
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 4, Number 2, pages 279–290, July 2014

Novel List Scheduling Strategies for Data Parallelism Task Graphs

Yang Liu

Graduate School of Science and Engineering, Ritsumeikan University,
Kusatsu, Shiga, 525-8577 Japan

Lin Meng, Ittetsu Taniguchi, Hiroyuki Tomiyama

College of Science and Engineering, Ritsumeikan University,
Kusatsu, Shiga, 525-8577 Japan

Received: February 15, 2014

Revised: May 1, 2014

Accepted: May 30, 2014

Communicated by Susumu Matsumae

Abstract

This paper studies task scheduling algorithms which schedule a set of tasks on multiple cores

so that the total scheduling length is minimized. Most of the algorithms developed in the past

assume that a task is executed on a single core. Unlike the previous algorithms, the algorithms

studied in this paper allow a task to be executed on multiple cores. This paper proposes six

algorithms. All of the six algorithms are based on list scheduling, but the strategy for priority

assignment is different. In our experiments, the six algorithms as well as an integer linear

programming method are evaluated.

Keywords: task scheduling, multicore, data parallelism

1 Introduction

Due to the spread deployment of multicore processors not only in high-performance computers but
also in embedded systems, task scheduling has now become a more important problem than ever.
In general, an application is modeled as a task graph, where nodes represent tasks (i.e., pieces of the
application) and direct edges represent data- or control-flow dependency between two tasks. A task
scheduling problem decides when and on which core each task is executed so as to minimize the overall
schedule length while meeting constraints on flow dependency and the number of cores available.
Schedule length is execution time of the application. The task scheduling problem is known to be
NP-hard [1], and has been extensively studied over decades to develop efficient heuristic algorithms.

Most of the previous researches assume that a task does not have data parallelism and runs on a
single core, where data parallelism denotes the parallel execution of a single task on data distributed
over multiple cores. However, this assumption does not hold true in many systems. Tasks may have
data parallelism and run on multiple cores. This paper studies scheduling of data-parallel tasks on
multicore processors.

There exist several research efforts on task scheduling with data parallelism in the past. Recent
studies include [2, 3, 4]. In [2], Yang and Ha proposed a scheduling technique for data-parallel
tasks based on integer linear programming (ILP) formulation, and extended the technique towards

279

Novel List Scheduling Strategies for Data Parallelism Task Graphs

S

1 2

4 5

E

(4, 10)

(3, 40)

(3, 20)

(1, 30)3 (1, 10)

Figure 1: An example of a task graph.

pipelined scheduling in [3]. Their techniques perform task scheduling and allocation simultaneously,
where allocation means a design process which decides the number of cores assigned to each task.
Vydyanathan also proposed a simultaneous scheduling and allocation algorithm for data-parallel
tasks [4]. The common assumption in [2, 3] and [4] is that the degree of data parallelism in tasks,
i.e., the number of cores assigned to the task, is flexible, and the execution time of the task for
each parallelism is known prior to task scheduling decision. However, this assumption may not be
practical in some cases.

In contrast, this paper assumes that a task has a fixed degree of data parallelism. Tasks may
have different degrees of data parallelism, but the degrees are not changed during task scheduling.
To the best of our knowledge, this is the first paper to propose efficient algorithms for the scheduling
problem.

The contributions of this paper are as follows:

• This paper first defines and formulates the scheduling problem for a set of data-parallel tasks.

• This paper proposes six algorithms for the scheduling problem.

• This paper presents quantitative evaluations of the algorithms using standard task sets.

The rest of this paper is organized as follows. Section 2 defines the scheduling problem, and
Section 3 proposes six algorithms for the problem. Experiments are shown in Section 4, and Section
5 concludes this paper.

2 Problem Definition

This section defines the task scheduling problem addressed in this paper.

2.1 Problem Description

This work assumes a homogeneous multicore processor. An application is modeled as an acyclic
directed graph (DAG), so called a task graph, where a node represents a task and a directed edge
represents a flow dependency between the two tasks.

Figure 1 shows an example of a task graph. In this graph, tasks labeled S and E are dummy
tasks which do not perform any meaningful computation. Tasks S and E denote an entry point
and an exit point of the application, respectively. Two integer values are associated with each task.
The first number denotes the degree of data parallelism of the task, and the latter number denotes
the execution time of the task. For example, task 1 runs on four cores, and it takes 40 time units to
perform the task.

In this paper, we assume that individual tasks are written in a parallel programming language
by human programmers, and that the programmers decide the degree of data parallelism. How to
decide the degree of parallelism and how to know the execution time are up to the programmers,
and are out of the scope of this paper.

280

International Journal of Networking and Computing

2.2 ILP Formulation

The task scheduling problem described above can be formulated by an integer linear programming
(ILP) problem.

Let timei, starti, and finishi denote the execution time, start time and finish time of task i,
respectively. pari denotes the data parallelism, meaning that task i must be mapped onto pari cores.
flowi1,i2 denotes a flow dependency between tasks i1 and i2. flowi1,i2 is 1 if task i1 must proceed
task i2. mapi,j denotes mapping of tasks on cores. mapi,j is 1 if task i is mapped to core j.

Then, the task scheduling problem is formally defined as follows: Given timei, pari and flowi1,i2,
decide starti, finishi and mapi,j which minimize the objective function (1), while meeting the
constraints (2), (3), (4) and (5).

Minimize:
max

i
(finishi) (1)

Subject to:

∀i
∑

j

mapi,j = pari (2)

∀i finishi = starti + timei (3)

∀i1, i2, j mapi1,j +mapi2,j ≤ 1 OR finishi1 ≤ starti2 OR finishi2 ≤ starti1 (4)

∀i1, i2 flowi1,i2 = 1 → finishi1 ≤ starti2 (5)

It should be noted that finishi is a dependent variable on starti (see Equation 3). Therefore,
the decision variables of the scheduling problem are starti and mapi,j . We call values of starti and
mapi,j for all i and j a schedule (or a scheduling result) of the task graph. A schedule is called feasible
if the schedule satisfies all of the constraints (2), (3), (4) and (5). The maximum value of finishi,
which is the objective function (1), is called the schedule length. Then, the scheduling problem can
be restated as follows: For a given task graph, find a feasible schedule with the minimum schedule
length.

Although optimal scheduling results can be obtained by solving the ILP formulas, it is not
practical for large task sets in terms of CPU runtime. In the next section, we propose six heuristic
algorithms based on list scheduling.

3 The Proposed Algorithms

In this section, we propose six algorithms for the scheduling problem. All of the six algorithms are
based on list scheduling, but their priority assignment strategies are different.

3.1 The Overall Algorithm

The basis of the six algorithms is a simple list scheduling algorithm. An important concept of
list scheduling is ReadyList, which contains a set of executable tasks. Here, a task is said to be
executable if all of its preceding tasks are completed. Below is a fundamental algorithm of list
scheduling.

1. Initialize ReadyList and IdleCores;
ReadyList = ∅ ;
IdleCores = the number of total cores;

2. Select a task which has the highest priority from ReadyList, and schedule the task as early as
it is schedulable;

281

Novel List Scheduling Strategies for Data Parallelism Task Graphs

S

1 2

4 5

E

(4, 10, 20, 1)

(3, 40, 40, 0)

(3, 20, 60, 2)

(1, 30, 30, 0)3 (1, 10, 10, 0)

Figure 2: Critical path length and the number of immediate successors.

3. Finish if all tasks have been scheduled. Otherwise, update ReadyList and IdleCores and go
back to step 2;

There exist a large number of variations of list scheduling depending on how to define the priority
in step 2.

3.2 A Motivating Example

In [5], Kasahara and Narita propose a list-based scheduling algorithm, named CP/MISF (critical
path/most immediate successor first). The CP/MISF algorithm is designed for task scheduling
without data parallelism. Although it was proposed three decades ago, it is still recognized as one of
the best heuristic algorithms because of the high quality of results as well as the low computational
complexity. As the name of the algorithm indicates, the CP/MISF algorithm takes into account
two factors to define the priority of tasks; the critical path length and the number of immediate
successors. Figure 2 shows the same task graph as in Figure 1, but we have added two numbers to
each task, denoting the critical path length and the number of immediate successors. The critical
path length of a task is the length of the longest path from the node to the exit node. For example,
the critical path length of task 2 is 60, by adding the execution time of task 2 and that of task 5.
In the CP/MISF algorithm, the priority of tasks is defined according to the following two rules:

1. If the critical path of task i is longer than that of task j, task i has a higher priority than task
j.

2. In case tasks i and j has the same critical path length, if task i has more immediate successors
than task j, task i has a higher priority than task j.

Figure 3 shows the schedule when the CP/MISF algorithm is applied to the task graph in Figure
2. At time t = 0, tasks 1 and 2 are executable, but task 2 is scheduled first because it has a longer
critical path. Then, tasks 5 and 4 are scheduled, followed by tasks 1 and 3. The total schedule
length is 80 time units.

The CP/MISF algorithm works nice for tasks without data parallelism. However, the CP/MISF
algorithm is not always efficient for tasks with data parallelism. Actually, the schedule in Figure 3
is not optimal. Figure 4 shows a better schedule for the same task set. The policy of this scheduling
is that a task with the largest data parallelism has a priority. Due to this policy, task 1 is scheduled
first, and then, task 3 is enabled to run in parallel with another task. Of course, this policy is not
always optimal, but this example demonstrates that the degree of data parallelism should be taken
into account in the priority.

3.3 The Proposed Priorities

We propose six algorithms, all of which are based on list scheduling, but their definitions of priority
are different. In order to define the priority, we take into account three factors as follows:

282

International Journal of Networking and Computing

Core 0 T2 T2 T5 T5 T5 T5 T1 T3

Core 1 T2 T2 T5 T5 T5 T5 T1

Core 2 T2 T2 T5 T5 T5 T5 T1

Core 3 T4 T4 T4 T1

t = 0 20 8040 60

Figure 3: Schedule obtained by the CP/MISF algorithm.

Core 0 T1 T2 T2 T5 T5 T5 T5

Core 1 T1 T2 T2 T5 T5 T5 T5

Core 2 T1 T2 T2 T5 T5 T5 T5

Core 3 T1 T3 T4 T4 T4

t = 0 20 8040 60

Figure 4: Schedule which takes into account the degree of data parallelism.

• P: The degree of data parallelism

• C: The length of critical path

• S: The number of immediate successors

Based on the three factors, the first algorithm proposed in this paper defines the priority of tasks
as follows:

1. If task i has a larger data parallelism than task j, task i has a higher priority than task j.

2. In case tasks i and j has the same degree of data parallelism, if the critical path of task i is
longer than that of task j, task i has a higher priority than task j.

3. In case tasks i and j has the same degree of parallelism and the same length of critical paths,
if task i has more immediate successors than task j, task i has a higher priority than task j.

The algorithm based on the above priority is named PCS since the three factors (P, C and S)
are prioritized in the order of P-C-S. Let PriorityPCSi denote the priority of task i in the PCS
algorithm, where a higher value means a higher priority. A simple formula to define PriorityPCSi

is as follows.

PriorityPCSi = U2 · Pi + U · Ci + Si (6)

Here, Pi, Ci, and Si denote the values of P, C and S factors for task i, and U is a constant integer
number which is larger than any of Pi, Ci, and Si for any i.

In the similar manner, we can define five algorithms CPS, CSP , SCP , PSC and SPC with
different ordering of the three factors. The task priorities in the five algorithms are defined as follows:

PriorityCPSi = U2 · Ci + U · Pi + Si (7)

PriorityCSPi = U2 · Ci + U · Si + Pi (8)

PrioritySCPi = U2 · Si + U · Ci + Pi (9)

PriorityPSCi = U2 · Pi + U · Si + Ci (10)

PrioritySPCi = U2 · Si + U · Pi + Ci (11)

A common important feature in the six algorithms is that priorities are static. The priorities can
be computed prior to scheduling, and they do not change during scheduling.

283

Novel List Scheduling Strategies for Data Parallelism Task Graphs

0.96

0.98

1.00

1.02

1.04

1.06

1.08

2 cores 4 cores 8 cores 16 cores

A
v

er
ag

e
sc

h
ed

u
le

 l
en

g
th

 n
o

rm
al

iz
ed

 t
o

 P
C

S

PCS

CPS

CSP

SCP

PSC

SPC

Figure 5: Averages of normalized schedule lengths for task graphs with 50 tasks.

The time complexity of the six algorithms is O(N2), where N is the number of tasks, assuming
that the number of cores is constant. First, it takes O(N2) to compute the critical path lengths of
the nodes. Then, we sort the nodes three times since we use three factors (P, C and S), and each
sorting takes O(N logN). Therefore, it takes O(N2) in order to compute the priorities of the nodes
before running the list scheduling shown in Section 3.1. The list scheduling process is repeated
N times, and in each iteration, it takes O(N) to update the ready list. Thus, we get the overall
complexity of O(N2).

4 Experiments

We implemented the six algorithms in the C language, and tested their effectiveness. We used 43
task graphs from Standard Task Graph (STG) Set developed at Waseda University [6]. Forty out
of the 43 task graphs are randomly generated ones, and the other three tasks are based on actual
applications. Since tasks in STG do not assume data parallelism, we randomly assigned the degree
of data parallelism to the tasks. The number of cores was changed from two to sixteen. In addition
to the six algorithms presented in this paper, an integer linear programming (ILP) technique (see
Section 2.2) was evaluated. In order to solve the ILP problems, IBM ILOG CPLEX 12.5 was used.
Since exact solutions could not be found in a practical time, we limited the CPU time of CPLEX
up to 60 minutes on dual Xeon processors (E5-2650, 2.00Hz, 128GB memory), and the best solution
found at that time was compared with the six algorithms.

4.1 Results for Random Task Graphs

First, we conducted experimemts using 20 random task graphs, each of which consists of 50 tasks.
Figure 5 shows the average schedule lengths of the 20 task graphs obtained by the six algorithms
proposed in this paper. The schedule lengths are normalized to the PCS algorithm. This graph
clearly shows the effectiveness of the PCS algorithm.

Table 1 shows detailed results for individual task graphs. The first column labeled as ”Tid”
shows the task ID, and the following columns show the lengths of the schedules obtained by the
seven methods (the six algorithms proposed in this paper and the ILP method). For each benchmark,
the best solution is shaded in yellow. X in the ILP column means that no feasible solution was found
within 60 minutes in CPU time. In many cases, the ILP method failed to find a feasible schedule

284

International Journal of Networking and Computing

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

2 cores 4 cores 8 cores 16 cores

A
v

er
ag

e
sc

h
ed

u
le

 l
en

g
th

 n
o

rm
al

iz
ed

 t
o

 P
C

S

PCS

CPS

CSP

SCP

PSC

SPC

Figure 6: Averages of normalized schedule lengths for task graphs with 100 tasks.

within the limited time. Even when the ILP method found feasible schedules, they are lengthy.
Although the PCS algorithm yields the best schedule results on average, Table 1 shows that the
effectiveness of the six algorithms highly depends on the task graph.

Next, we conducted experimemts using 20 random task graphs, each of which consists of 100
tasks. Figure 6 shows the average schedule lengths of the 20 task graphs obtained by the six
algorithms proposed in this paper. Again, this graph clearly shows the effectiveness of the PCS
algorithm.

Table 2 shows detailed results for individual task graphs with 100 tasks. Compared with Table 1,
the PCS algorithm yeilds best solutions in more cases, and the ILP method failed to find a feasible
solution in more cases.

285

Novel List Scheduling Strategies for Data Parallelism Task Graphs

Table 1: Schedule lengths for task graphs with 50 tasks.
2 cores 4 cores

Tid PCS CPS CSP SCP PSC SPC ILP PCS CPS CSP SCP PSC SPC ILP

00 203 200 200 210 200 212 204 168 178 178 175 180 178 X
01 232 233 233 249 233 251 232 220 214 214 229 214 232 X
02 188 192 192 199 192 199 197 173 173 173 183 174 186 197
03 224 224 224 230 225 228 241 194 202 202 211 202 201 X
04 177 181 181 189 181 191 180 167 168 168 171 170 186 X
05 495 496 496 520 496 531 504 439 443 438 448 449 448 464
06 351 363 363 372 363 375 356 275 293 293 294 293 305 X
07 384 387 387 394 391 400 430 357 348 348 358 349 367 X
08 434 456 456 447 456 464 460 409 415 415 424 415 412 456
09 386 397 397 412 397 410 398 327 373 373 368 373 363 X
10 153 162 162 156 163 159 165 131 139 139 134 140 134 X
11 205 213 213 208 213 210 198 181 192 192 177 192 177 191
12 208 211 211 213 211 213 200 197 195 195 201 195 212 X
13 238 252 252 282 252 287 248 186 214 214 239 214 254 X
14 195 197 197 196 197 201 208 171 181 181 175 181 175 X
15 425 448 448 452 448 444 427 376 377 377 383 373 386 382
16 374 390 390 398 395 408 389 318 330 330 342 331 356 360
17 439 448 467 492 456 491 471 377 396 396 414 396 414 X
18 428 443 443 438 443 430 429 403 390 390 408 392 414 401
19 393 409 409 416 403 407 404 342 368 368 368 369 373 X

8 cores 16 cores
Tid PCS CPS CSP SCP PSC SPC ILP PCS CPS CSP SCP PSC SPC ILP

00 149 152 152 151 160 160 X 156 149 152 148 152 160 211
01 203 210 210 197 210 212 X 195 204 205 213 204 213 227
02 161 153 153 156 153 164 X 150 143 143 149 143 146 199
03 175 180 180 183 180 189 X 169 174 174 171 174 184 219
04 150 155 155 160 154 172 X 158 159 159 157 159 167 188
05 432 402 402 438 402 439 X 406 399 399 413 399 451 463
06 259 260 252 269 262 281 X 268 261 261 263 261 282 360
07 336 325 325 324 324 338 X 301 283 283 298 283 288 431
08 366 362 362 367 362 377 X 360 347 347 370 347 369 438
09 323 324 324 338 324 349 X 289 303 303 309 303 286 382
10 127 134 134 128 134 132 193 126 133 133 129 133 133 168
11 180 173 173 178 173 195 X 135 155 155 172 155 186 175
12 183 180 180 183 180 183 X 174 182 183 183 182 197 213
13 171 170 169 215 170 233 X 154 174 174 199 174 201 243
14 166 169 169 164 169 164 X 160 160 158 162 160 166 191
15 304 314 314 307 314 307 X 325 336 336 331 336 343 445
16 269 289 289 319 302 323 X 286 301 301 291 304 286 387
17 306 305 305 326 310 342 X 333 337 337 319 338 336 481
18 358 357 357 354 362 363 403 342 350 350 372 350 382 415
19 361 373 373 371 373 371 X 334 332 332 319 332 334 401

286

International Journal of Networking and Computing

Table 2: Schedule lengths for task graphs with 100 tasks.
2 cores 4 cores

Tid PCS CPS CSP SCP PSC SPC ILP PCS CPS CSP SCP PSC SPC ILP

00 431 447 447 463 445 466 X 388 396 396 399 392 406 X
01 401 411 411 416 411 418 X 348 361 366 381 362 380 X
02 459 480 486 508 480 512 X 413 429 429 448 429 466 X
03 406 419 419 427 416 431 501 341 363 363 375 365 375 X
04 393 417 417 408 422 416 459 454 369 376 387 382 396 X
05 814 833 833 868 842 873 X 704 707 698 739 698 753 X
06 868 886 882 916 886 899 965 785 778 778 790 782 813 X
07 861 872 872 888 869 929 997 760 773 773 797 773 806 X
08 796 818 818 824 818 806 X 701 726 726 750 726 739 X
09 947 963 963 958 963 974 X 783 806 810 852 810 843 X
10 464 485 485 488 485 490 532 385 402 402 405 402 417 X
11 445 464 466 456 466 455 X 394 406 410 400 416 400 X
12 469 484 484 522 484 528 551 432 450 450 477 450 490 X
13 480 502 502 513 502 513 X 404 435 440 426 437 431 X
14 391 417 417 422 415 418 X 354 353 357 370 359 369 X
15 781 792 792 873 792 866 X 706 695 694 721 697 734 X
16 764 862 860 868 857 863 X 667 700 700 722 700 730 X
17 860 920 922 936 922 927 X 746 796 798 828 798 818 X
18 724 777 792 794 779 828 X 628 669 662 651 669 686 X
19 749 825 825 860 825 844 856 700 725 726 802 743 814 X

8 cores 16 cores
Tid PCS CPS CSP SCP PSC SPC ILP PCS CPS CSP SCP PSC SPC ILP

00 356 355 355 357 361 368 X 335 351 354 358 363 346 494
01 326 345 347 350 346 366 X 307 327 317 326 337 327 483
02 380 380 382 387 382 387 X 365 352 381 353 381 353 501
03 338 354 354 371 353 365 X 314 329 336 331 354 327 449
04 340 355 344 342 350 360 X 317 314 324 320 348 320 489
05 713 701 701 764 701 759 X 668 690 699 690 716 690 920
06 712 732 730 730 730 731 X 687 705 719 705 751 701 789
07 675 728 728 712 728 709 X 665 694 690 696 680 694 945
08 637 669 669 671 669 674 X 607 618 620 618 639 618 900
09 785 754 754 748 754 774 X 728 742 786 742 788 742 944
10 338 354 375 358 356 358 X 362 370 372 362 361 358 501
11 353 382 384 389 381 398 X 336 342 342 344 351 398 480
12 431 435 435 441 435 443 X 410 394 397 437 414 443 541
13 382 402 405 395 402 406 X 375 395 399 431 394 406 556
14 327 344 343 342 343 347 X 313 337 338 325 338 347 473
15 697 671 658 714 658 692 X 606 625 625 613 597 692 978
16 625 649 649 705 657 721 X 648 670 670 671 670 721 876
17 730 770 770 816 770 783 X 677 727 727 750 727 783 1024
18 657 668 668 673 668 679 X 591 644 652 615 652 679 832
19 679 705 701 801 701 775 X 676 682 686 731 690 775 796

287

Novel List Scheduling Strategies for Data Parallelism Task Graphs

Table 3: Schedule lengths for realistic task graphs.
(a) fpppp

2 cores 4 cores 8 cores 16 cores
PCS 5361 4881 4533 4487
CPS 5738 5152 4987 4905
CSP 5738 5152 4987 4905
SCP 5809 5108 4946 4899
PSC 5363 4884 4538 4531
SPC 5509 5032 4689 4623

(b) robot
2 cores 4 cores 8 cores 16 cores

PCS 1951 1739 1731 1615
CPS 1961 1769 1672 1641
CSP 1961 1769 1672 1641
SCP 1975 1791 1715 1637
PSC 1952 1767 1731 1615
SPC 2002 1783 1687 1627

(c) sparse
2 cores 4 cores 8 cores 16 cores

PCS 1458 1242 1132 1038
CPS 1442 1312 1222 1140
CSP 1442 1312 1222 1140
SCP 1454 1276 1172 1104
PSC 1458 1242 1136 1038
SPC 1454 1248 1166 1086

4.2 Results for Realistic Task Graphs

In addition to the random task graphs, we used three task graphs which are derived from realistic
applications. The STG contains three task graphs based on realistic application programs, i.e., (a)
a part of fpppp from in the SPEC benchmarks, (b) robot control and (c) sparse matrix solver [6].
The task graphs are generated by the OSCAR Parallelizing Compiler [7, 8, 9]. The task graphs of
fpppp, robot and sparse contain 334 tasks, 88 tasks, and 96 tasks, respectively.

Table 3 shows the average schedule lengths for the three realistic task graphs. In order to
understand more easily, we normalized the all results by the result of PCS, and converted the data
to bar charts as Figures 7 (a), (b) and (c). We found the PCS algorithm yields good schedules in
general. However, for robot on 8 cores and sparse on 2 cores, some others algorithms perform better
than PCS.

288

International Journal of Networking and Computing

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

2 cores 4 cores 8 cores 16 cores

S
ch

ed
u

le
 l

en
g

th
 n

o
rm

al
iz

ed
 t

o
 P

C
S

(a) fpppp

PCS

CPS

CSP

SCP

PSC

SPC

0.92

0.94

0.96

0.98

1.00

1.02

1.04

2 cores 4 cores 8 cores 16 cores

S
ch

ed
u

le
 l

en
g

th
 n

o
rm

al
iz

ed
 t

o
 P

C
S

(b) robot

PCS

CPS

CSP

SCP

PSC

SPC

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

2 cores 4 cores 8 cores 16 cores

S
ch

ed
u

le
 l

en
g

th
 n

o
rm

al
iz

ed
 t

o
 P

C
S

(c) sparse

PCS

CPS

CSP

SCP

PSC

SPC

Figure 7: Normalized schedule lengths for realistic task graphs.

289

Novel List Scheduling Strategies for Data Parallelism Task Graphs

5 Conclusions

This paper proposed six algorithms for scheduling tasks on multi/many-core processors. Unlike most
of previous research efforts, the proposed algorithms schedule tasks which have data parallelism and
run on multiple cores. The experimental results show that, among the six algorithms, the PCS
algorithm yields the best schedule results on average.

In some task sets, the PCS algorithm does not yield good schedules. The effectiveness of the
six algorithms heavily depends on the structure of task graphs. In the future, we will investigate
the algorithms theoretically and compare them with optimal schedules in order to further improve
the algorithms. Also, the current algorithms do not take into account communication costs, which
should be addressed in the future.

References

[1] E. G. Coffman: Computer and Job-shop Scheduling Theory, Wiley, 1976.

[2] H. Yang and S. Ha: ILP based data parallel multi-task mapping/scheduling technique for MP-
SoC, International SoC Design Conference (ISOCC), 2008.

[3] H. Yang and S. Ha: Pipelined data parallel task mapping/scheduling technique for MPSoC,
Design Automation and Test in Europe (DATE), 2009.

[4] N. Vydyanathan, S. Krishnamoorthy, G. M. Sabin, U. V. Catalyurek, T. Kurc, P. Sadayappan,
and J. H. Saltz: An integrated approach to locality-conscious processor allocation and scheduling
of mixed-parallel applications, IEEE Trans. on Parallel and Distributed Systems, vol. 20, no. 8,
pp. 1158-1172, Aug. 2009.

[5] H. Kasahara and S. Narita: Practical multiprocessor scheduling algorithms for efficient parallel
processing, IEEE Trans. on Computers, vol. C-33, no. 11, Nov. 1984.

[6] http://www.kasahara.elec.waseda.ac.jp/schedule/ (Last accessed: July 24, 2013)

[7] H. Kasahara, H. Honda and S. Narita: Parallel Processing of Near Fine Grain Tasks Using Static
Scheduling on OSCAR, Proc. IEEE ACM Supercomputing ’90, 1990.

[8] H. Kasahra, H. Honda, A. Mogi, A. Ogura, K. Fujiwara and S. Narita: A Multi-grain Parallelizing
Compilation Scheme for OSCAR, Proc. 4th Workshop on Languages and Compilers for Parallel
Computing, 1991.

[9] A. Yoshida, K. Koshizuka and H. Kasahara: Data-Localization for Fortran Macrodataflow Com-
putation Using Partial Static Task Assignment, Proc. 10th ACM Int’l Conf. on Supercomputing,
pp. 61-68, 1996.

290

