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Abstract

In this paper, we propose a basic technique to minimize the computational time in execut-
ing the infinite-stage dynamic programming (DP) on a GPU. The infinite-stage DP involves
computations to probe whether a value function gets sufficiently close to the optimal one. Such
computations for probing convergence become obvious when an infinite-stage DP is executed on
a GPU, since those computations are not necessary for finite-stage DPs, and hide behind loops
for updating state values when a DP is executed on a CPU. The heart of the proposed technique
is to suppress those computations for probing by thinning out them. By the proposed technique,
differences between state values before and after being updated are periodically transferred to
the main memory, then are checked to probe convergence. This intermittent probing makes
contrast to ordinary methods in which computations for probing are processed every time. The
technique also proposes a formulation to determine optimal periods for probing based on sim-
ple statistics given by preliminary experiments. The effectiveness of the proposed technique is
examined on two problems; the one is a kind of the animat problem in which an agent moves
around in a maze to collect foods, and the other is the mountain-car problem in which a pow-
erless car on a slope struggles to pass over a higher peak. Computational results display that a
method with the proposed technique decreases computational times for both problems compared
to methods in which computations for probing convergence are processed every time, and the
degree of decreasing seems remarkable when the state space is larger.

Keywords: dynamic programming, value iteration, GPU

1 Introduction

The advent of the computer has brought the numerical approach to complicated optimization prob-
lems. The non-linear control problem is one of such problems. Its optimal policy can be obtained by
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solving the Hamilton-Jacobi-Bellman equation [1]. This equation is formally solvable by applying
the dynamic programming (DP as acronym) [2]. The DP is said to be comprised of a sequence of
sweeps. Here, a sweep represents a chunk of computations to update state values, each of which
represents an estimation of the accumulated cost of the corresponding state. Computations which
comprise a sweep are usually simple, so we can expect that a GPU (Graphics Processing Unit), which
suits for simple computations, can effectively execute DPs. This expectation is reasonable as far as
each sweep, but the DP is a sequence of sweeps. That sequence is finished when state values are
probed to converge. Costs of computations to probe convergence are obscure when DPs are executed
on CPUs, since computations to calculate the maximum difference between state values before and
after a sweep are processed in the same loop to computations for sweeps. In order to decrease the
computational time in executing an infinite-stage DP on a GPU, it is necessary to consider not only
sweeps as usual but also computations to probe convergence. It is a straightforward technique to
not always but periodically process computations to probe convergence.

In this paper, we propose a technique to decrease computational times in executing infinite-stage
DPs on GPUs. The technique is to thin out computations to probe convergence; they are periodically
processed, whereas sweeps are always processed. A formulation is also proposed that is based on
simple statistics and gives optimal periods for probing convergence. The objective of this paper is
to display the effectiveness of the proposed technique as to two problems; the one is a kind of the
animat problem in which an agent moves around in a maze to collect foods, and the other is the
mountain-car problem in which a powerless car on a slope struggles to pass over a higher peak [3].

The paper is comprised as follows. In Sections 2 and 3, the Markov decision process and the
DP are respectively outlined. Some general issues in implementing DPs for GPUs by using CUDA
(Compute Unified Device Architecture) [4] are stated in Section 4. The proposed technique is
described in Section 5. Problem-specific issues in implementing DPs on GPUs and evaluation results
as to the aforementioned two problems are displayed in Section 6. Finally, Section 7 summarizes the
paper and lists future works.

2 Markov decision process

2.1 Basic formalization

Many systems in real world exhibit stochastic behaviors. In analyzing such behaviors of discrete time
systems, it is natural to regard them to take some states for each moment and states’ developments
to be statistically determined. Such developments are attributed to, if defined stationary, state
transition probabilities which of each represents the probability that the system transits from a state
to a state. The state at time t + 1 of a system which is governed by state transition probabilities
depends only on information at time t. Such a system is said to have Markov property. The problem
of optimally controlling or scheduling a system having Markov property is called Markov decision
process (MDP as acronym). The objective of an MDP is to minimize costs (or maximizing rewards)
which are accumulated during states’ developments.

In order to formalize the MDP concerning to a system having Markov property, let T , S, and
U denote the planning time, the state space, and the decision space, respectively. Here, all spaces
are assumed countable. Additionally, let us assume that the system incurs cost C (s)

(
0 ≤ · ≤ C̄

)
in state s at discrete time t ∈ {1, . . . , T}, here C̄ denotes the upper bound of the cost. The sequence
π := 〈µ1 (·), . . . , µT−1 (·)〉 ∈ Π, which is comprised of functions which of each designates a decision
at a certain time, is called policy. The set Π, which is composed of all possible policies, is called
policy space. Moreover, let us assume that the probability of transiting from state s to state s′ by

making decision u is given as p
(u)
s,s′ . By using these symbols, the value of policy π starting from state

s can be considered as the expectation of the summation of discounted costs, and is represented as
follows:

F
(π)
T (s) :=

T−1∑
t=0

αt
∑
s′∈S

p̂
(π)
s,s′(t+ 1) C (s′). (1)

In this equation, α (0 < · ≤ 1) denotes the discount factor, and p̂
(π)
s,s′(t) denotes the probability of
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transiting from state s to state s′ within t times by policy π. p̂
(π)
s,s′(t) is recursively represented as

follows:
p̂

(π)
s,s′(1) := p

(µ1(s))
s,s′ ,

p̂
(π)
s,s′(t+ 1) :=

∑
s′′∈S

p
(µt+1(s))
s,s′′ p̂

(π)
s′′,s′(t).

(2)

The optimal policy which minimizes the objective value displayed in Eq. (1) is given as follows:

π∗ = arg min
π∈Π

F
(π)
T (s). (3)

When the optimal policy is denoted π∗ =
〈
µ∗1 (·), . . . , µ∗T−1 (·)

〉
, the optimal decision in state s at

time t is represented as µ∗t (s).

2.2 Approximating finite MDPs to infinite MDPs

In general, the optimal decision in the same state may differ if times differ. Thus the spatial cost to
hold all decisions over all states is basically proportional to |S| ·T . If the state space is large and/or
the planning time is long, such spatial cost is so high that the applicable range of the DP diminishes.
This analysis motivates to approximate the finite MDP to the infinite MDP by assuming that the
system has the ergodic property and α < 1, T → ∞. This approximation is adopted in this paper.
By this approximation, the policy becomes not to depend on time, and can be represented as a single
function µ (s). Thus policy π and decision rule µ can be interchangeably used for ease of writing.

In the case of finite MDP, the function J0 (·) ≡ 0 and the relation (2) make it possible to
recursively represent the function of Eq. (1) as follows:

F
(π)
0 (s) := J0 (s) ,

F
(π)
t+1 (s) :=

∑
s′∈S

p
(µt+1(s))
s,s′

(
C (s′) + αF

(π)
t (s′)

)
.

(4)

In the case of the infinite MDP, based on Eq. (4), the objective function is represented as follows:

F (µ) (s) := lim
T→∞

F
(µ)
T (s). (5)

2.3 Formalizing state transition probabilities

In previous sections, state transition probabilities of a system are assumed to be given in beforehand.
This assumption seems rationale if the behavior of that system can be formalized by rigid equations
such as state equations. However, such formalization is quite difficult for many real systems, since
their states and state transitions are frequently discrete and/or discontinuous. The state transition
probabilities of such system are often numerically approximated by using Monte-Carlo methods
which deploy simulation programs [5]. This strategy is supreme in terms of applicability, but not so
in terms of computational burden.

Let us assume that the behavior of a considered system is reproducible (i.e. can be simulated).
The state and decision of such a system are discrete and finite even if they are coded as floating-point
real variables, since those variables are finite binary vectors in nowadays computers. Furthermore,
we believe that the elemental fountain which disturbs that system can be evinced with its occurring
probability. Such fountain must be discrete and finite in computers, and is called situational input
[6]. A situational input is denoted w ∈ W, where W is the situational input space. By representing
the occurring probability of w as P (w), the state transition probability is formalized as follows [5]:

p
(u)
s,s′ =

∑
w∈W

P (w) δ (f (s, u, w), s′) . (6)

In this equation, f (s, u, w) ∈ S denotes the state transition function which represents the state
resulted by making decision u under situational input w at state s, and δ (·, ·) ∈ {0, 1} denotes
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Kronecker’s delta function. The state transition function can be represented as a binary vector-valued
function by representing state, decision, and situational input as binary vectors, and formalizing the
progress of each state variable as a binary function [6]. Thus, it is basically possible, and may be
promising if |W| is small, to formalize state transition probabilities of a reproducible system. So we
think that the applicable range of the MDP and the DP is not so narrow.

3 Dynamic programming

3.1 Solutions for DPs

In this paper, a DP for an infinite MDP is called infinite-stage DP. There are three representative
solutions for DPs. They are the linear programming, policy iteration [2], and value iteration (VI as
acronym). The linear programming is hardly applicable, since such applications require constraint
equations which numbers are proportional to |S| · |U|, where this number is usually enormous. The
policy iteration is more applicable than the linear programming, but it is rather complicated. This
complication is essentially attributed to the procedure of the policy iteration that it updates both the
value and tentatively-optimal decision for each state. On the other hand, the VI is rather simpler
than the policy iteration. It only repeats sweeps until a certain terminal condition is satisfied.
These observations lead us to focus on the VI, since its simpleness may assure its suitability for
being processed in parallel. Thus, in this paper, we select only the VI. Furthermore, the word “DP”
and “VI” are sometimes used interchangeably, and a VI for an infinite MDP is called infinite-stage
DP for ease of writing.

3.2 Infinite-stage DP

In this section, the infinite-stage DP (VI in concrete) is formalized. At first, let us define two
mappings, M and Mµ, as follows [5]:

M (J) (s) := min
u∈Us

∑
s′∈S

p
(u)
s,s′ (C (s′) + αJ (s′)) , (7)

Mµ (J) (s) :=
∑
s′∈S

p
(µ(s))
s,s′ (C (s′) + αJ (s′)) . (8)

Here, the function J (·) denotes the value function which designates values of states, and Us ⊆ U
denotes the set of decisions which can be taken in state s. By using the latter mapping, the value
function J (µ) (·) which gives the objective value of decision rule µ in the infinite MDP can be
represented as follows:

J (µ) (s) := F (µ) (s) = lim
T→∞

MT
µ (J0) (s) . (9)

If µ∗ (·) denotes the optimal decision rule, then the optimal value function J∗ (·) is defined as follows:

J∗ (s) := F (µ∗) (s). (10)

The optimal value function satisfies the Bellman equation displayed in Eq. (11), and is obtained by
Eq. (12).

J∗ (s) =M (J∗) (s) . (11)

J∗ (s) = lim
k→∞

Mk (J0) (s) . (12)

Equation (12) is realized by the repetitive calculation displayed in Eq. (13) [2].

J0 (s) := 0,

Jk+1 (s) :=M (Jk) (s) (k ≥ 0) .
(13)

Finally, the procedure displayed in Eq. (13) is called value iteration.
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3.3 Terminal conditions of infinite-stage DPs

In theoretical, the infinite-stage DP is never finished and the procedure of Eq. (13) is iterated forever.
In practical, the allowed error between a tentative value and optimal one of a state is specified by a
decision maker, and the iteration is terminated when the maximum difference between state values
before and after a sweep becomes less or equal to a value which is calculated from that error.

Let us assume that all state values were updated k+ 1 times and yielded value function Jk+1 (·).
If the relation (14) is satisfied, then the difference between the objective value obtained by obeying
function Jk+1 (·) and the optimal value becomes less or equal to ε; that is, relation (15) is satisfied
[5].

max
s∈S
|Jk+1 (s)− Jk (s)| ≤ R (ε) :=

(1− α) e

2α
. (14)

max
s∈S

∣∣∣F (µ) (s)− J∗ (s)
∣∣∣ ≤ ε. (15)

Since |Jk+1 (s)− Jk (s) | ≤ αkC̄, an iteration count I (α, ε) sufficient to satisfy Eq. (15) is:

I (α, ε) :=

⌈
log ((1− α) ε)− log

(
2αC̄

)
logα

⌉
, (16)

here, dre is the minimum integer greater or equal to r.
In summary, there are two conditions to prove that the infinite-stage DP has converged within

an allowed error ε.

• To check whether the maximum differences between state values before and after a sweep are
less or equal to R (ε).

• To iterate sweeps for I (α, ε) times.

I (α, ε) is quite large if α is close to 1, so the former condition is usually adopted when an infinite-stage
DP is executed on a CPU.

4 Implementing DPs for GPUs

4.1 Applicability of GPUs to DPs

In this paper, we concentrate on the infinite-stage DP. The primary computations of that method
is to update state values, or sweeps. One of those computations for state s is conducted along the
following steps.

(1) To calculate states succeeding to s.

(2) To fetch values of those succeeding states.

(3) To calculate a new value according to values of succeeding states.

(4) To store that value as the new value of state s.

Although steps (2) and (4) can collide with accesses by computations for other states, those steps
are basically independent from each other, thus the infinite-stage DP seems to appropriate for
being parallelized [7]. In addition to this parallelism, the number of states is numerous and the
computational burden in those steps are so light that a simple core in a GPU can easily conduct
them. These characteristics make us expect that the infinite-stage DP is effectively solvable by
deploying GPUs. This expectation has been confirmed as far as a simple infinite-stage MDP in
[8, 9].
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4.2 How to parallelize DPs on GPUs

Let us call the chunk of instructions assigned to a GPU, which has many cores, kernel as like the
CUDA [4] which is explained lately at Section 4.4. A kernel has some index parameters and reads
and/or writes contents of the memory equipped with the corresponding GPU according to those
parameters. Let us call a kernel with specific values of those parameters kernel instance. A kernel
instance is given to and executed in a core in a GPU. Values of those parameters are controlled by
the scheduler in a GPU for different cores to take different values. Thus, it is possible to parallelize
a whole kernel by dividing it as kernel instances then executing them on cores.

In parallelizing DPs on GPUs, the kernel and the index parameters correspond to Eq. (13) and
state s in that equation, respectively [8, 9]. That is, a sweep is divided into computations each of
which is responsible to update the value of the corresponding state, and those computations are
executed in cores in a GPU in parallel. Here, it is possible to define a mapping between the state
and the index parameters, since the state space is assumed countable and the index parameters are
discrete. For an example based on a source chunk in [4], if the state is two dimensional and defined
by two variables of 〈x1, x2〉, the state and those index parameters correspond as follows:

x1 = blockIdx.x ∗ blockDim.x + threadIdx.x,

x2 = blockIdx.y ∗ blockDim.y + threadIdx.y,
(17)

where blockIdx, blockDim and threadIdx are structured variables embedded in CUDA as men-
tioned lately at Section 4.4. Divided computations are too enormous for human to design their
assignments to cores, thus are automatically assigned by schedulers in a GPU.

4.3 Relationship to existing researches

A research which aims to accelerate a DP by a GPU can be characterized according whether the
considered problem is finite or infinite. There are plenty of researches dedicated to finite MDPs. Most
of them aim to decrease the computational time in executing Smith-Waterman algorithm [10, 11].
On the other hand, there may be quite a few researches dedicated to infinite MDPs. A research
which handles a problem that an agent moves around in a plane to collect foods [8] is one of such
researches.

Regardless of the type of considered MDPs, most of existing researches agree to their aim. It
is to decrease the computational time required in processing a sweep, and the effectiveness of those
researches depends on how to employ machineries equipped with GPUs. The technique of this paper
differs from those researches in the objective; the technique aims to decrease the computational time
for processing a sequence of sweeps, and does not make an effort to employ GPU machineries. The
technique can be combined with other techniques of existing researches, thus the proposed technique
is not a competitor with but a complementary to them.

4.4 CUDA

In this paper, we utilize NVIDIA Corporation’s CUDA [4] to implement infinite-stage DPs for
GPUs. The detailed specification of CUDA is controlled by a kind of version number called compute
capability. The contents of this section concern to compute capability 3.0 due to the used GPU
mentioned at Section 6.4 in later.

The features of CUDA can be viewed from a hardware-related and a computation-managing
standpoints. It is said from the former standpoint that the minimum processing unit is CUDA
core, and the minimum unit in assigning jobs is Streaming Multiprocessor (SM as acronym), which
is comprised of many CUDA cores. A CUDA core can access the device memories called register,
shared memory, constant memory, texture memory, and global memory [4]. These memories have a
trade-off between the accessing speed and the size. For example, the register is lowest in latency but
smallest in size, whereas the global memory is highest in latency but largest in size. This trade-off
can be detoured by using techniques such as the vector-access to shared memories in SMs, the cache
of constant and texture memories, and so on.
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From the computation-managing standpoint, the minimum job, the minimum group of jobs, and
the minimum unit in assigning jobs are thread, warp, and thread block. Here, 32 threads comprise
one warp, and some warps comprise one thread block.

In implementing programs for GPUs by CUDA, the following two points are to be designed:
what is the computational unit which comprises the whole computation, and how threads compose
a thread block. The computational unit is desired to be sufficiently small like single addition so
as to be executed on a CUDA core. The latter design dominates the way by which the whole
computation is divided into thread blocks. The dimension of the thread block is accessible from a
thread via the built-in variable blockDim. Each thread block is assigned to an idle SM. A thread
block for an SM is divided into some warps, and threads in each warp are executed on CUDA cores
of the corresponding SM. In this phase, threads in a same warp are executed in a concurrent style
(Single-Instruction, Multiple-Threads; SIMT) [4], and may emit some coalesced accesses to device
memories when accessed addresses are properly aligned. When a thread is executed in a CUDA
core, the index of the thread block which contains that thread is accessible via the built-in variable
blockIdx. As like, the index of a thread in a corresponding thread block is accessible via the built-in
variable threadIdx. The absolute index of a thread becomes available by using those three built-in
variables. An image of a case of two dimensionality is displayed in Fig. 6 of [4].

By employing those aforementioned machineries, an infinite-stage DP can be highly accelerated
as far as a simple problem [9]. However, such simple problem is not usual in real world, thus a
methodology applicable to more complicated problems is necessary. In this sense, the technique
proposed in this paper seems to have a certain degree of significance, as it does not highly depend
on aforementioned machineries and is applicable to any problem.

5 Proposed technique

5.1 Key idea and algorithm

When an infinite-stage DP is executed on a CPU in serial, there is only one loop over state space. In
that loop, computations of updating state values and those of calculating the maximum difference
between old and new state values are both involved as displayed in Fig. 1. Computations in that loop
are divided into two loops in a straightforward implementation of infinite-stage DPs [8] as displayed
in Fig. 2: the one is to update state values and executed on a GPU, and the other is to calculate
the maximum difference and executed on a CPU.

In Fig. 2, the loop on a GPU has to be conducted for every time, whereas the loop on a CPU is
not necessary. Let us assume that the latter loop is conducted for each m iterations of the former
loop as displayed in Fig. 3. This figure displays also the algorithm of the infinite-stage DP which
employs the proposed technique.

If we know that the convergence is attained after iterating the former loop for n times, then
letting m := n is obviously optimal. However, it is undoubtedly impossible to know n before an
optimal result is obtained. If m is too short than n, then iterations of the latter loop are too many
than optimal. On the other hand, if m is too long than n, then m− n iterations of the former loop
are fruitless. The images of these situations are displayed in Fig. 4. This figure implies that there
may be optimal values of m.

The proposed technique is to conduct two types of loops as displayed in Fig. 3 by using proper
periods for probing convergence. That is, a probing loop on a CPU is conducted when i (mod m) =
0, where i denotes the iteration count of sweeps on a GPU. The technique is quite simple, but there
is no DP which employs the same technique as far as we know. The reason of this scarcity seems
to lay on the weak interest on executing infinite-stage DPs on GPUs, and such weakness may be
attributed to the difficulty called “curse of dimensionality,” which is crucial to DPs. We believe that
such interest grows in some day by technological developments like which enable to create super
computers deploying GPUs.

There can be another implementation in which the loop for calculating maximum differences and
that for proving convergence are both conducted on a GPU. Investigation on that implementation
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for each state

Updating state value

Calculating maximum difference

difference is

sufficiently small?

no

yes

on CPU

Figure 1: A sketch of an algorithm of executing one loop on a CPU.

is treated as one of future works, since its existence does not harm the applicability of the proposed
technique.

5.2 Optimal periods for probing convergence

In this section, the optimal value of m mentioned in Section 5.1 is considered. Let us denote a chunk
of computations consist of m sweeps and computations of those for probing convergence “turn.” If
the minimum iteration of sweeps is known as n, the number of turns is roughly dn/me. When
the computational time of executing one sweep on a GPU, the communication time of transferring
difference values from a GPU to a CPU, and the computational time of calculating a maximum
difference over all states on a CPU are respectively given as tV, tD, and tM, the computational time
for each turn is represented as tC + mtV. Here, the computational time for probing convergence is
denoted as tC and defined as tC := tD + tM.

By multiplying the former count by the latter times, the whole computational time by the
proposed technique is roughly estimated as follows:

g (m) :=
⌈ n
m

⌉ (
tC +m tV

)
'
(
n+m

m

)(
tC +m tV

)
. (18)

By letting a := ntC/tV and arranging Eq. (18), it is revealed that the right hand side of that equation
achieves the minimum with:

m =
√
a =

√
n
tC

tV
. (19)

This value in Eq. (19) is not available, since n is unknown until a corresponding problem is
solved. An alternative of m, which is denoted m′, is possible by substituting I (α, ε) for n in Eq. (19)
as follows:

m′ =

√
I (α, ε)

tC

tV
. (20)

m′ given by Eq. (20) is no more than an approximation of m, but the value is expected to have some
significance, since n approaches to I (α, ε) when α is close to 1.
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for each state

Updating state value

difference is

sufficiently small?

no

yes

on GPU

for each state

Calculating maximum difference

on CPU

Figure 2: A sketch of an algorithm of executing two loops on a GPU and CPU.

Table 1: Compared methods.
Method Deploying GPU Employing the proposed technique

VI no no
VI-D yes no
VI-P yes yes

6 Evaluation

6.1 Compared methods

In this section, the effectiveness of the proposed technique is displayed by comparing some infinite-
stage DPs. Those methods are the ordinary VI executed on a CPU, the one executed by deploying
a GPU, and another one which deploying a GPU and the proposed technique. They correspond to
algorithms in Figs 1, 2, and 3, and called VI, VI-D, and VI-P as Table 1, respectively.

6.2 Target problems

The aforementioned three methods are applied to two MDPs; the one is a kind of animat problem,
and the other is the mountain-car problem which is a typical in the discipline of the reinforcement
learning [12].

6.2.1 Animat problem

This problem has appeared in [8] at first. The objective of that problem is to control an agent so as
to maximally collect foods in a square plane which is surrounded by walls. That plane is slippery as
the agent moves to its intended direction (east, south, west, or north) with probability 0.7, or moves
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difference is

sufficiently small?

no

yes

for each state

Updating state value

on GPU

for each state

Calculating maximum difference

on CPU

i % m == 0?
no

yes

i + 1i

0i

Figure 3: The image of periodically probing convergence.

to one of other directions with probability 0.3. This image is illustrated in Fig. 5. The parameters
of this problem are M , M f , r, and r̄. They denote the width (and height) of the plane, the number
of foods, the minimum and maximum value of foods, respectively.

This problem is so elementary that the application of CUDA has achieved about 180x speedups
by deploying the shared memory [9].

6.2.2 Mountain-car problem

This problem is more realistic than the animat problem. The objective of this problem is to make
a car on a slope pass over the higher peak. The sketch of the problem is displayed in Fig. 6. The
car is too powerless to directly climb the steeper slope, so has to swing between the lower and
higher hills [3]. This problem is a typical of researches which aim to improve the applicability of the
reinforcement learning [12] to continuous state space, since the position and velocity of the car are
intrinsically real.

In this paper, that problem is simply handled as a discrete problem by scaling up the position
and velocity then discretizing them. The scaling factor Z is the only parameter of that problem.

6.3 Detailed issues in implementation

As mentioned in Section 5.1, computations of the infinite-stage DP are divided into two kinds:
those to update state values, and those to calculate maximum differences. In short, the proposed
technique aims to omit the latter computations, and does not care the effectiveness of computations
of both kinds. It is expected that a contrivance on the implementation of the former computations
such as employing the shared memory and/or adjusting the design of the thread block will make
computational times for those computations shorter and make the effectiveness of the proposed
technique more remarkable. Such contrivance is not adopted in this paper, since it depends on
applied problems and may harm the claim that the proposed technique is applicable to any problem.

In concrete, any of the constant memory, texture memory, and shared memory is not used, and
only the global memory is used. The global memory holds three 1-D array of single floating-point
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minimum iteration

to converge

optimal

too long

too short

period to

probe convergence

sweep

Figure 4: The images of values of m which are too short, too long, and optimal.

M

M

X

Y

state <1,1>

0

north

east

south

west

wall

Intended direction

agent

food

0.7

0.1

0.1

0.1

Figure 5: The slippery plane and the stochastic behavior of the agent.

real variables for both problems. Those arrays are (1) old state values before updated, (2) new state
values after updated, and (3) their differences, each of which is computed by subtracting new value
of a state from its old value. In the animat problem, the occurring probabilities of situational inputs
are also held as 1-D array. The design of the thread block is not examined and set to a moderate
one for both problems according to previous results [9].

The state defined by dimensions x1 and x2 is converted to the index in 1-D array by the following
equation:

(x2 − x2) ·
(
x̄1 − x1

)
+ x1 − x1, (21)

where x and x̄ denote the lower and upper bound of dimension x, respectively. x1 and x2 in Eq. (21)
correspond to the x- and y-coordinates of the agent in the animat problem, and the position and
the velocity of the car in the mountain-car problem, respectively.

6.4 Parameter setting

The setting of parameters which determine the scales of the problems etc. are displayed in Table 2.
They are basically same to those in [8] and [3]. If a real value is held as a single floating-point real
variable (which consumes 4 bytes), the parameter setting results that, at least, 285 MBytes and 12
MBytes of device memories are consumed in the mountain-car and animat problem, respectively.

A computer with a GPU of GeForce GTX680 and a CPU of Intel Core i7 3.4 GHz was used
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Figure 6: The sketch of the mountain-car problem.

Table 2: Parameter setting.
Problem Parameter Value

—
ε 0.0001

Block dimension 64x× 1y

animat

α 0.9
M 1,024
M f 1,024
r, r̄ 2, 20

mountain-car
α 0.99
Z 10,000

to run programs which had implemented the three methods. That GPU has 8 SMs, each of which
contains 192 CUDA cores [13], and a device memory of 4 GBytes. The size of the main memory of
the computer was 32 GBytes. CUDA Toolkit version 5 was used in implementing programs, here
it is noted that this version is like the version of the SDK tool and independent of the compute
capability.

6.5 Computational results

A preliminary experiment was conducted to obtain proper m and/or m′ for each problem. That
experiment was comprised of 100 runs of programs. For each run, only one sweep was conducted and
computations for probing convergence were processed only once, thus both tV and tC were measured.
Basic statistics on tV and tC obtained by 100 runs are displayed in Table 3. tC is comprised of tD and
tM, where tD denotes a communication time to transfer difference values from a global memory to a
CPU memory, and tM denotes a computation time for calculating maximum differences. Statistics
on those two metrics are displayed in Table 4.

Values m′ calculated from statistics in Table 3 are displayed in Table 5. This table also displays
values of n, which become known after the primary experiment is conducted, and values of m, which
become available by using values of n. The primary experiment is comprised of running programs
10 times for each period setting, where a period setting is defined as a composition of the target
problem, the used method, and the value of m or m′. The reason why multiple period settings which

332



International Journal of Networking and Computing

Table 3: Minimum, average, and maximum values of tV and tC [msec].

Problem
tV tC

Min. Avg. Max. Min. Avg. Max.

animat 12.101 12.1845 12.287 4.461 4.5764 4.959
mountain-car 39.961 40.1026 40.809 1,216.66 1,232.44 1,252.82

Table 4: Minimum, average, and maximum values of tD and tM [msec].

Problem
tD tM

Min. Avg. Max. Min. Avg. Max.

animat 0.659 0.6869 0.72 3.787 3.8895 4.292
mountain-car 34.784 39.8168 44.991 1,178.03 1,192.62 1,210.37

are same except for m or m′ are considered is to claim that the proposed technique is valid even
when the preliminary experiment brings inappropriate tC and/or tV.

Minimum, average, and maximum values of m and m′ in Table 5 were calculated by using
Eqs. (19) and (20), where values tC and tV were selected from 100 results for each problem as
displayed in Table 6. In this table, the left-most column represents types of m or m′, and tCi , t

V
i

(i = 1, . . . , 100) represent the computational times of one sweep and that of calculating the maximum
difference of i-th run in the preliminary experiment. For example, the minimum m for the mountain-
car problem is 58 as displayed in Table 5. This value results by substituting 112, min

i=1,...,100
tCi =

1,216.66, and max
i=1,...,100

tVi = 40.809 for n, tC and tV in Eq. (19), respectively.

The computational times of three programs which implement three methods in Section 6.1 are
displayed in Table 7. Here, those times are averaged over 10 runs for each parameter setting, and
the column “Period” represents the period for probing convergence, thus contains values of m or m′

displayed in Table 5.

We can see the following points from Tables 3 and 7:

1. By comparing VI and VI-D, it is observed that computational times of executing the infinite-
stage DP can be decreased by using a GPU.

2. By the maximum computational times (i.e. maxi=1,...,100(tCi + tVi )) for the preliminary exper-
iment are 0.017089 and 1.29363 [sec] for the animat and mountain-car problems, respectively.

3. By comparing VI-P and VI-D, it is said that the proposed technique can decrease computa-
tional times for both problems. If computational times of the preliminary experiment are disre-
garded, the speedup ratios brought by VI-P against VI-D are about 125.487% and 1,402.42% on
the animat and mountain-car problems, respectively. If computational times of the preliminary
experiment are regarded, those ratios become 124.527% and 1,243.87%. Here, computational
times of the preliminary experiment are, as mentioned before, 0.017089 and 1.29363 [sec] for
the animat and mountain-car problems.

4. As to the mountain-car problem, the proposed technique is more effective when the probing
period is 58 or 59 than when it is 207, 211, or 213.

Table 5: Numbers of minimum sweeps and values of m and m′.

Problem n
m

I (α, ε)
m′

Min. Avg. Max. Min. Avg. Max.

animat 114.3 6 7 7 144 7 7 8
mountain-car 112 58 59 59 1,443 207 211 213
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Table 6: Combinations of tC and tV values used in calculating minimum, average, and maximum m
and m′.

Type of m or m′
Statistics on tC and tV

tC tV

Min.
min

i=1,...,100
tCi max

i=1,...,100
tVi

Avg.

100∑
i=1

tCi /100

100∑
i=1

tVi /100

Max.
max

i=1,...,100
tCi min

i=1,...,100
tVi

Table 7: Computational times.
Problem Method Period Time [sec]

animat

VI
-

39.7937
VI-D 2.78103

VI-P

6 2.52461
7 2.2218
8 2.21622

mountain-car

VI
-

936.367
VI-D 142.325

VI-P

58 7.82148
59 7.91743
207 9.91896
211 10.078
213 10.1489

The third point seems to indicate robustness of the proposed technique against fluctuations of
tC and tV measured in the preliminary experiment, since computational times by VI-P are shorter
than those by VI-D even if values of m′ are far from average. The fourth point can be interpreted
that in the case when the probing period is given according to n, the minimum iteration count of
sweeps, the proposed technique is more effective than the case when that period is given according to
I (α, ε), an approximation of n. However, this interpretation is not valid as to the animat problem.
This reason may lay on such difference found in Table 3 that the computational time of tV is longer
than that of tC on the animat problem, whereas they are vice versa on the mountain-car problem.
Further researches are necessary to investigate on effects brought by that difference.

7 Conclusion

In this paper, we proposed a technique to decrease computational times in executing infinite-stage
DPs on GPUs. The technique was inspired by such notice that calculating maximum differences
between state values before and after a sweep is costly when a DP is executed on a GPU, since
that computation can not be processed in the same loop to a sweep. The proposed technique is
to process sweeps in a GPU every time, whereas to process computations for probing convergence
in a CPU periodically. In order to specify proper periods for probing, a simple formulation was
deduced. This formulation can bring optimal periods if computational times of a sweep, those of
computations for probing, and the minimum sweep count are available. In computer illustrations,
those two times were measured by a preliminary experiment, and minimum sweep counts were
replaced by maximum sweep counts. Three methods: an infinite-stage DP on a CPU, that on a
GPU, and that employing the proposed technique, were compared as to the animat problem and
the mountain-car problem. In executing programs which had implemented the proposed technique,
some periods were considered so as to claim the insensitivity of that technique on results by the
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preliminary experiment. Computational results indicated that the proposed technique can decrease
computational times of an infinite-stage DP if it is executed on a GPU, and this tendency holds
even if results by a preliminary experiment have been inaccurate and resultant periods were far
from average. The speedup ratios brought by the proposed technique against the infinite-stage DP
on a GPU were about 125% and 1,244% on the animat problem and the mountain-car problem,
respectively.

Future works include to consider implementations in which maximum differences are calculated
on GPUs, to think out more proper substitution for the minimum sweep count n than I (α, ε), to
verify the proposed method for other programs including those with higher dimensionality, and to
employ machinery such as the shared memory.
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