ bα⌉, α}+
log b
α)).

Next, we analyze the I/O complexity. The algorithm uses (nb + k) I/Os to calculate the local

reduction, (2pb2) I/Os to calculate the global prefix scan, and (nb +k) I/Os to calculate the local prefix
scan. Therefore, the total number of I/Os is 3n

b + O(pb). Next, the amount of the shared memory
used is O(αb) words because the algorithm uses αb words for a matrix to calculate the global and
local prefix scan. The amount of the global memory used is (2n + p

b) words because 2n words are
used for input/output and p

b words are used to store the result of the local reduction. Finally, the

multiplicity is O(Mαb).
Table 2 shows the I/O and time complexities and multiplicity of the matrix-based algorithm.

46

International Journal of Networking and Computing

Algorithm 8 CalculateBlockPrefixScan(T,U, n, C)

Input: An input array T [0..n− 1], a carry C
Output: The prefix scan U [0..n− 1] of T [0..n− 1]

1: Allocate a matrix m[α][b+ 1] in the shared memory.
2:

3: // Each multiprocessor sequentially calculates the prefix scan of the matrix with αb elements.
4: for (i = 0; i < n; i++) do
5: // Each multiprocessor reads all elements in a matrix and arrange them in column-major

order.
6: for (j = 0; j < α; j ++) do
7: data tmp[ϵ]⇐ T [αbi + jb + ϵ]
8: m[(jb+ ϵ)%α][(jb+ ϵ)/α]← data tmp[ϵ]
9: end for

10:

11: // Each core calculates the reduction of one column.
12: carry ⇐ C
13: if ((ϵ == 0)&&(C ! = NULL)) then
14: val column[ϵ]← C
15: else
16: val column[ϵ]← I⊕
17: end if
18: for (j = 0; j < α; j ++) do
19: val column[ϵ]← val column[ϵ]⊕m[j][ϵ]
20: end for
21:

22: // Cores calculate the prefix scan of b resulting values.
23: for (j = 1; j < b; j = j ∗ 2) do
24: if (ϵ ≥ j) then
25: val column[ϵ]← val column[ϵ− j] + val column[ϵ]
26: end if
27: end for
28:

29: // Each core calculates the prefix scan of one column.
30: if ((ϵ == 0)&&(C ! = NULL)) then
31: next ← C ⊕m[0][ϵ]
32: m[0][ϵ]← C
33: else
34: next ← m[0][ϵ]
35: m[0][ϵ]← val column[p − 1]
36: end if
37: for (j = 1; j < α; j ++) do
38: tmp ← m[j][ϵ]
39: m[j][ϵ]← next
40: next ← next ⊕ tmp
41: end for
42:

43: // Each multiprocessor writes all words in a sub-block to global memory.
44: for (j = 0; j < a; j ++) do
45: data tmp[ϵ]← m[(jb + ϵ)/a]
46: U [abi+ jb+ ϵ]⇐ data tmp[ϵ]
47: end for
48: end for

47

A Novel Computational Model for GPUs with Applications to Efficient Algorithms

6.2 Discussion

We can choose an arbitrary value of the parameter α. First, we discuss how the value of parameter α
affects the performance of the algorithm. The parameter α is related to the time complexity. When
α is equal to one, the time complexity is O((np + p

b2)(log b)). When α = Ω(b), the time complexity is

O(np + p
b2). Thus, the time complexity depends on α, and it attains the minimum when α = Ω(b).

On the other hand, when α is large, the multiplicity is inversely proportional to α. When α is
equal to one, the multiplicity is considered to be optimal since the amount of shared memory used
is O(b). On the other hand, When α = Ω(b), the multiplicity is not considered to be optimal since
the amount of shared memory used is O(b2). To summarize, parameter α must be chosen from
between 1 and Θ(b) with careful consideration of two competing factors: the time complexity and
the multiplicity.

If the input size n is much larger than p and α = Ω(b), the time and the I/O complexities become
O(np) and O(

n
b), respectively, which are asymptotically optimal. However, if the input size n is not

sufficiently larger than p, the term p
b2 affects the time complexity. This is due to the inefficiency

of the global prefix scan. The time complexity can be improved by using multiple multiprocessors
for the process. It can be reduced to O(np (min(⌈b/α⌉, α) + log b

α) + log p) by using the algorithm

proposed by Harris et al. [17].

6.3 Experimental Results

We measured the actual running time of the matrix-based algorithm for various values of α using
NVIDIA Tesla C1060 and k20c. We have implemented the program using CUDA and the algorithm
is based on the prefix scan algorithm in the Thrust library. The operator is integer addition and the
size of the input is 227 = 134, 217, 728. The shared memory size per multiprocessor is 16 Kbyte in the
C1060, and it is 48Kbyte in the k20c. The maximum number of warps assigned to a multiprocessor
is limited to 16 in the C1060 and it is limited to 64 in the k20c.

Figure 12 shows the actual running time for various values of α. The horizontal axis represents
the value of α, and the vertical axis represents the bandwidth, which is a throughput speed. We
compute the bandwidth as n×2× sizeof (int)/t where t is running time of the algorithm. This value
is limited by the bandwidth of the architectures. The bandwidth of the C1060 is 102 GB/s, and the
bandwidth of the k20c is 208 GB/s.

The multiplicity has the maximum value when α < 6 in the k20c. In this range, the bandwidth
decreased with decreasing α. It is considered due to the large time complexity. When α is equal to
or larger than 6, the value is affected by two competing factors, time complexity and the multiplicity.
The largest bandwidth was attained at α = 18. When α > 18, it appears that the small multiplicity
strongly affects the value. The line of the C1060 shows the same tendency. The multiplicity has the
maximum value at α < 8. We can conclude that the AGPU model can explain the behavior of the
algorithm, which is affected by the effect of multithreading and the time complexity.

7 Comparison Sorting Algorithms

We design an effective comparison-based sorting algorithm on the AGPU model. Since sorting is
one of the most fundamental operations used for many applications, it is useful to speed it up. A
lot of GPU-based sorting algorithms have been proposed [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].
We start with analyzing the complexities of GPU-Warpsort [25] on the AGPU model. The I/O
complexity of it, which will be discussed later, is not optimal. We therefore propose a new algorithm
with the optimal I/O complexity. Table 3 shows the I/O and time complexities of these algorithms.

48

International Journal of Networking and Computing

0	

5	

10	

15	

20	

25	

30	

35	

40	

0	 5	 10	 15	 20	 25	 30	

Ba
nd

w
id
th
	 [G

B/
s]
	

Number	 of	 rows	

k20c	
C1060	

Figure 12: Bandwidth of the prefix scan algorithm with varying number of row in the matrix

Table 3: Complexities of comparison-based sorting algorithms on the AGPU model. Here n is the
number of elements to be sorted, p is the number of total cores, b is the number of cores in a
multiprocessor, M is the size of the shared memory in a multiprocessor. We assume n = Ω(b2).

Algorithms I/O complexity Time complexity
(Lower bound) Ω(nb logM

b

n
b) Ω(np log n)

Bitonic sort [29] O(nb log
2 n

M) O(np log2 n)

GPU-Warpsort [25] O(nb log
n
b) O(np log n

b log b)

Our algorithm O(nb logM
b

n
b) O(np log n

b log b)

7.1 Analyses of Known Parallel Sorting Algorithms

7.1.1 Bitonic Sort

Bitonic sort [29] is a parallel sorting algorithm based on a sorting network, and it can sort n numbers
using an O(log2 n) level network.

Figure 13 shows an example of bitonic sort networks. The bitonic sort network for n = 2d

elements consists of d = log n phases, and phase i (0 ≤ i < d) consists of i + 1 stages. Phase i is
given 2d−i sorted sequences of length 2i each, and outputs 2d−i−1 sorted sequences of length 2i+1

each. Parallel sorting algorithms based on sorting networks are suitable for implementations using
GPUs because of absence of conditional branches.

On the p processor PRAM model, the running time of a bitonic sort algorithm for n = 2d

Input	 Output	

0 1 2

Stage
Phase

0 0 1 1 2 0

Comparator
Small

Large

Figure 13: The bitonic sort network for 8 elements

49

A Novel Computational Model for GPUs with Applications to Efficient Algorithms

elements is O(np log2 n). In this section, we analyze the I/O and time complexities of this algorithm

when it is executed on the AGPU(p, b,M) model.
First we analyze the I/O complexity. The output of phase i (0 ≤ i < d) is 2d−i−1 sorted sequences

of length 2i+1 each. Because each multiprocessor can store M values, computations in phases 0 to
logM − 1 are done without communication between multiprocessors. Therefore the I/O complexity
in the phases is O(nb) in total. With respect to phases logM to log n, the algorithm does not require
any I/O in stages log n− logM + 1 to log n. Though it is necessary to read and write all elements
in stages 0 to log n − logM , those I/Os are done to consecutive addresses and all global memory
accesses are done in units of b elements. From these analyses, we obtain that the I/O complexity of
the bitonic sort is O(nb (log n− logM)2).

It is easy to show that the time complexity of the bitonic sort on the AGPU(p, b,M) model is
equal to that in PRAM model, which is O(np log2 n). We therefore obtain the following.

Theorem 7.1 The bitonic sort algorithm for n elements on the AGPU(p, b,M) model has I/O
complexity O

(
n
b log

2 n
M

)
and time complexity O(np log2 n).

7.1.2 GPU-Warpsort

The bitonic sort for n elements consists of O(log2 n) stages. It is therefore inefficient if n is large.
GPU-Warpsort [25] is a sort algorithm that combines the bitonic sort and the merge sort to improve
the inefficiency of the bitonic sort.

Consider merging two sorted sequences A,B, each of which is of length n/2, using b cores.
The GPU-Warpsort first reads the first b elements of both sequences in the global memory into a
shared memory. Let amax and bmax denote the maximum values read from the sequences A and B,
respectively. The GPU-Warpsort sorts those 2b elements using the bitonic sort. However, because
those elements are from two sorted sequences, it is enough to perform the last phase of the bitonic
sort. After sorting the 2b elements, the algorithm outputs the smallest b elements, and reads b new
elements from either sequence A or B. If amax ≤ bmax, the b new elements are taken from sequence
A, and otherwise from sequence B. The algorithm repeats this until the sequences A and B become
empty. All global memory accesses in this algorithm are done efficiently because these are done in
units of b elements. Therefore we obtain the following.

Lemma 7.2 On the AGPU(p, b) model, merging of two sorted sequences of length n/2 each is done
with I/O complexity 2n/b + O(1) and time complexity O(nb log b). This algorithm uses one multi-
processor and O(b) words of shared memory.

The GPU-Warpsort consists of four steps.

1. Given an input sequence of length n, compute n/b sorted sequences of length b each.

2. Merge two sorted sequences into one, and repeat until the number of sorted sequences is less
than the number of multiprocessors.

3. Pick up some elements from the sorted sequences, and divide the sequences using the elements
as separators.

4. Merge the sequences divided in the step 3.

The step 2 is inefficient if the number of sorted sequences becomes smaller than the number of
multiprocessors. Therefore the GPU-Warpsort changes the algorithm to utilize them.

The I/O and time complexities of the GPU-Warpsort are analyzed as follows. Step 1 has I/O
complexity 2n/b + O(1) and time complexity O(np log2 b). Step 2 has I/O complexity O(nb log

n
b)

and time complexity O(np log b log n
b). We can implement the algorithm such that the time and I/O

complexities of Steps 3 and 4 are dominated by those of Steps 1 and 2. Supposing n = Ω(b2), the
time complexity of Steps 1 is dominated by that of Steps 2. Thus, we obtain the following theorem.

Theorem 7.3 Supposing n = Ω(b2), GPU-Warpsort for n elements runs on the AGPU(p, b,M)
model with I/O complexity O(nb log

n
b) and time complexity O(np log n

b log b).

50

International Journal of Networking and Computing

Because a trivial lower bound of the time complexity for comparison-based sorting is Ω(np log n),

the time complexity of the GPU-Warpsort is at most O(log b) times of the optimal algorithm.
However, the I/O complexity is O(log M

b) times larger than the optimal, as shown in Section 7.2.

7.2 A Sorting Lower Bound in AGPU Model

We discuss the lower bound on the time and I/O complexities for comparison-based sorting algo-
rithms. The lower bound on the time complexity for sequential algorithms is Ω (n log n). Since a
device in AGPU(p, b,M) has p cores, the lower bound on time complexity for AGPU(p, b,M) is

Ω
(

n
p log n

)
.

With respect to the I/O complexity, the lower bound for I/O(b,M) [13] is known as follows.

Theorem 7.4 (Aggarwal, Vitter [13]) A lower bound of I/O complexities of comparison-based
sorting algorithms for n elements on the I/O(b,M) model is Ω(nb logM

b

n
b).

Since Theorem 4.5 holds, the lower bound on the I/O complexity for the volatile model AGPU(p, b,M)
is as follows.

Theorem 7.5 Any comparison-based algorithm for sorting n elements on the volatile AGPU(p, b,M)
model requires Ω(nb logM

b

n
b) I/Os.

Even though Theorem 4.5 does not hold on non-volatile model AGPU′, we can obtain the same
lower bound as follows.

Theorem 7.6 Any comparison-based algorithm for sorting n elements on the non-volatile
AGPU′(p, b,M) model requires Ω(nb logM

b

n
b) I/Os.

Proof. A trivial lower bound of I/O complexities for sorting n elements is n/b, which is necessary to
read all the elements from the global memory. Therefore the I/O complexity of any sorting algorithm
does not change asymptotically if a preprocess using O(n/b) I/Os is added. Therefore we preprocess
the input to a sorting algorithm so that the n elements are divided into blocks of consecutive b
elements, and elements in each block are sorted using the shared memory of a multiprocessor. This
preprocess is done with O(n/b) I/Os. From now on, we assume that the input to a sorting algorithm
is n/b sorted sequences of length b each. The number of possible inputs is n!

(b!)n/b . A global memory

access will transfer b elements into the shared memory of a multiprocessor. Because a multiprocessor
can store M elements, a multiprocessor can compare the b elements that are newly copied into it
with at most M − b elements that already exist in it. After some computation in a multiprocessor,
it will output data in the shared memory to the global memory. There are at most

(
M−b

b

)
< M b/b!

different results of comparison after 2 accesses (read and write) to the global memory. Therefore
the number of necessary global memory accesses to process n!

(b!)n/b different inputs is

logMb/b!

n!

(b!)n/b
= Ω(

n

b
logM/b

n

b
).

⊓⊔

7.3 I/O-optimal Sorting Algorithms on AGPU Model

In this section we propose a comparison-based sorting algorithm on the AGPU(p, b,M) model whose
I/O complexity is asymptotically optimal. Aggarwal’s algorithm on the I/O model [13] is I/O-
optimal but does not take GPU architectures into account. We improve the I/O complexity of the
GPU-Warpsort using the technique of Aggarwal’s algorithm. We extend the GPU-Warpsort (see
Lemma 7.2) so that a multiprocessor with b cores merges more than two sorted sequences at a time.
The GPU-Warpsort merges two sorted sequences at a time, and all elements are read from and
written to global memory every time. By merging d > 2 sorted sequences at a time, we can reduce
the number of global memory accesses. Figure 14 shows an example of merging eight sequences at a
time. The GPU-Warpsort accesses each element in the global memory six times, while our algorithm
accesses each element twice.

51

A Novel Computational Model for GPUs with Applications to Efficient Algorithms

GPU-Warpsort	

Read	

Read	

Read	

Write	

Write	

Write	

Read	

Write	

Ours (d=8)	

Figure 14: Global memory accesses for merging eight sorted sequences. Let the number of sequences
merged by our algorithms at a time be eight. In the GPU-Warpsort, the number of the global
memory accesses for each element is six, whereas the number is two in our algorithm.

Column-wise merge	

Row-wise merge	

S1,1	

S1,u	

S1,2	

S2,1	

S2,u	

S2,2	

Sl,1	

Sl,u	

Sl,2	
・・・	

・
・
・
	

・
・
・
	

・
・
・
	
・・・	

・・・	

Figure 15: Column-wise and Row-wise merge

7.3.1 Overview of the Algorithm

Our algorithm consists of the following four parts; 1. Initialize; 2. Column-wise merge; 3. Subarray
partition; 4. Row-wise merge.

In Part 1, our algorithm partitions the input sequence into pieces of b elements. We call each
piece a basic block. Then we sort each basic block by using the Bitonic sort. We use all the
k = p/b multiprocessors, each of which performs the bitonic sort for b elements. The I/O and the
time complexities are 2n

b + O(1) and O(n
bk log2 b) = O(np log2 b), respectively. We call the output

sequences subarrays.

In Part 2, we repeatedly merge subarrays until the number of those is equal to or smaller than
a threshold ℓ, which will be determined later.

In Part 3, we pick up some separators from each subarrays at regular intervals and merge all
separators. We partition subarrays based on the separators.

Finally in Part 4, we merge partitioned subarrays, which store values between two separators,
for each pair of consecutive separators. This prevents any multiprocessor being idle.

7.3.2 Column-wise Merge

In this part, we repeatedly merge d subarrays into one subarray using small amount of shared
memory in a multiprocessor. The d input subarrays and the output subarray are stored in the
global memory. First we explain the data structure used to merge the subarrays. It is a kind of heap
structures; it is a rooted binary tree and each node has at most two child nodes. For simplicity,
we assume every internal node has always two child nodes. In other cases, we can easily modify
our algorithm. This structure has d leaf nodes. Due to the above assumption, d is power-of-two.
Figure 16 shows an example for the case d = 4.

52

International Journal of Networking and Computing

amax	

Output subarray	

bmax	 cmax	 dmax	

xmax	 ymax	

zmax	

2b 2b

2b

xmax	 ymax	

Input subarrays	
amax	

bmax	

cmax	

dmax	

zmax	

Figure 16: A heap used in merge process

Each leaf node stores a pointer to an input subarray, while each internal node has a buffer in
a shared memory that can store 2b elements. Because the number of internal nodes is d − 1, the
amount of shared memory used is 2b(d− 1) words. Each buffer is sorted whenever new elements are
inserted. Input elements are read into a leaf, and then transferred to its parent node. Each internal
node moves elements inside its buffer to the parent node according to a rule that will be described
later. The elements in the root node will be output to the global memory. Each internal node and
leaf has a key, which is the last value moved to its parent node (in the case of the root node, last
output value). Because elements in buffers and subarrays are sorted, the last moved value is the
maximum value moved so far.

Next we explain the “Heapify” operation. Each node of the heap has an index. The root node
has index 1. The left and the right children of node i has index 2i and 2i + 1, respectively. The
function Heapify(i) is the process to move b elements to the buffer in node i from the buffers in the
descendent nodes. The function is only invoked when the number of elements in the buffer of node
i is at most b. For simplicity, we assume the number of elements in the buffer is exactly b. If the
number of elements in a input subarray is not a multiple of b, the number of elements in the buffer
can be smaller than b. In this case, we can easily modify our algorithm. First, b smallest elements
are moved to the buffer from the child node that has smaller key, and the key of the child is updated
to the value of the last element of b. Then the buffer of node i consists of two sorted sequences;
one is already stored in node i before the move, and the other is newly moved to node i. We merge
these two sequences into one using the Bitonic sort. Then we repeat carrying out the same process
to the child node with the smaller key until we reach a leaf.

We can merge d sorted sequences into one using the Heapify operation. First, we allocate the
shared memory to this structure and repeat conducting the Heapify operations on nodes in decreasing
order of node indices. At the time we set the key of each node as −∞. After that, we repeatedly
output the smallest b elements in the buffer of the root node, and conduct the Heapify operation to
the root node until all elements have been output.

In order to prove that the heap outputs a correct sorted sequence, we prove that the buffer of
each node always stores the smallest b elements in the subtree that consists of its own node and the
descendent nodes. We define the rank of an element as the number of elements smaller than or equal
to the element in the subtree. For instance, the rank of the smallest element in the subtree is one.
Now we prove the ranks of any elements in the descendent nodes are larger than b after the Heapify
operation. First we consider an internal node whose children are leaves. Let αmax and βmax be the
keys of the left and the right child of a node i for which the Heapify operation is done. We assume
that αmax < βmax; the other case is done analogously. When we conduct the Heapify operation to
node i, the buffer of node i has b elements, and the smallest b elements in the left child are newly
moved to the buffer of node i. Therefore, any elements in the left child buffer have ranks larger than

53

A Novel Computational Model for GPUs with Applications to Efficient Algorithms

b after the operation. Before conducting the Heapify operation, the value of the last element (that
is, the largest value) in the buffer is βmax. Therefore, the rank of this element is equal to or larger
than b. Therefore, any elements in the right child buffer have ranks larger than b. We can prove it
at any nodes recursively.

Note that we can reduce the size of buffers in the nodes from 2b to b as follows. The above
algorithm repeatedly carries out the Heapify operation from the root to a leaf. However, we can
improve this by recursively carrying out the Heapify of its child node before the Heapify of its own
node, which makes it unnecessary to keep more than b elements in each buffer.

To sum it up, we obtain the following.

Lemma 7.7 Merging d sorted sequences of length n
d each is done with I/O complexity 2n

b + O(d)
and time complexity O

((
n
b log d+ d

)
log b

)
on the AGPU(b, b,O(db)) model.

Accordingly, if a multiprocessor has M word shared memory, our algorithm can merge up to
d = O(Mb) sorted sequences. We concurrently carry out this process to all subarrays using k
multiprocessor. We call this process a column-wise merge step. In part 2, we repeat it s0 times,
where s0 is a parameter determined later.

7.3.3 Subarray Partition

In Part 3, we divide each subarray into u subarrays. Let ℓ be the number of subarrays remaining
after Part 2. First, we pick up ρ elements from each subarray at regular intervals, that is, we pick
up one element per n/ρℓ elements. We obtain ℓ lists of ρ sorted elements. We call them separators.
Then, we merge the lists into one using the algorithm of Lemma 7.7. Let p1 ≤ p2 ≤ . . . ≤ pρℓ denote
the resulting separators, and let p0 = −∞ and pρℓ+1 = ∞. After that, we divide each subarray
into u = ρℓ + 1 subarrays using the separators. Supposing subarray S is divided into subarrays
S1, S2, . . . , Su using separators p0, p1, p2, . . . , pu, any elements in the resulting subarray Sj are equal
to or larger than the value of separator pj−1 and smaller than the value of separator pj for any
j (1 ≤ j ≤ u).

Let group Gj (1 ≤ j ≤ u) be a set of subarrays between pj−1 and pj . Each group has ℓ subarrays.
The size of a group represents the number of the elements in the group. Let |Gj | denote the size.

We can use the algorithm of Lemma 7.2 to divide subarrays. After merging a subarray and
separators, we calculate the position of the separators in the resulting sequence.

7.3.4 Row-wise Merge

We assign the groups to k multiprocessors using the following algorithm. Each multiprocessor is
serially assigned its groups. The first multiprocessor is repeatedly assigned a group while the total
size of assigned groups is smaller than 2n/k. When the total size of the assigned groups is equal to or
larger than 2n/k or there are no groups to assign, we finish assigning groups to the multiprocessor.
Then, the next multiprocessor is repeatedly assigned a group in the same manner. We repeat this
to all multiprocessors.

Lemma 7.8 If u > ℓk+1, we can assign all groups to the k multiprocessors such that no multipro-
cessors are assigned more than 2n/k elements.

Proof. Using the above algorithm, we can ensure that the total size of assigned groups is smaller
than 2n/k for any multiprocessors. We prove we can assign all groups to the multiprocessors using
the above algorithm. Assume for contradiction that there exist groups that are not assigned to any
multiprocessors at the end of the algorithm.

Since we pick up u−1
ℓ separators from each subarray of n/ℓ elements, the size of a divided subarray

is at most n
ℓ ·

1

(u−1
ℓ +1)

< n
u−1 . Since each group consists of ℓ subarrays, the size of a group is at most

nℓ
u−1 < n

k . For any multiprocessors, the total size of assigned groups is larger than n/k because we
can assign one more group to a multiprocessor whenever the total size of assigned groups is equal
to or smaller than n/k and there are any groups not assigned. Therefore, the total size of assigned
groups to the multiprocessors is at least n

k · k = n. This is a contradiction. ⊓⊔

54

International Journal of Networking and Computing

Let Si,j (1 ≤ i ≤ ℓ, 1 ≤ j ≤ u) denote the subarray that is a part of Si, and now in Gj .
A multiprocessor repeatedly merges d subarrays in a group using the algorithm of Lemma 7.7

and get ⌈ℓ/d⌉ subarrays. We call this process a row-wise merge step. A multiprocessor repeatedly
executes the step until all subarrays in a group are merged.

Suppose a multiprocessor merges d subarrays in Gj that consists of subarrays St
1,j , S

t
2,j , . . . , S

t
v,j

at step t (1 ≤ t) and gets a set of subarrays St+1
1,j , St+1

2,j , . . . , St+1
⌈v/d⌉,j , where v = ℓ/dt−1. Let wt+1

ij

be the size of St+1
i,j , that is, wt+1

ij =
∣∣St+1

ij

∣∣. In order to get St+1
i,j , a multiprocessor executes Heapify⌈∣∣St+1

i,j

∣∣ /b⌉ times. Therefore, the time complexity is O
(⌈∣∣St+1

i,j

∣∣ /b⌉ log b log d). Supposing Cx is a
set of indices of groups that are assigned to multiprocessor x, the total time complexity at step t is

max
x

∑
j∈Cx

⌈v/d⌉∑
i=1

⌈∣∣St+1
i,j

∣∣ /b⌉ log b log d
 .

Due to Lemma 7.8, for any multiprocessor x,
∑

j∈Cx

∑⌈v/d⌉
i=1

∣∣St+1
i,j

∣∣ < 2n/k. Therefore, the time
complexity at step t is

O
(
n

p
log b log d

(
1 +

u

ds0+1dt−1

))
.

Let t0 be the number of the steps in this part. Since t0 = O (logd ℓ), the total time complexity
in this part is

O

(
t0∑
t=1

n

p
log b log d

(
1 +

u

ds0+1dt−1

))
= O

(
n

p
log b log d

(
t0 +

u

ds0+1

))
.

The I/O complexity to get St+1
i,j at step t is O

(⌈∣∣St+1
i,j

∣∣ /b⌉) because a multiprocessor access
global memory two times at each Heapify. Therefore, the I/O complexity at step t is

O

∑
x

∑
S′′
ij
∈Cx

⌈∣∣S′′
i,j

∣∣ /b⌉
 = O

(n
b

(
1 +

u

ds0+1dt−1

))
.

Therefore, the total I/O complexity in this part is

O

(
t0∑
t=1

n

b

(
1 +

u

ds0+1dt−1

))
= O

(n
b

(
t0 +

n

ds0+1

))
.

7.3.5 The Complexities and the Amount of Memory Used for the Entire Process

We calculate the time and I/O complexities by summing up those of all parts. It holds ℓ = O
(

n
bds0+1

)
,

and t0 = logd
n
b − s0 where s0 is the number of steps in the column-wise merging part. Supposing

n = Ω
(
b2
)
, the time complexity for the entire process is O

(
n
p log b log n

b + log b log d
(
n
bℓ +

uℓ
k + u

b

))
,

and the I/O complexity for the entire process isO
(
n
b logd

n
b + uℓ

)
. The amount of the shared memory

used is O(bd) words, and the amount of the global memory used is 2n+O(uℓ) words.
We determine the values of ℓ and u as ℓ = k, and u = n

p so that we can eliminate the second

term of the time and I/O complexities.
Furthermore, the value of d is limited by the amount of shared memory M . We select the

maximum value of d. Since the algorithm uses O(db) words of shared memory, we determine the
value of d as d = O (M/b).

Taken together, we obtain the following theorem.

Theorem 7.9 Supposing n = Ω(b2), the time complexity of our algorithm is

O
(
n

p
log b log

n

b

)
,

55

A Novel Computational Model for GPUs with Applications to Efficient Algorithms

0	 	

100	 	

200	 	

300	 	

400	 	

500	 	

600	 	

700	 	

800	 	

900	 	

2	 4	 8	 16	 32	 64	 128	 256	
N
um

be
r	 o

f	 G
lo
ba

l	 M
em

or
y	
Ac

ce
ss
es
	 (m

ill
io
n)
	

d	

Figure 17: The number of the global memory accesses for each value of d

and the I/O complexity of our algorithm is

O
(n
b
logM

b

n

b

)
.

This algorithm has the optimal I/O complexity. The time complexity is at most O (log b) times
larger than the lower bound.

7.3.6 Effect of Multiplicity

Supposing d is variable, the I/O complexity of the algorithm is O
(
n
b logd

n
b

)
, and the multiplicity is

O(M/db). When d has the largest value O (M/b), the I/O complexity is equal to the lower bound

O
(

n
b logM

b

n
b

)
, while the multiplicity has the smallest value 1. It means the efficiency of the global

memory accesses becomes worst. On the other hand, when d is equal to two, the I/O complexity is
O
(
n
b log

n
b

)
, while the multiplicity is O(M/b), which is considered to be optimal. Thus, there is a

tradeoff between the I/O complexity and the multiplicity.

7.4 Evaluation

7.4.1 Parameter Tuning

We checked that real GPUs have the same tradeoff as the AGPU model and determined the value of
d. We used NVIDIA Tesla k20c for all experiments. The input was 228 32 bits integers. Figure 17
shows the number of global memory accesses for each value of d. These values were measured with
nvprof, which is provided by NVIDIA. These values do not include the number of cache accesses.
The minimum and maximum values of d are 2 and 256 respectively in this environment. We can see
the number of the global memory accesses decreases with increasing d.

Figure 18 shows the sorting rate (the number of elements processed per second) for each value
of d. The sorting rate is maximum at d = 4. When d > 4, although the number of global memory
accesses decreases with increasing d, multiplicity also decreases with increasing d, which causes
inefficiency of global memory accesses. On the other hand, when d ≤ 4, the value of multiplicity
does not depend on the value of d because the value of multiplicity is limited by device specifications
and it has maximum value 64 when d ≤ 4. Therefore, the sorting rate only depends on the I/O
complexity and increases with increasing d. Note that the time complexity is independent of the
value of d. We determined the value of d as d = 4.

56

International Journal of Networking and Computing

0	

20	

40	

60	

80	

100	

120	

140	

160	

2	 4	 8	 16	 32	 64	 128	 256	
So
r$
ng
	 ra

te
	 (m

ill
io
n/
se
c)
	

d	

Figure 18: Sorting rate for each value of d

0	

20	

40	

60	

80	

100	

120	

140	

160	

1048576	 2097152	 4194304	 8388608	 16777216	 33554432	 67108864	 134217728	 268435456	

So
r$
ng
	 R
at
e	
(m

ill
io
n/
se
c)
	

Thrust	

Ours	

220	

Number	 of	 elements	
222	 224	 226	 227	 228	225	223	221	

Figure 19: Sorting rate for our algorithm and Thrust comparison-based sorting

7.4.2 Comparison with Thrust

We compared our algorithm with Thrust comparison-based sorting. Figure 19 shows the sorting
rate. Our algorithm was 1.9 times faster than Thrust when n = 228.

Figure 20 shows the number of global memory accesses. Thrust comparison-based sorting algo-
rithm is similar to GPU-Warpsort and has the same I/O complexity. When n = 228, the number
for our algorithm was equal to 27% of that for Thrust.

8 Concluding Remarks

We have proposed AGPU model, a computational model for analyzing complexities of GPU-based al-
gorithms. We can design algorithms to take advantage of GPU architectures and analyze asymptotic
computational complexities of the algorithms using the AGPU model. As an example of analyses
using the AGPU model, we analyzed several basic algorithms including reduction, prefix scan, and
comparison sorting. The AGPU model can explain the behavior of the algorithms. In particular,
it brings out the bottlenecks of the algorithms. It is useful to improve the algorithms. In fact, we
have developed some novel algorithms by removing the bottlenecks. Our algorithms are faster than
existing algorithms not only in theory, but also in practice.

57

A Novel Computational Model for GPUs with Applications to Efficient Algorithms

1	 	

10	 	

100	 	

1,000	 	

10,000	 	

1048576	 2097152	 4194304	 8388608	 16777216	 33554432	 67108864	 134217728	 268435456	

N
um

be
r	 o

f	 G
lo
ba

l	 M
em

or
y	
Ac

ce
ss
es
	 (m

ill
io
n)
	

Thrust	

Ours	

220	

Number	 of	 elements	
222	 224	 226	 227	 228	225	223	221	

Figure 20: The number of global memory accesses for our algorithm and Thrust

8.1 Guideline for Writing Efficient Algorithms Using AGPU Model

We provide a guideline to design efficient algorithms using the AGPU model. First of all, the I/O
complexity (the number of global memory accesses) should be reduced as much as possible because
the execution time of a global memory access instruction is much larger than others. As shown in
Section 4.3, lower bounds on the I/O model also give lower bounds on the I/O complexity in the
AGPU model. Therefore efficient I/O model based algorithms will be bases of efficient AGPU based
algorithms. Next, we should make the multiplicity as large as possible by reducing the amount of
shared memory used. It makes multithreading effective. To design efficient algorithms executed on
a multiprocessor, known PRAM algorithms can be used (see Section 4.1).

8.2 Future Work

In the future, we would like to analyze and develop more basic algorithms using the AGPU model.
Firstly, we would like to improve our sorting algorithm. Our current algorithm has a tradeoff between
the I/O complexity and the multiplicity. We would like to remove the tradeoff. Moreover, we wold
like to tackle GPU-based non-comparison sorting. Secondly, we would like to develop new algorithms
for graphs. In graph algorithms, it is difficult to avoid bank conflicts and to make global accesses
coalesce. We would like to analyze graph algorithms and find the bottlenecks. In particular, we
would like to develop algorithms for trees. Thirdly, we would like to study algorithms that utilize
multiple GPU devices. We will improve the AGPU model in order to analyze this kind of algorithms,
and develop the new algorithms.

Acknowledgment

Work supported in part by KAKENHI 23240002.

References

[1] NVIDIA Corporation. NVIDIA CUDA C programming guide version 4.2, 2012.

[2] Steven Fortune and James Wyllie. Parallelism in random access machines. In Proceedings of
the tenth annual ACM symposium on Theory of computing, STOC ’78, pages 114–118, New
York, NY, USA, 1978. ACM.

58

International Journal of Networking and Computing

[3] Richard M. Karp and Vijaya Ramachandran. Parallel algorithms for shared-memory machines.
In Jan van Leeuwen, editor, Handbook of theoretical computer science (vol. A), pages 869–941.
MIT Press, Cambridge, MA, USA, 1990.

[4] J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, Mass., 1992.

[5] K. Kothapalli, R. Mukherjee, M.S. Rehman, S. Patidar, P.J. Narayanan, and K. Srinathan. A
performance prediction model for the cuda gpgpu platform. In High Performance Computing
(HiPC), 2009 International Conference on, pages 463 –472, dec. 2009.

[6] Qiming Hou, Kun Zhou, and Baining Guo. Bsgp: bulk-synchronous gpu programming. ACM
Trans. Graph., 27(3):19:1–19:12, August 2008.

[7] Lin Ma, Kunal Agrawal, and Roger D. Chamberlain. A memory access model for highly-
threaded many-core architectures. Future Generation Computer Systems, 30(0):202 – 215, 2014.
Special Issue on Extreme Scale Parallel Architectures and Systems, Cryptography in Cloud
Computing and Recent Advances in Parallel and Distributed Systems, ICPADS 2012 Selected
Papers.

[8] K. Nakano. The hierarchical memory machine model for gpus. In Parallel and Distributed Pro-
cessing Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE 27th International, pages
591–600, 2013.

[9] Sunpyo Hong and Hyesoon Kim. An analytical model for a gpu architecture with memory-
level and thread-level parallelism awareness. In Proceedings of the 36th annual international
symposium on Computer architecture, ISCA ’09, pages 152–163, New York, NY, USA, 2009.
ACM.

[10] Nodari Sitchinava and Volker Weichert. Provably efficient gpu algorithms. CoRR,
abs/1306.5076, 2013.

[11] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. Nvidia tesla: A unified graphics and
computing architecture. Micro, IEEE, 28(2):39 –55, march-april 2008.

[12] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–111,
August 1990.

[13] Alok Aggarwal and S. Vitter, Jeffrey. The input/output complexity of sorting and related
problems. Commun. ACM, 31(9):1116–1127, September 1988.

[14] Mark Harris. Optimizing parallel reduction in cuda, 2008.

[15] Yuri Dotsenko, Naga K. Govindaraju, Peter-Pike Sloan, Charles Boyd, and John Manferdelli.
Fast scan algorithms on graphics processors. In Proceedings of the 22nd annual international
conference on Supercomputing, ICS ’08, pages 205–213, New York, NY, USA, 2008. ACM.

[16] Jared Hoberock and Nathan Bell. Thrust: A parallel template library, 2010. Version 1.3.0.

[17] Mark Harris, Shubhabrata Sengupta, and John D. Owens. Parallel prefix sum (scan) with cuda.
In Hubert Nguyen, editor, GPU Gems 3. Addison Wesley, August 2007.

[18] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. Gputerasort: high perfor-
mance graphics co-processor sorting for large database management. In Proceedings of the 2006
ACM SIGMOD international conference on Management of data, SIGMOD ’06, pages 325–336,
New York, NY, USA, 2006. ACM.

[19] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee, Dae-
hyun Kim, and Pradeep Dubey. Fast sort on cpus and gpus: a case for bandwidth oblivious
simd sort. In Proceedings of the 2010 ACM SIGMOD International Conference on Management
of data, SIGMOD ’10, pages 351–362, New York, NY, USA, 2010. ACM.

59

A Novel Computational Model for GPUs with Applications to Efficient Algorithms

[20] Vasileios Kolonias, Artemios G. Voyiatzis, George Goulas, and Efthymios Housos. Design and
implementation of an efficient integer count sort in cuda gpus. Concurr. Comput. : Pract.
Exper., 23(18):2365–2381, December 2011.

[21] Elahe Khorasani, Brent D. Paulovicks, Vadim Sheinin, and Hangu Yeo. Parallel implementation
of external sort and join operations on a multi-core network-optimized system on a chip. In
Proceedings of the 11th international conference on Algorithms and architectures for parallel
processing - Volume Part I, ICA3PP’11, pages 318–325, Berlin, Heidelberg, 2011. Springer-
Verlag.

[22] Duane G. Merrill and Andrew S. Grimshaw. Revisiting sorting for gpgpu stream architectures.
In Proceedings of the 19th international conference on Parallel architectures and compilation
techniques, PACT ’10, pages 545–546, New York, NY, USA, 2010. ACM.

[23] Nadathur Satish, Mark Harris, and Michael Garland. Designing efficient sorting algorithms
for manycore gpus. In Proceedings of the 2009 IEEE International Symposium on Paral-
lel&Distributed Processing, IPDPS ’09, pages 1–10, Washington, DC, USA, 2009. IEEE Com-
puter Society.

[24] Hagen Peters, Ole Schulz-Hildebrandt, and Norbert Luttenberger. Fast in-place sorting with
cuda based on bitonic sort. In Proceedings of the 8th international conference on Parallel
processing and applied mathematics: Part I, PPAM’09, pages 403–410, Berlin, Heidelberg,
2010. Springer-Verlag.

[25] Xiaochun Ye, Dongrui Fan, Wei Lin, Nan Yuan, and P. Ienne. High performance comparison-
based sorting algorithm on many-core gpus. In Parallel Distributed Processing (IPDPS), 2010
IEEE International Symposium on, pages 1–10, 2010.

[26] G. Capannini, F. Silvestri, R. Baraglia, and F.M. Nardini. Sorting using bitonic network with
cuda. In Proceedings of the 7th Workshop on LSDS-IR, 2009.

[27] Alexander Greßand Gabriel Zachmann. Gpu-abisort: optimal parallel sorting on stream ar-
chitectures. In Proceedings of the 20th international conference on Parallel and distributed
processing, IPDPS’06, pages 45–45, Washington, DC, USA, 2006. IEEE Computer Society.

[28] Hagen Peters, Ole Schulz-Hildebrandt, and Norbert Luttenberger. A novel sorting algorithm
for many-core architectures based on adaptive bitonic sort. In Proceedings of the 2012 IEEE
26th International Parallel and Distributed Processing Symposium, IPDPS ’12, pages 227–237,
Washington, DC, USA, 2012. IEEE Computer Society.

[29] K. E. Batcher. Sorting networks and their applications. In Proceedings of the April 30–May
2, 1968, spring joint computer conference, AFIPS ’68 (Spring), pages 307–314, New York, NY,
USA, 1968. ACM.

60

