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Abstract

In wireless ad hoc networks, bridges and articulation nodes are critical elements that, in
case of failure, render the network disconnected. Owing to their relevance, a number of works
try to extend the life span of these elements. Nevertheless, in critical situations, such as the
unavailability of a critical link, ways to reestablish the communication, even if for short periods
of time, can be of importance in a number of urgent tasks. In this context, this work explores
the concept of Cooperative Communication (CC) to monitor critical nodes and links and recover
network connectivity in case of disruption. Unlike other works that perform exhaustive search to
locate suitable CC-links that require global topology information, the proposed scheme identifies
critical nodes and links based solely on local information. Compared to other prominent works,
the proposed solution was able to reduce the computing cost to create CC-links in ≈ 67 times
in the evaluated scenarios while persisting a lower message overhead.

Keywords: Ad Hoc Networks, Articulation, Bridge, Connectivity Recovery, Cooperative Com-
munication, Distributed Algorithms

1 Introduction

Ad hoc networks have been envisioned as an alternative solution to support urgent, critical and
temporary tasks such as search and rescue, law-enforcement and the prevention of natural disasters.
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Figure 1: Graph depicting two bridge nodes and a bridge.

Since nodes cooperate in relaying packets to each other, it is paramount to maintain connectivity in
such scenarios. As link and node failure are events that may occur during the course of operation,
ways to prevent network partitioning and node isolation are of interest. Let G = (V,E) be a planar,
undirected connected graph, where V is the set of nodes and E is the set of edges. An edge e ∈ E is
a critical link, also referred to as a bridge [1], if its removal make the graph disconnected. A bridge
is shared by at least an articulation node that can be defined in a similar way. A node v ∈ V is a
critical node, i.e., cut-vertex or articulation node, if its removal makes the graph disconnected. In
what follows, an articulation node that shares a bridge is referred to a bridge node. Figure 1 shows
a graph containing two bridge nodes.

Due to its importance in preserving network connectivity, a number of works have been devoted
to locate critical edges and nodes. A naive algorithm to detect articulation and bridge nodes on
a connected graph can, for each node, remove it and test if the resulting graph is still connected.
Many fast algorithms, like the one proposed by Hopcroft et al. [2] and Tarjan [3], uses a depth
first search to detect articulation nodes. Goyal et al. [4] proposed a centralized solution to locate
articulation points in ad hoc networks. However, as centralized solutions are usually costly due
to the need of gathering and maintaining topological information, localized solutions have been
devised. In [5] and [6], k-hop neighbouring information is used to reduce computational resources
to locate articulation nodes and bridges. A distributed algorithm to find articulation points was
proposed by Chaudhury[7], that requires O(|V |) messages and runs in O(|V |) time, being optimal in
communication complexity within a constant factor. In [8], Chaudhury presented a similar algorithm
with same complexity to localize bridges in a wireless network. In [9], Turau presented a distributed
algorithm for computing bridges, articulations, and 2-connected components of undirected graphs
in O(|E|) time using at most 4 · |E| messages of length O(log |V |).

As viable solutions to locate bridges and articulation nodes have been developed, the research
community focused on alternatives to extend their availability and ways to reestablish network
connectivity in case of failure [7, 6, 9]. In [10], the authors employed packet aggregation techniques
to reduce energy consumption of articulation nodes, thus extending their life span. The solution is
based on the fact that energy consumption of articulation nodes is usually higher than other nodes,
leading to premature node failure. Khelifa et al. [11] proposed the usage of dormant nodes that
could be activated in case of link or node failure. When necessary, the dormant nodes would be
activated to prevent network partitioning. In the same line, Goyal et al. [4] proposed the usage of
limited, coordinated mobility, to recover from link and node failures. In case of network disruption,
nodes would move in a coordinated way to reestablish network connectivity.

In an ad hoc network, it is not always possible to increase the number of nodes or even move
nodes to the desired location to improve network connectivity. This can be the case during disaster
and recovery situations where communication is vital and the time to plan, dispense or move nodes to
provide network coverage may not be possible. The use of cooperative communication, CC for short,
has been considered an attractive alternative to support the establishment of new links [12, 13]. CC
is a physical layer technique that allows a single antenna device to benefit from some advantages
of MIMO systems [14]. More precisely, when a source node transmits a packet using collaborative
communication, a set of helper nodes in the vicinity that overhear the signal, simultaneously relay
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independent copies of the same signal to the destination node. The destination node then combines
the received signals to obtain the original packet. Thus, contrary to network layer strategies, CC
technique allows nodes to improve signal quality and transmission range. Zhu et al. [15] consider
the problem of selecting power efficient paths when CC-links are used. Yu et al. [12, 13] employed
cooperative communication techniques to connect disjoint network components using cooperative
links. As the task of selecting an optimal topology employing CC was shown to be an NP-complete
problem [15], a heuristic, termed Greedy Helper Set Selection - GHSS, was proposed by Yu et al.
[12, 13]. Neves et al. [16] exploited cooperative communications to establish power efficient links and
routes to a sink node. The above schemes work under the assumption that the node’s location in each
component is known a priory. Neves et al. [16] assume the presence of a base station enhanced with
a powerful antenna capable of reaching all the nodes of interest. That is, the base station uses the
node’s location to compute the best CC-links. This information is then relayed to those nodes that
shall establish cooperative, directional or bidirectional links, thus improving network connectivity.
Once network connectivity is ensured, the nodes use multi-hop communication to answer to the
queries issued by the base station.

It should be clear that the above solutions only work in specific settings that can comply with the
necessary means to gather and dispense information. Furthermore, these solutions aim to connect
isolated network components before operation. This work explores a different path by proposing
a proactive and localized mechanism to reestablish network connectivity in case of a bridge node
failure. The proposed solution comprises of the following tasks: (i) identify articulation nodes
and bridges; (ii) compute power-efficient, cooperative, backup links (i.e., CC-links); (iii) observe
the activity of the bridge nodes; and (iv) prevent network partitioning by establishing CC-links in
case of bridge node failure. The proposed localized algorithms to identify articulation nodes and
bridges require at most 4 · (|V | − 1) messages. Once these elements are identified, power-efficient,
bi-directional CC-links, are computed using the GHSS Algorithm, proposed in [12]. This later task
makes O(∆(G)) calls to the GHSS routine, per bridge node, where ∆(G) is the maximum degree of G.
Thus, overall, the proposed solution uses O(|V |) messages and makes O(∆(G)) calls to the GHSS
routine. The computed CC-links are later used to reestablish communication in case of network
partitioning. The proposed solutions are evaluated under the following metrics: (M1) computing
cost to create CC-links; (M2) transmission power needed to establish the CC-links; and (M3)
the percentage of network connectivity recovery. Compared to the centralized algorithm proposed
in [12], the proposed solution allows to reduce the computing cost to create CC-links in ≈ 67 times
in the evaluated scenarios (M1), has a lower message overhead, while achieving similar results for
metrics (M2) and (M3).

The remaining paper is organised as follows. Section 2 presents an overview of the closely
related works while Section 3 describes the communication and network models, defines bridges and
articulation nodes and formalises the main problem addressed in this work. Section 4 presents the
proposed distributed solution to locate articulation points and bridges. This section also presents
the mechanism to compute and establish CC-links. Simulation results are presented in Section 5
and Section 6 concludes this work.

2 Related Works

This section presents an overview of the closely related works. This review considered the works
of two distinct groups: (i) those that attempt to mitigate the effects of link unavailability; and (ii)
those interested in improving network connectivity with the aid of cooperative communication. The
first group addresses the problem of recovering network connectivity and rely on proposals based
on coordinated mobility, activation of dormant nodes or deployment of additional nodes. These
works have gained attention once viable solutions to locate bridges and articulation nodes have been
developed. Goyal et al. [4] prosed a mechanism to avoid or delay network partitioning by identifying
critical links and reinforcing them. The network topology is adjusted by sending a special message
to request a helper node to move to the required location that would improve network connectivity.
In the same line, Khelifa et al. [11] proposed the use of dormant nodes that would be activated
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Figure 2: Solutions based on critical nodes to avoid network partitioning using coordinated mobility
and dormant nodes.

in case of articulation node failure. If no such node exists, one or more nodes in the vicinity of
an articulation point, having enough residual energy, would be moved to a coordinate that helps
improving connectivity and prevent network partitioning. Figure 2 shows an example of the use
of coordinated mobility and the activation of dormant nodes to prevent the formation of network
islands. The dotted arrow-line represents the location that the mobile node is supposed to move
while a dormant node waits its turn to be activated.

The use of extra, dormant, nodes that would be waiting to be activated may not be a feasible
option due to the cost and the difficulty to predict the location at which such nodes would be
demanded. Also, enhancing ad hoc nodes with mobility capabilities increases battery demands that
could preclude the benefits of moving them. Furthermore, ways to activate the dormant nodes need
to be carefully devised so that they can be awaken only when necessary as to preserve battery power
as much as possible.

Works based on cooperative communication have addressed the problem of improving network
connectivity, which is obtained by allowing the nodes to transpose the maximum communication
radius. This task is usually carried on after deployment and before operation.

In [15, 17], the authors proposed mechanisms to explore cooperative communication to reduce
energy consumption along the path to the desired destination. Another approach aim to improve
network connectivity while maintaining power consumption under acceptable levels [12, 16]. Yu et
al. [12] used CC as a topology control mechanism, whose purpose is to connect disjoint components
through cooperative links. The authors proposed a heuristic, called GHSS to select power efficient
helpers nodes to minimize the overall power consumption of the nodes sharing a CC-link. Starting
from an undirected, disconnected graph, the proposed algorithm, called CoopBridges, uses the
aforementioned heuristic to create cooperative edges to connect network components. In the resulting
topology, a minimum spanning tree algorithm is employed to prune costly links within network
components and among them. The task of selecting power efficient helper nodes runs in O(|V |2)
time. Neves et al. [16] developed a similar mechanism that interconnects components of an ad hoc
network, initially with no direct connectivity, to a sink node. The solution, called CoopSink, uses
a modified version of the heuristic proposed in [12]. CoopSink uses low cost cooperative edges to
interconnect the network such that the created paths would lead to the sink node. As in [12], the
task of selecting power efficient helper nodes takes O(|V |2) time [16]. It should be noted that the
above works use cooperative communication to increase network connectivity before operation, as
a means to improve network connectivity. As mentioned earlier, these solutions work under the
assumption that the cooperative links (CC-links) can be computed and established prior to the
network operation.

This work proposes an alternative to maintain network connectivity by identifying and monitoring
critical nodes. In case of node or link failure, cooperative links (CC-links) are used to reestablish
network connectivity whenever possible. To the best of our knowledge, this is the first work to explore
cooperative communication to maintaing network connectivity by identifying and monitoring critical
nodes. Simulation results show that the proposed solution attains comparable results of a centralized
and more costly alternatives while demanding far less network resources.
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3 Model and Problem Definition

This section begins with the description of the cooperative communication model used throughout
this paper. The network model and relevant definitions, including the problem being addressed in
this work, are presented in the subsequent sections.

3.1 Cooperative Communication (CC) Model

Consider a wireless ad hoc network where each node vi can adjust its transmission power Pi with
values within the interval [0, PMAX ]. When Pi = 0, the node’s radio is off and, when Pi = PMAX ,
the node’s radio operates with maximum power. In traditional cooperative communication models,
a sender node vi can directly communicate with a receiver node vj only if the transmission power
of vi satisfies Equation (1).

Pi(di,j)
−α ≥ τ (0 ≤ Pi ≤ PMAX), (1)

where: α is the path loss exponent, usually between 2 and 4, and represents the rate of signal fading
with increasing distance; di,j is the Euclidean distance between vi and vj ; and τ is the receiver
sensitivity to correctly receive a packet, i.e., the threshold of the received power so that node vj can
correctly decode the signal and obtain the original message.

Cooperative communication (CC) takes advantage of the physical layer design to combine partial
signals to obtain complete information [14]. This way, a complete communication between nodes
vi and vj can be achieved with CC if vi transmits its signal jointly with a set of helper nodes Hi,j

and the sum of its transmission power satisfies Equation (2). In CC, a helper node is a node that
cooperatively retransmit the signal along with the transmitting node.∑

vk∈vi∪Hi,j

Pk(dk,j)
−α ≥ τ (0 ≤ Pk ≤ PMAX). (2)

3.2 Network Model

Consider a wireless ad hoc network with n nodes that are capable to receive and combine partial
data received in agreement with the CC model. The network topology is modelled as a planar graph
G = (V,E), where V = {v1, v2, ..., vn} is a set of wireless nodes and E is the set of communication
links. An edge vivj ∈ E symbolises that node vi can transmit data to vj directly and/or using CC.
N(vi) is the direct neighbour set of vi within its maximum transmission range RMAX . For every
vk ∈ N(vi), there is Pi ≤ PMAX such that Pi(di,k)−α ≥ τ , following Equation (1). In other words,
vi can directly communicate with its neighbours in N(vi). Each node vi ∈ V has a unique radio,
runs on battery power and has 1-hop information. Given the previous information, we define several
important concepts, similar to those in [15].

Definition 1 (Direct link): A direct link vivj is an edge in E representing that node vi can transmit
data to node vj directly, that is, Pi is such that vi can reach vj when Pi ≤ PMAX . A solid horizontal
line over the nodes denote a direct link.

Definition 2 (Helper node set): Hi,j symbolises the set of helper nodes of vi in a cooperative com-
munication with vj. It is assumed that all helper nodes need to be direct neighbours of vi, that is,
Hi,j ⊆ N(vi), where N(vi) is the set of all direct neighbours of vi.

Definition 3 (CC-link): A CC-link ṽivj is an edge of E that represents that node vi can transmit
data to vj cooperatively by using a set of helper nodes Hi,j. A wavy horizontal line is used to denote
a CC-link.

Definition 4 (Helper link): A helper link is an edge from vi to one of its helper nodes in Hi,j. For
example, in Figure 3a, v1 can not create a direct link to v4 because v4 is not in its transmission
range. However, as it can be seen in in Figure 3b, node v1 can use nodes v2 and v3 as helper nodes
to create a CC-link ṽ1v4, where H1,4 = {v2, v3}, in this way, the edges v1v2 and v1v3 are considered
helper edges.
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Figure 3: (a) Graph G = (V,E), where V = {v1, v2, v3, v4} and E = {v1v3, v1v2, v2v1, v3v1}. (b)
Creation of CC-link ṽ1v4 using nodes H1,4 = {v2, v3} as helper nodes.

Definition 5 (Network topology): The union of all direct links and CC-links are E and Ẽ, respec-
tively. Similarly, the direct communication graph and the CC communication graph are denoted as
G = (V,E) and G̃ = (V, Ẽ), respectively. Note that E = E

⋃
Ẽ. Following the notation, if vivj ∈ E,

then: vivj = vivj, if vivj is a direct link, and vivj = ṽivj, if vivj is a CC-link.

Definition 6 (Direct link weight): The weight of a direct link vivj is defined as:

w(vivj) = τdαi,j .

Definition 7 (CC-link weight): The weight of a CC-link ṽivj is defined as:

w(ṽivj) = wd(Hi,j) + (|Hi,j |+ 1)wCC(Hi,j),

where:

- |Hi,j |: is the number of elements in Hi,j;

- wd(Hi,j) =
(

τ
maxvk∈Hi,j (di,k)

−α

)
: is the minimum transmission power of node vi to communi-

cate with the most distant node in Hi,j;

- wCC(Hi,j) =

(
τ∑

vk∈vi
⋃
Hi,j

(dk,j)−α

)
: is the minimum transmission power of node vi to com-

municate with vj, jointly transmitting with its helpers in Hi,j

Note that, according to Equations (1) and (2), a CC-link exists when the following relation holds:

max (wd(Hi,j), wCC(Hi,j)) ≤ PMAX .

In a CC from vi to vj , node vi must: (i) send its data to its helper nodes in Hi,j ; and then (ii)
node vi and its helpers must simultaneously send the same data to vj . This way, the weight of the
CC-link consists in the sum of the communication costs of these two moments: wd(Hi,j) is the cost
of the first moment and wCC(Hi,j) is the individual node cost to transmit a data over a CC-link.
In this work, the CC model is simplified assuming that the transmission power of vi and its helper
nodes are the same. Furthermore, only the power consumption in each sender node is considered.
Figure 3 illustrates the concepts presented in this subsection.

According to Sedgewick and Wayne [18], an articulation point (a.k.a articulation node or cut-
vertex) and a bridge can be defined as:
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Figure 4: Flowchart for proposed solution and correponding algorithms.

Definition 8 (Articulation node) An articulation point is a vertex va ∈ V (G) of a connected graph
G that if it (and its adjacent edges) were removed, the graph G becomes disconnected.

Definition 9 (Bridge) A bridge is an edge vavb ∈ E(G) of a connected graph G that if it is removed,
the graph G becomes disconnected.

Definition 10 (Bridge node) Bridge nodes are articulation nodes which are connected by a bridge
edge. Let va ∈ V (G) and vb ∈ V (G) be articulation nodes in G such that vavb ∈ E(G) is a
bridge. Then, va and vb are bridge nodes. Note that bridge nodes are also articulation nodes but not
otherwise. Figure 1 shows a connected graph G depicting two bridges nodes sharing a bridge.

3.3 Problem Definition

Consider the articulation nodes va and vb such that va ∈ Va and vb ∈ Vb, where Ga = (Va, Ea),
Gb = (Vb, Eb), Va ∩ Vb = ∅, Ga ⊆ G and Gb ⊆ G. Following the Definition 10, should a bridge
node fails, say va ∈ Ga, the nodes in the connected component Ga would be unable to communicate
with the nodes in the connected component Gb. This situation may arise in a number of scenarios
in which a fast link re-establishment may be necessary to ensure network connectivity. This work
focuses on enhancing network connectivity by monitoring the activity of bridge nodes. In case of a
bridge node failure, CC is employed as an attempt to avoid network partitioning. As it will be shown
in the subsequent sections, the proposed solution works by identifying bridge nodes and identifying
potential cooperative links that are used in case of need.

4 Proposal Description

This section presents a distributed solution to recover network connectivity due to bridge node
failure. To achieve this goal, the first task is to identify articulation points and bridges so that
the bridge nodes are correctly determined. Once the bridge nodes are known, CC is employed to
preventively identify backup links that shall be used in the case of bridge node failure. As can be
observed in Figure 4, the proposed solution comprises three algorithms, whose details are given in
the subsequent sections.

4.1 Identifying Articulation Nodes

The mechanism proposed to identify articulation nodes, termed Distributed Articulation Search
(DAS), is based on the work presented by [7]. The DAS uses a distributed version of the Depth
First Search (DFS) algorithm to detect articulation nodes. The DAS algorithm starts from a given
arbitrary root node and, on completing its execution, all nodes know whether they are an articulation
node or not. The details of the DAS algorithm are presented in Algorithm 1. A special message,
termed SEARCH message, is used to carry a three-tuple (a, v, nt), where a is a list of ancestor nodes,
v contains a list of visited nodes and nt is a list of non-tree edges. The first SEARCH message is
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Algorithm 1 Algorithm DAS(root)

1: # Initialization for each node vi
2: parentvi ← 0;
3: childrenvi ← ancestorvi ← nontreevi ← ∅;
4: visitedvi ← {i};
5: tovisitvi ← N(vi);
6: if i = root then
7: destinationvi ← first node in tovisitvi
8: childrenvi ← childrenvi ∪ destinationvi
9: tovisitvi ← tovisitvi − destinationvi

10: visitedvi ← visitedvi ∪ destinationvj ;
11: send message SEARCH({i}, {i}, ∅) to destinationvi
12: end if
13:

14: # Node vj receives a message SEARCH(a, v, nt) from node vi
15: visitedvj ← visitedvj ∪ v;
16: tovisitvj ← tovisitvj − visitedvj ;
17: if parentvj = 0 and j 6= root then
18: parentvj ← i;
19: ancestorvj ← a;
20: end if
21: if i ∈ childrenvj then
22: if j = root then
23: if |childrenvj | > 1 then
24: articulationvj ← TRUE;
25: end if
26: else
27: if @ vxvy ∈ nt |x ∈ ancestorvj or y ∈ ancestorvj then
28: articulationvj ← TRUE;
29: end if
30: nontreevj ← nontreevj ∪ nt;
31: end if
32: end if
33: if tovisitvj 6= ∅ then
34: destinationvj ← first node in tovisitvj ;
35: childrenvj ← childrenvj ∪ destinationvj ;
36: send message SEARCH(ancestorvj ∪ {j}, visitedvj , ∅) to destinationvj ;
37: else
38: if j 6= root then
39: for all node k ∈ N(vj)− childrenvj − parentvj do
40: nontreevj ← nontreevj ∪ {vjvk};
41: end for
42: send SEARCH(∅, visitedvj , nontreevj ) to node parentvj ;
43: end if
44: end if

sent from the root node during the DAS initialization phase (lines 6-12). A node executing the DAS
may send a SEARCH message in two directions:

(i) Downwards (children nodes): when the message is sent to non visited nodes (downwards
message), it creates a tree that is stored in a distributed way (line 36);

(ii) Upwards (parent nodes): when the message is sent to a visited node (upwards message),
it propagates the list of non-tree edges found by the node and its descendants (line 42).
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(a) (b) (c) (d)

Figure 5: Example of DAS algorithm: (a) a depth first search from root node v1 to leaf node v6; (b)
a non-tree edge (v6v4) is found and the information is propagated back to the parent node until a
non visited node is found; (c) the leaf node v2 is reached; (d) another non-tree edge is found and,
after the propagation of this information, the algorithm finishes.

Table 1: Description of the events based on Figure 5(a)-(d) when executing the DAS algorithm.

Figure Message Description

5a 1 Node v1 sends a downward message 1 to node v3, chosen arbitrarily
between nodes v2 and v3.

2 Node v3 chooses node v4 to send a downward message.
3 Node v4 chooses node v5 to send the downward message.
4 Node v5 has only one option to send the downward message, node v6.

5b 5 Node v6 has no unvisited neighbour, then it adds the edge (4, 6) to its
list of non-tree edges and sends an upward message to its parent.

6 Node v5 checks that it is not an articulation, since the received non-tree
list contains an ancestor, and sends an upward message to its parent.

7 Node v4 checks that it is an articulation node, since the non-tree list
received has no ancestors in it, and sends an upward message to his
parent.

5c 8 Node v3 checks that it is an articulation node. Since node v3 still has an
unvisited neighbour, v3 sends a downward message to v2.

5d 9 Node v2 has no unvisited neighbour, then it adds its additional link (1, 2)
to its non-tree list and sends an upward message to its parent v3.

10 As node v3 has no unvisited neighbours, it sends an upward message to
its parent, node v1. Since node v1 has no unvisited neighbour and it is
the root, the algorithm terminates.

When a node sends a message to an unvisited node, it arbitrarily chooses a neighbour and adds the
destination to its list of children nodes (lines 34-36). The list of unvisited nodes initially contains
all neighbouring nodes (line 5). This list is updated at each SEARCH message received (lines 16).
The following tasks are performed by the destination node upon receiving a SEARCH message:

1. Define the source node as parent node (line 18);

2. Update the list of visited nodes;

3. Update the list of ancestors (line 19); and

4. Send the message SEARCH to a selected unvisited neighbour.

When all of a node’s children have been visited, the node returns an upward SEARCH(∅, v, nt)
message to its parent node. This message indicates that a sub-tree has been completely processed
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and provides the list non-tree edges (the nt list) found in that segment. These upward messages are
initially sent by a leaf node. The non-tree edges are calculated removing the parent and children
nodes from the list of neighbours (line 39-41). A non-leaf node propagates the list of non-tree edges
after receiving this information from all its children nodes. A node vj learns that it is an articulation
when it receives an upward SEARCH message (lines 27-29) and verifies that none of its descendants
have non-tree edges connecting to any of its ancestral. This operation can be performed by exploring
the information in the nt list and the ancestorvj . Lines 23-24 deals with a special case, when the
root node is an articulation. In this case, the algorithm checks whether the root has more than one
child and, if true, the root is an articulation node.

The algorithm terminates when the root node receives upward SEARCH messages from all of
its children nodes, indicating that all nodes have been visited. Since all nodes receive exactly one
downward message and sends exactly one upward message, articulation nodes can be computed
using 2 · |V | messages. Compared to the algorithm proposed in [7], the DAS algorithm uses fewer
messages to locate articulation points.

Figure 5 show an example of the DAS algorithm on a graph containing six nodes. The sequence
of events is detailed in Table 1. The DAS algorithm starts from v1, the root node. The DAS
algorithm runs until all nodes have been visited. Figure 5b-d, shows the identification of non-tree
edge connecting nodes (v4, v6) and (v1, v2) and the identification of articulation nodes v4 and v3.

4.2 Identifying Bridges

The Distributed Bridge Search (DBS) algorithm is employed to locate bridge edges based on the
information gathered during the execution of the DAS algorithm. The DBS algorithm correctly iden-
tify bridge edges and bridge nodes. To this end, the DBS uses a special message, called BRIDGE,
that are sent by articulation nodes and leaf nodes to verify whether or not a common edge is a
bridge or not. Recall from the DAS algorithm that only leaf nodes and articulation nodes may share

Algorithm 2 Algorithm DBS(root)

Initialization of node vi
1: bridgevi ← false;
2: bridgePairvi ← ∅;
3: if childrenvi = ∅ and nontreevi = ∅ then
4: send message BRIDGE(i) to node parentvi ;
5: end if
6: if articulationvi and i 6= root then
7: if @ vxvy ∈ nt |x ∈ ancestorvj or y ∈ ancestorvj then
8: send message BRIDGE(i) to node parentvi ;
9: end if

10: end if
11: Terminate

Node vj receive a BRIDGE(i) message from node vi
12: if i = parentvj then
13: bridgevj ← true;
14: bridgePairvj ← bridgePairvj ∪ {i};
15: else
16: if (i ∈ childrenvj and articulationvi) or i = root then
17: bridgevj ← true;
18: bridgePairvj ← bridgePairvj ∪ {i};
19: send message BRIDGE(j) to node vi;
20: end if
21: end if
22: Terminate
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(a) (b) (c) (d)

Figure 6: Example of DBS algorithm: (a) DAS input graph with the articulation nodes and leaf
nodes being identified; (b) articulation nodes send BRIDGE messages to their parents; (c) parent
node v3 confirms that the edge v3v4 is a bridge; (d) output information of the DBS algorithm.

Table 2: Example of DBS based on Figure 6(a)-(d).

Figure Message Description

6a DBS input graph (output from DAS): a graph with all articulation nodes
identified. Note that each node stores in memory the information gath-
ered during the course of the DAS algorithm. The edged with arrows
represents the parent node of each node while dotted edges are the non-
tree edges.

6b 1 Articulation node v4 verifies that the link v3v4 is likely to be a bridge
and send the message to its parent, node v3. Node v3 confirms that the
link v3v4 is a bridge and store that information on its local memory.

2 Articulation node v3 verifies that the link v1v3 is likely to a bridge and
send the message to its parent, node v1.

6c 3 Node v3 sends a message back to node v4 confirming that the edge v3v4
is a bridge. Node v4 store the information in its local memory.

6d Nodes v3 and v4 learn that they are bridge nodes (the bridge edge is
drawn in a tick line).

a bridge. All other nodes have non-tree edges connecting to their ancestors. Algorithm 2 presents
the DBS details.

In the initialization step (line 3), the leaf nodes without non-tree edges send a BRIDGE message
to their parents (lines 3-5). Then, each articulation node without non-tree edges to an ancestor, sends
a BRIDGE message to its parent (lines 6-10). When the destination node receives the message,
it verifies if it is also an articulation node or not. If it is not, the node finishes the execution of
the algorithm. Otherwise, the node marks the edge as a bridge (line 17); adds the source node as
a bridge node (line 18); and sends a message to the source indicating that it is an articulation and
confirms that link is a bridge (line 19). When a node receives a confirmation message (a message
from its parent), it should mark the edge as a bridge (line 12 and 14). Figure 6 shows an example
for the algorithm DBS while Table 2 explains the sequence of events.

4.3 Bridge Nodes Monitoring and Connectivity Recovery

This section presentes the core idea behind the proposed connectivity recovery scheme. As
discussed in the previous sections, the algorithms DAS and DBS ensure the identification of bridge
nodes. As bridge nodes are critical nodes to ensure network connectivity, this section presents a
collaborative strategy that allows, whenever possible, the nodes in the vicinity of a bridge node to
take over its duties.
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Algorithm 3 Articulation-Bridges(updateInterval)

1: if (bridgevi) then
2: Let va be the articulation node running the algorithm;
3: Let vb be the articulation node in an adjacent cluster;
4: for every updateInterval seconds do
5: Let N(va) be the set of direct 1-hop neighbours from va;
6: for vi ∈ N(va)− vb do
7: Call GHSS to estimate the cost of the CC-link ṽivb;
8: Call GHSS to estimate the cost of the CC-link ṽbvi;
9: end for

10: Let ṽa′vb be the best, bi-directional, CC-link from any node in N(va) to vb;
11: send message RECOV ER(va′ , vb) to nodes va′ and vb;
12: end for
13: end if

14: # Actions taken by nodes receiving a RECOV ER message
15: Let vi, vj the nodes receiving a RECOV ER(vi, vj) message;
16: Let va be the articulation node that sent the RECOV ER message;
17: for every updateInterval seconds do
18: if va is unavailable then
19: Create a CC-link ṽivj ;
20: end if
21: end for

The proposed algorithm to monitor bridge nodes and to recover connectivity, termed Articulation-
Bridges (AB), is shown in Algorithm 3. The following conditions are assumed:

(i) One-hop routing information is provided by the underline routing protocol;

(ii) Two-hop routing information can be obtained;

(ii) Distance estimation can be obtained.

Routing protocols, such as AODV, resort to a special purpose (“hello”) messages to gather one-
hop neighbouring information [19]. Hence, condition (i) can be easily obtained when such protocols
are employed. Likewise, by performing routing table exchange with its direct neighbours, two-hop
routing information can be obtained. Thus, conditions (i) and (ii) can be met. The transmitting
power can be explicitly informed along with the “hello” messages or along with the routing table
information exchange. With the above information at hand, and given the characteristics of the
communication model assumed in this work, distance estimation can be obtained. Indeed, distance
estimation based on RSSI have been reported in the literature to provide reasonable accuracy [20].
The work by Mikko Kohvakka et al. [21] showed that the path loss can be determined from frames
transmitted at different power levels. With the path loss and transmitted power information at hand,
the distance estimation can be obtained, even if the RSSI is not known [21]. Thus, by employing
the above techniques, condition (iii) can be satisfied. Furthermore, it should be clear that one can
compensate the accuracy error in distance estimation by a slight increase in the transmitting power.

With the above information at hand, a CC-link can be computed, similarly to the one shown in
Figure 3. CC-links with least transmission power are computed with the aid of the Greedy Helper
Set Selection (GHSS) Algorithm, proposed in [12]. This algorithm takes as input the source and
destination nodes, denoted as va and vb, respectively; the set of neighbouring nodes of the source
node, denoted as N(va); and the distances dvi,vb , where vi ∈ N(va)∪va. The output of the algorithm
is an estimative of the CC-link ṽavb cost. As shown in lines 4-12 of the Algorithm 3, bridge nodes
periodically compute the best node to take its place in case of failure. The bridge nodes use the
GHSS Algorithm to calculate the most efficient bi-directional CC-link from N(va) to vb (conversely
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(a) (b) (c) (d)

Figure 7: Establishment of CC-links in case of a bridge node failure according to the Articulation-
Bridges Algorithm.

Table 3: Example of the Articulation-Bridges (Algorithm 3) based on Figure 7(a)-(d).

Figure Event Description

7a Input from DBS Nodes v3 and v4 are bridge nodes. N(v3) = {v1, v2, v4}, N(v4) =
{v3, v5, v6}. Nodes sharing a bridge and their neighbours start Algo-
rithm 3.

7b Update Node v3 calculates (using the GHSS routine) the CC-link cost from all
its neighbours to node v4 and chooses the most efficient CC-link, v1 in
this example. In a similar way, node v4 select node v6 as candidate to
create the CC-link.

Send msg Node v3 sends the message RECOV ER(v1, v4) addressed to v1 and v4
while node v4 sends the message RECOV ER(v6, v3) to v6 and v3.

Receive msg Node v1 and v6, the direct neighbours of the bridge nodes, receive the
message and start monitoring the state of the adjacent bridge nodes.

7c Node failure Node v3 fails.
Route discovery The nodes in N(v3) notice node that node v3 failed.

7d Create CC-link Nodes v1 and v4 establish a CC-link to recover network connectivity.

from N(vb) to va). Then, the articulation node informs the selected backup node to assume its role
in case of need by issuing an explicit message, RECOV ER message (lines 10-11). This message
carries the information about the nodes that should create the cooperative link. Nodes receiving the
RECOV ER message execute the code described in lines 15-21. In these steps, the nodes receiving
the RECOV ER message monitor the availability of the bridge node that sent the message. If the
bridge node becomes unavailable, the cooperative link is established. The created CC-link ensures
that a new bridge is formed and network connectivity is ensured. As can be observed in Figure 7,
the established CC-link gives rise to a new “bridge node” and the same process can be employed
to maintain network connectivity. Table 3 details the actions executed during the course of the
Algorithm 3 with the help of Figure 7.

The computational cost of the Articulation-Bridges Algorithm can be measured based on the
number of calls to the GHSS routine. The routine is called twice, lines 7 and 8, for |N(va)| ≤ ∆(G)
times, where ∆(G) is the maximum degree of the graph G. Hence, the routine GHSS is called at
most O(∆(G)) times per articulation node. To numerically determine the theoretical computational
cost of the Articulation-Bridge Algorithm, consider a graph G(V,E) with |V | nodes. The “magic
number”, first presented in [22] and discussed in [23], indicates that a graph with degree of ≈ 6, and
consequently ∆(G) ≈ 6, tends to be connected. The Handshaking Lemma [24] determines that, in
any graph, the sum of the degree of all vertices is equal to twice the number of edges. Given a planar,

connected graph with node degree of 6, that is ∆(G) = 6, the total number of edges is |E| = |V |·6
2 .

Based on these results, the number of calls to the GHSS heuristic to identify suitable nodes to

348



International Journal of Networking and Computing

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 50  100  150  200  250  300  350

N
u
m

b
e
r 

o
f 

c
a
ll
s
 t

o
 t

h
e
 G

H
S
S
 r

o
u
ti
n
e

Number of nodes

ArticulationBridges
CoopBridges

Figure 8: Number of calls to the GHSS heuristic.

establish a CC-link can be estimated. Figure 8 shows the theoretical amount of calls to the GHSS
heuristic for graphs with node degree of 6 and |V | = 20, 30, ..., 300 nodes. The Articulation-Bridges
Algorithm makes, in this case, a total of 20 to 36 calls to the heuristic on the event of a bridge
node failure, independently of the number of nodes in the graph. When compared to CoopBridges,
which is directly related to this work, it turns out that the proposed solution has a much lower
computational cost to determine the best CC-link to recover network connectivity.

5 Simulation Results

To evaluate the proposed technique and to allow replication of the results, a simulator in Mat-
lab environment [25] was developed. The simulation process consists on, from an initial topology,
applying in sequence the Algorithms 1, 2 and 3, and analyse how the distributed system would han-
dle the unavailability of bridge nodes and how effective the CC-links can be in recovering network
connectivity. The evaluation scenarios are based on the following parameters (similarly to those
in [12, 16, 15]): a set of nodes n = 20, 30, ..., 60 are randomly positioned in a 300× 300m area.

Note that Eq. (1) can be easily adapted to a more suitable propagation model. Thus, for
practical purposes, the radio range for the simulations is computed based on the Free Space Path Loss
Model [26]. The maximum transmitting power (PMAX) is set to 6dBm and the receiver threshold
(τ) is set to −71dBm, allowing to a maximum transmission range (RMAX) of ≈ 70m on the 2.4GHz
frequency band.

After the execution of the Algorithm 1 and 2, the resulting graphs with at least two network
components (or clusters) united by a pair of bridge nodes are considered. This step ensures that the
resulting graphs are connected and a number of bridge nodes are present (at least a pair). Next,
bridge node’s failure are introduced so as to verify the ability of the proposed scheme to reestablish
network connectivity. It is important to note that a number of bridge nodes may fail at this step,
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rendering a number of disconnected network components. We note that the proposed scheme is
capable of handling multiple, distributed, bridge node failures. For this latter task, the Algorithm 3
is employed as an attempt to regain network connectivity. The results presented next are drawn from
200 simulations for each configuration set. The following metrics are used to assess the goodness of
the proposed solution:

(M1) Average cost of the CC-links: This metric evaluates the amount of transmission power
necessary to maintain network connectivity by using CC-links;

(M2) Number of times that GHSS routine is executed: This metric evaluates the overhead
introduced while creating CC-links;

(M3) The percentage of connectivity recovery: This metric evaluates the percentage of graphs
that recovered connectivity on the event of a bridge node failure.

Given an initial network topology, as described above, bridge node failures are introduced. In
this case, two different approaches are considered to recover network connectivity:

1. Articulation-Bridges: Using two-hop information, bridge nodes update its neighbours to
assume its role in case of failure. In this case, a bi-direction CC-link is created as to recover
network connectivity;

2. CoopBridges [12]: As mentioned in Section 2, CoopBridges uses global information to com-
pute the best bi-direction CC-link between two different clusters to increase connectivity. This
task is carried out prior to the network operation. Although CoopBridges focus is different
from ours, the CC-link costs and network connectivity can be used for comparison purposes.
This proposal uses a minimum spanning tree (MST) based algorithm to reduce the number of
edges of the resulting graph to decrease power consumption in the resulting network topology.

The simulation results for metric M1 are shown in Figure 9. The node density (number of
nodes per area) is shown in the x-axis while the y-axis shows the average transmission power of the
CC-links. In the figure, the bars for Articulation-Bridges and CoopBridges represent the average
transmission power for the source and helpers nodes in each direction of the cooperative link. The
CC model described in Section 3 shows that node density increases the chance of obtaining closer
helper nodes. Thus, as expected, the transmission power necessary to reconnect network components
decreases with node density in both solutions. With closer helper nodes, the values for wd(Hi,j)
decrease and the CC-link weigh w(ṽivj) tend to decrease as well, as can be verified in the figure. This
fact holds for Articulation-Bridges as well, allowing both solutions to decrease the CC-link cost as the
network density increases. Figure 9 shows that the transmission power necessary for CoopBridges
and Articulation-Bridges to reconnect network components differ in at most 1dB in the simulated
scenarios. Recall that the CoopBridges performs an exhaustive search to identify the best CC-link
among all the nodes. Hence, it is expected that CoopBridges obtains better results in terms of CC-
link transmission power, particularly at higher node density. Also, the proposed Articulation-Bridges
relies on local information (two-hops) while CoopBridge needs global topological information. The
cost to collect and maintain global topology information has not been considered in the above results
as the focus was to assess the goodness of the CC-links computed based on local information.

Suppose that the nodes could increase the transmission power beyond the PMAX up to the limit
necessary to reestablish network connectivity without the aid of a CC-link. Although this is an
unlikely situation, as the nodes cannot rise the transmission power indefinitely due to a number
of reasons, including regulatory issues, this provides a lower bound on the minimum amount of
power necessary to reestablish communication. The overlapping bar Tx(CB) corresponds to the
minimum transmission power needed to reestablish connectivity without resorting to CC-links in
the resulting topology of the CoopBridge. Similarly, the Tx(AB) bar corresponds to the amount of
power necessary to reestablish connectivity between nodes ṽivj in the Articulation-Bridges. When
the direct links Tx(CB) and Tx(AB) are considered, this gap gets narrower. Indeed, when a direct
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links are considered, the nodes selected in both solutions present comparable results in terms of the
required transmitting power to reestablish network connectivity.

The computational cost in terms of calls to the GHSS heuristic, metric M2, is shown in Table
4. Note that the parameter updateInterval has not been considered in the simulation results as
to provide a fair comparison of the solutions. The column “density” corresponds to the number of
nodes in the input graph. Columns “Articulation-Bridges” and “CoopBridges” correspond to the
number of calls to the GHSS heuristic made by each algorithm.

Note that, in the simulations, the degree of each node is random. Thus, as the node density gets
higher, nodes tend to have a larger node degree and, consequently, increasing the computational
cost to reconnect the network. However, even by increasing the degree of the graph, the proposed
solution presents scalable computational costs. As can be seen in the Table, the proposed solution
obtained, for the evaluated cases, a reduction of up to 67 times the number of calls to the GHSS
routine for density 6.67. For lower network densities, the reduction ranges from 11.7 (density 2.22)
to 63.6 (density 6.67). These results corroborate to the theoretical results presented in Figure 8.

Figure 10 shows the percentage of graphs that successfully recovered connectivity after network
disruption (metric M3). As can be was observed, both solution are comparable in terms of network
connection recovery success. For node density up to 2.22, CoopBridges achieves a success rate of
99.25% while Articulation-Bridges attained a success rate of 97.75%, that is, only 1.5 percentage
points below the centralized solution. Note that, at lower network densities, nodes are likely to be
farther apart from each other, thus making it harder to reestablish network connectivity as there may
not be enough neighbouring nodes to establish CC-links. Recall that cooperative communication can
be only created when Eq. (2) is satisfied. Hence, in unfavourable circumstances, network connectivity
recovery may not be possible. For node density with values between 2.78 and 3.33, both algorithms
were able to recover network connectivity in approximately 99% of the cases. As the node density
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Table 4: Number of calls to the GHSS routine (metric (M2)).

Density (×10−4) Articulation-Bridges CoopBridges
2.22 14.78 174.04
2.78 16.38 276.98
3.33 17.18 408.20
3.89 18.86 562.78
4.44 21.98 742.00
5.00 21.36 950.72
5.56 24.96 1177.96
6.11 22.48 1431.12
6.67 25.24 1710.72

increases, the change of building suitable CC-links to reestablish network connectivity improves as
well. On graphs with node density above 4.44, both algorithms have been able to recover connectivity
in all evaluated cases. The results, based on the selected metrics, show that the proposed solution
not only scales well but also presents comparable results in terms of network connectivity recovery.

6 Conclusion

Ad hoc networks have been envisioned as a viable alternative to support urgent and temporary
tasks. However, ensuring network connectivity in such scenarios has been a challenge. A feasible
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alternative to prevent network link disruption is to identify nodes and links that may render the
network disconnected. The main contribution of this work was to propose a mechanism that explored
collaborative communication as an alternative to reestablish network connectivity by creating backup
links. Simulation results have shown that the proposed localized scheme allowed connectivity recover
in 98% of the evaluated scenarios, against an average of 99% of similar works that assume global
information. Compared with the centralized approach, the proposed localized scheme was able to
reduce the computational cost up to 67 times using a constant number of control messages per node.
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[10] Ulisses R. Afonseca, Paulo H. Azevêdo Filho, Jacir L. Bordim, and Priscila S. Barreto. Local-
ização e Redução do Consumo de Energia em Pontos de Articulação em Redes de Sensores Sem
Fio. In II Workshop de Sistemas Distribúıdos Autonômicos, pages 21–24, 2012.
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