International Journal of Networking and Computing — www.ijnc.org
ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 4, Number 1, pages 189-206, January 2014

NUMA Computing with Hardware and Software Co-Support on Configurable Emulated Shared

Memory Architectures

Martti Forsell

Platform Architectures Team
VTT Technical Research Centre of Finland
Box 1100, FI-90571 Oulu, Finland
Martti.Forsell@QVTT.Fi

Erik Hansson, Christoph Kessler

Computer Science Department
Linkoping University
S-58183 Linkoping, Sweden
Erik.Hansson@LIU.Se, Christoph.Kessler@QLIU.Se

and

Jari-Matti Mékela, Ville Leppénen

Department of Information Technology
University of Turku
Joukahaisenkatu 3-5, FI-20014 Turku, Finland
jmjmak@UTU.Fi, Ville.Leppanen@QUTU.Fi

Received: July 27, 2013
Revised: October 27, 2013
Accepted: November 29, 2013
Communicated by Akihiro Fujiwara

Abstract

The emulated shared memory (ESM) architectures are good candidates for future general
purpose parallel computers due to their ability to provide an easy-to-use explicitly parallel syn-
chronous model of computation to programmers as well as avoid most performance bottlenecks
present in current multicore architectures. In order to achieve full performance the applications
must, however, have enough thread-level parallelism (TLP). To solve this problem, in our ear-
lier work we have introduced a class of configurable emulated shared memory (CESM) machines
that provides a special non-uniform memory access (NUMA) mode for situations where TLP is
limited or for direct compatibility for legacy code sequential computing and NUMA mechanism.
Unfortunately the earlier proposed CESM architecture does not integrate the different modes
of the architecture well together e.g. by leaving the memories for different modes isolated and
therefore the programming interface is non-integrated. In this paper we propose a number of
hardware and software techniques to support NUMA computing in CESM architectures in a
seamless way. The hardware techniques include three different NUMA shared memory access
mechanisms and the software ones provide a mechanism to integrate and optimize NUMA com-
putation into the standard parallel random access machine (PRAM) operation of the CESM.

189

NUMA Computing with Hardware and Software Co-Support

The hardware techniques are evaluated on our REPLICA CESM architecture and compared to
an ideal CESM machine making use of the proposed software techniques.

Keywords: parallel computing, models of computation, programming model, shared memory
emulation, NUMA, PRAM

1 Introduction

Among the architectural approaches for parallel and multicore computing making use of memory
— let it be distributed either on-chip or among a number of chips — there are very few that sup-
port simple programmability and performance scalability with respect to sequential computing [21].
This is because most approaches define asynchronous execution of computational threads and do
not support efficient hiding of the new kind of memory reference/ intercommunication latency —
delay caused by routing the references/messages to their targets and if necessary replies back. This
prevents programmers from using simple parallel algorithms with a clear notion of the state of com-
putation and therefore makes programming complex and many parallel algorithms weakly scalable.
A notable exception is so called emulated shared memory (ESM) machine [23, 18, 2], which pro-
vides a synchronous programming model mimicking the parallel random access machine (PRAM)
model of computation [12] and hides the latency of the distributed memory system by employing
the high-throughput computing scheme, i.e. executing other threads while a thread is referring to
the memory.

In order to have full performance, an ESM machine needs to have applications with enough
thread-level parallelism (TLP). This poses a problem related to functionalities with low TLP and a
compatibility problem with existing sequential and non-uniform memory access (NUMA) programs.
In our earlier work we have proposed a configurable emulated shared memory (CESM) machine to
solve this problem by allowing a number of threads to be bunched together to mimic native NUMA
operation so that the overhead introduced by plain ESM architectures can be eliminated [8, 11]. The
original PRAM-NUMA model of computation [9, 11] defines separate networks and memory systems
for the different modes of the machine, which is impractical from the point of view of writing unified
programs making use of both modes. In order to simplify programming, we have proposed unifying
the modes by embedding the NUMA system into the PRAM system so that there is no need for
dedicated NUMA network nor dedicated NUMA memories [10]. That work, however, left hardware
details open and did not provide a clean way to integrate the usage of these two modes into a single
program with intercommunication support.

In this paper we propose a number of hardware and software techniques to support the NUMA
computing in CESM architectures in a seamless way. The hardware techniques include three different
NUMA shared memory access mechanisms and the software ones provide mechanisms to integrate
and optimize NUMA computation into the standard PRAM operation of the CESM. The hardware
techniques are evaluated on our REPLICA CESM architecture and compared to an ideal CESM
machine making use of the proposed software techniques.

The rest of the paper is organized so that in Section 2 we describe the class of CESM architectures
in which these techniques are relevant, in Section 3 we propose a number of NUMA realizations
with different memory organizations, in Section 4 we consider programming of CESM architectures
making use of the realizations of Section 3, realizations are evaluated and compared to each other
and also to the ideal CESM machine in Section 5, and finally, in Section 6 we give our conclusions.

2 Configurable emulated shared memory architectures

In order to solve the performance and programmability problems of current parallel/multicore ma-
chines, the concept of shared memory emulation has been introduced and a number of academic

OThis work was funded by the REPLICA project of VT'T. This paper is an extended version of an APDCM’13
paper.

190

International Journal of Networking and Computing

architectures has been proposed [14, 2, 24, 10]. In this section we will discuss the idea of shared
memory emulation and adding NUMA support for it to support configurability in those architectures.

2.1 Idea of shared memory emulation

The main problems of current architectures are that synchronization (of asynchronous execution)
takes hundreds of clock cycles and that cache-based latency hiding scales weakly. These apply
especially to current symmetric multiprocessor (SMP) and NUMA architectures. Emerging general
purpose graphics processors (GP-GPU) make use the throughput computing scheme to relieve the
latency problem.

To solve these problems in an unified way one would need a fast/low-overhead synchronization
mechanism and scalable latency hiding/tolerance mechanism. The standard way to solve these
problems, known as shared memory emulation, is to use wave synchronization to provide lock-step
synchronous execution and to employ multithreading with a pipelined memory system along with
a machine consisting of P processors (each Tp-threaded) connected to M memory modules via a
high-bandwidth network of diameter ¢,,;.

The idea of wave synchronization is to separate references belonging to consecutive steps of
execution during which each thread of the processor executes a single instruction. This is done by
sending a set of synchronization references between the steps. Routing of synchronization references
happens in an elastic wave-like manner so that synchronicity is maintained [18, 2].

Latency hiding using excessive multithreading is based on overlapping relatively long latency
memory references in a pipelined memory system so that when a thread refers to a memory location,
other threads are executed e.g. in an interleaved manner until the reply is received [2]. Hot spots
and congestion are minimized by using randomized hashing of memory locations [1].

As these two methods are combined the synchronization cost is dropped so that the overhead
of lock-step synchronicity in execution time becomes 1/T,, and the latency will be hidden with a
high probability assuming T, > 2¢,.; [23] like the current single core architectures are emulating
the model of sequential computation efficiently with a high probability.

2.2 Adding NUMA support

The utilization fraction U, of a P-processor ESM system with 7}, threads per processor as the
function of software parallelism T} (the number of threads in execution at the current moment of
time) is
min{Ty, P x T,}

P xT,

U, =

We can easily see that if the software parallelism T3 is low U, gets weak. Most current multicore
architectures do not have this problem since they are not using multithreading (7}, = 1) for latency
hiding but coherent caches to exploit access locality in programs (where available) or just try to
tolerate natural latency defined by the distance of memory access making memory access non-
uniform [17, 22].

In our earlier work we have introduced the idea of adding the plain NUMA model support
for the ESM machine by allowing a set of threads in a processor core to join together as a single
bunch that is sharing a single register set and executing instructions consecutively even inside a
step instead of executing the same instruction for each thread [8]. This is done by reorganizing
the thread storaging mechanism, adding indirection to the register set addressing so that threads
can use the register storages of other threads (see Figure 1 left), merging the ESM pipeline with
the standard NUMA pipeline (see Figure 1 right), and providing non-uniform locality-aware access
to memory modules. The obtained class of architectures is called configurable emulated shared
memory (CESM). By setting the threads of the processors of a CESM machine to the NUMA mode
the utilization fraction becomes the same as for the current architectures and the problem of low U,
with low parallelism is eliminated.

We have also introduced the PRAM-NUMA model of computation capturing the details of this
solution in more theoretical way [9]. It consists of T processors grouped as P groups of T}, processors,

191

NUMA Computing with Hardware and Software Co-Support

Storage pointer Threads T, threads 1 thread PRAM mode ~ NUMA mode
I T1 [F [F] [IF | |11 B1
‘ T2 [os [os | [0s | |12 B1
T3 [AT [TAM4IS | [AIEA+IM+IS] |13 BI
T4 [a2][w] [& WB_ | |14 BI
s 15
16 16
i MEM MEM T1p4

STp T1p / 13
TIp2

WP TIp

SEQ SEQ TIp

Figure 1: Indirecting the register storages of threads T1..TT, to use a single register storage S1
in ESM (left) and merging a T,-threaded ESM pipeline and standard 4-stage NUMA pipeline
to obtain CESM architecture (right) with an unified pipeline. A, = ALU,, Bl=single bunch,
CMP=compare unit stage, IF=instruction fetch stage, MEM=memory unit stage, OS=operand
select stage, Tn=thread n, WB=write back stage.

a word-wise accessible global shared memory, P local memory blocks, a metric defining distance
between the processor groups and target memory blocks, and distance-aware interconnection network
(see Figure 2).

3 NUMA realization alternatives

The original PRAM-NUMA model of computation [9] defines separate networks and memory systems
for the different modes of the machine, which is impractical from the point of view of writing
unified programs making use of both modes. In order to simplify hardware implementation and
programming, we have proposed unifying the modes by embedding the NUMA system into the
PRAM system so that there is no need for a dedicated NUMA network while dedicated NUMA
memories are retained as local memory modules [10]. This solution does, however, not define a
simple way to unify memory allocation and execution control mechanisms in the different modes of
the processor and leaves low-level hardware organization open. Our new idea is to use the PRAM
shared memory system to implement storage also for shared NUMA variables while the private
PRAM variables are moved to the local memories to reduce the load of the network. Technically
there are three obvious ways to implement shared memory load accesses for the NUMA mode —
freeze processor, freeze bunch, and load with explicit receive. In the following we describe the main
principles of these alternatives.

e [reeze processor (FP) The whole processor core freezes until the reply arrives. As a conse-
quence, the rest of the threads let them be PRAM threads or other NUMA bunches on the
same core will also be halted. This resembles adding wait states until the memory reply is
received in a standard pipelined processor.

e Freeze bunch (FB) The currently executed bunch freezes but the rest of the threads and bunches
continue execution. This is implemented by re-executing the tail of the load instruction during
the execution slots of the bunch until the reply is received from the memory system. This
resembles freezing the current instruction and all the dependent instructions in a standard
superscalar processor.

o Load with explicit receive (LER) The original load instructions are divided into two new mem-
ory instructions — load and receive. The new load instruction sends the shared memory ref-

192

International Journal of Networking and Computing

Crrrr el
Word-wise accessible shared memory

‘ i fit fit

Read/write operations from/to the global shared memory

Common
clock 3

Distance-aware network

Figure 2: The PRAM-NUMA model of computation. The word-wise accessible shared memory and
links to it are related to the PRAM mode while local memories and distance-aware network is related
to the NUMA mode. (P=processor, L=local memory, T,,=number of processors per group, T=total
number of threads.)

erence on its way to the memory system. The reply is fetched by the receive instruction. If
the reply has not arrived at the time of executing the receive, the current bunch freezes until
the reply is received, just like in the freeze bunch alternative. With a help of explicit receive
it is possible schedule the load and receive separately or even to overlap multiple shared load
operations unlike in the other alternatives while the shared store operations are automatically
overlapped in all alternatives. A practical upper bound for a number of overlapping references
is the number of threads per the NUMA bunch divided by two (assuming both send and receive
instructions are executed in the same functional unit) and the upper bound for the latency
between a load and corresponding receive is a single step. The former is potentially bounded
also by the number of available registers.

Since these solutions are using the PRAM memory system, the memory wait logic is taking care
that the replies are received within the current step of execution. In the case of contention in the
network, it can happen that the thread slot initiating the load is trying to leave the memory waiting
stages causing the whole processor core to freeze until the reply is received. The synchronization wave
is ultimately guaranteeing that all the references made during a step of execution have completed
before the references of the next step are applied.

4 Programming considerations

In our earlier work we have proposed a parallel application development scheme for ESM machines
consisting of a strong model of computation, a C-like TLP programming language e [5] or REPLICA
[20], ILP-TLP optimization algorithm, and application development flow [7]. The scheme allows
programmers to write applications with a help of supporting theory of parallel algorithms [13, 14].
Orchestration of threads is arranged in standard PRAM-style by providing thread identifier, number
of threads, and synchronous and asynchronous variants of C-style constructs. Since the NUMA
mode of the CESM machine does not execute threads synchronously nor provide access distance
independent latency hiding like the PRAM model, the scheme does not directly support NUMA
programming of CESM machines. In the following we describe how NUMA mode programming can
be closely unified to the ESM programming scheme, give some programming examples, explain what
kind of support the programming scheme requires, as well as consider compilation and optimization
issues for PRAM-NUMA.

193

NUMA Computing with Hardware and Software Co-Support

4.1 Orchestrating parallelism in the NUMA mode

The CESM machine boots up in the PRAM mode, supports switching groups of threads to the
NUMA mode and back to PRAM mode, and allows for multiple simultaneous PRAM and NUMA
executions. This suggests that the control of execution mode could be implemented as standard
blocks at the programming language level. For this we propose using two control constructs that
switch the execution to NUMA mode and back. The first construct is

numa(s)

that bunches all the threads of current thread group in all participating processor into NUMA
bunches and executes statement s. After that the mode is switched back to PRAM. Sequential
portions of computation can be supported with a construct

sequential(s)

that bunches all the threads of current thread group in the participating processor having the lowest
Id into a single NUMA bunch and executes statement s while the other threads are waiting. This
mechanism would just allow switching to NUMA mode and back to PRAM mode but prevents more
complex schemes including nesting modes (e.g. switching to NUMA mode, splitting to subgroups
to execute them in the PRAM mode). Since there can be multiple PRAM thread groups executing
in parallel, it would be possible to set up multiple NUMA bunches that run in parallel with the
remaining PRAM groups if any.

In order to provide similar programming interfaces for the both modes, we propose using the
PRAM thread orchestration mechanisms also in the NUMA mode where applicable. Controlling
individual bunches could e.g. be done with the same thread identifier and number of threads variables
and synchronization could happen with the same barrier construct. Since the cost of synchronization
is high in the NUMA mode, we do provide only the standard asynchronous control constructs for
NUMA and leave synchronous ones limited to the PRAM mode only.

In the original ESM development scheme passing data between the different parts of the program
happens with standard programming language mechanisms, e.g. global variables, stack frames and
pointers. To support easy data exchange between the modes we propose reusing the REPLICA
memory model consisting of unified shared memory and private memory making use of local memory
modules also for the NUMA mode (see Figure 3 for the resulting memory organization map as a
portion of code executed in the PRAM mode calls a NUMA mode portion in a T-threaded CESM).
This means that exchange between NUMA bunches happens via the shared memory system only and
exchange between the modes happens via the shared memory and bunch leaders private subspace.
Then a programmer can directly use the shared variables defined in the PRAM mode but without
the notion of locality and refer also to the single set of private variables that belong to the bunch
leader. Switching back to the PRAM mode passes the modifications done to shared variables and
bunch leader’s private variables. All the variables declared inside the NUMA portion are accessible
in the PRAM mode before or after the portion.

4.2 Programming example

Consider the computational problem of determining the prefix sums of an array of N integers. Let
us denote that array with symbol source. The standard (sub-optimal) way to compute the prefix
sums in parallel is the known as the recursive doubling logarithmic algorithm, where each element of
the array gets added by the element 2? positions left on iteration i, i = 0...log(N) — 1 (see Figure 4).
Since the number of processors P in the NUMA mode can be smaller than N, one needs to compute
each iteration by an N/P-iteration inner loops. The algorithm requires that data is accessed truly
parallel manner in each outer loop iteration meaning that a temporary array temp has to be used to
store intermediate results during inner loop execution and the obtained data must be copied back
to the original array. Figure 5 shows the implementation of this algorithm in the e language.

The data is initialized in the PRAM mode and the logarithmic prefix computation is done inside
the numa(s) construct. The execution time of this algorithm is O(N log(N)/P) assuming P<N
otherwise it is O(N log(N)).

194

International Journal of Networking and Computing

shared globals

_shared_heap —> 7 The NUMA mode
shared variables
Shared memory ,
space for groups| —— share the ca|!|ng
thread group’s

shared_stack — ! shared memory
- - group-shared space.
locals
private globals
of thread 0
v

Private memory
subspace of

thread 0 \
i The NUMA mode

private locals private variables
—— share the bunch

/
e leader’s private

private globals)
of thread T-1 SUbSpaCeS

v

Private memory
subspace of
thread T-1

?

private locals
of thread T-1

SPy—>

Figure 3: The memory organization of a T-threaded CESM machine making use of the NUMA
mode.

4.3 Supporting the NUMA mode operation

The above NUMA programming scheme requires implementation of the numa construct and barrier
synchronization routine on a top of the ESM programming scheme.

In order to switch from the PRAM mode to the NUMA mode, the current state of the PRAM
thread group is stored into block-local variables and restored from these variables as the execution of
NUMA block ends. There is also need to allocate room for a synchronization variable from the shared
stack and compute the new _thread_id and _number_of_threads variables reflecting the bunch id and
number of bunches in the NUMA block. Just before entering to the statement s the PRAM group is
switched to the NUMA mode. After the execution of the statement, the bunches are deformed and
the state of the PRAM group is restored from the local variables. The code for the numa construct
switching CESM to the NUMA mode, executing the statement s and switching back to the PRAM
mode is shown in Figure 6.

Synchronizing the bunches in the NUMA mode is done with a NUMA-specific library routine
RTL.SYNCHRONIZE_NUMA that first checks if the previous synchronization is still going on and
waits for that if necessary. Then the synchronization variable is decremented by one for each arriving
bunch. To manage the situation in which two to or more bunches do this simultaneously we use
REPLICA processor’s fast multiprefix operations that work partially also in the NUMA mode. The
arrived bunches wait until the synchronization variable reaches zero meaning that all the bunches
have arrived and continue after that. In order to manage asynchrony of bunches in exiting the
routine and reinitializing the synchronization variable the threads decrement the synchronization

195

NUMA Computing with Hardware and Software Co-Support

3 Inner for-loops:
| 10 Compute sums in 4

SRS]\ feons purlel
N R additions. 2 loops
\®\® %\é\‘@ %@@ ‘®\®\®\® and synchronizations
Y | A— v Y

12]9 |1'0|1'9| 2'5|20| 2'7|2'1|21|18| 1'6|1'5| 15|1'6| 1'3|18| are needed due to

NUMA asyncrony.
| T OO DO E Outer for-loop:
4 v 4 v 4 v 4 A 4 A 4 A COmpU[e
[2 To T10[19] 25] 29] 37] 40] 44] 38] 43] 36] 36] 34] 29] 33 the final

—— = | [[]] pein
TOTTTTOO |

[2 T9 T10]19] 25] 29] 37] 40] 46] 47] 53] 55] 61] 63] 66] 73] 1

Figure 4: The logarithmic prefix algorithm in the case of N=16, P=4.

variable once more and the last bunch leaving the routine does the initialization. The REPLICA
assembler code for NUMA-specific barrier synchronization is shown in Figure 7.

4.4 Compiler support

We support the REPLICA hardware with a tailored compiler tool chain. The code generation part
is based on the LLVM compiler framework [16]. Earlier versions of our REPLICA compiler only
supported to generate code for PRAM mode [19, 15]. For the previous architectures, [8, 11], the so
called e-compiler was developed and used [6, 4]. To a large extent it can be used for the current
REPLICA architecture as well, and we use it for some of the evaluation benchmarks in Section 5,
since we try to support both compilers under a transition period.

In this paper we present the first native REPLICA compiler version that supports both PRAM
and NUMA compilation. The earlier PRAM compiler, [15], can generate code for different configu-
rations of the REPLICA processor, e.g. for different numbers of functional units (ALUs, MUs etc.)
placed in a chain etc. but has no NUMA support.

The first step in the code generation phase, both for PRAM and NUMA mode, is to generate
code for a minimal configuration. In the PRAM case it is then translated and optimized for larger
configurations. For NUMA mode we still use this initial minimal configuration as a starting point,
but instead of optimizing for a more functional units etc., our scheduling algorithm enforces the
stricter scheduling constraints such as no chaining of functional units. One example is that a compare
instruction and a depending branch instruction can not be scheduled in the same VLIW instruction.
Another is that, after a branch instruction two NOPs are needed. These two examples do not apply
in PRAM mode.

To change from PRAM mode to NUMA mode a special instruction, JOIN, is used. To go back to
PRAM mode SPLIT is used. The compiler detects the basic blocks that are encapsulated between
the JOIN and SPLIT instructions and marks them to be NUMA basic blocks. If a JOIN or SPLIT
instruction is found inside a basic block, the block is divided into two new ones.

For the case of load with explicit receive (LER), the REPLICA compiler can in NUMA mode
translate a load instruction to a new load instruction together with a receive instruction. This
desired behavior can be specified with a special compiler flag. It is important to mention that the
LER is only for shared memory while private memory is handled with traditional load instructions.

196

International Journal of Networking and Computing

#define size N

int source_[size]; // Allocate data array from the shared memory
int temp_[size]; // Allocate space for a shared temporary array
int main()

{

int i;
int j;
for (i=_thread.id; i<size; i+=_number_of_threads)
source_[i] = i; // Initialize source_ in parallel in the PRAM mode
numa(

for (i=1; i<size; i<<=1)
{
for (j=_thread.id; j<size; j+=_number_of_threads)
if (j-i>=0) temp_[j]=source_[j] + source_[j-i];
synchronize;
for (j=_thread.id; j<size; j+=_number_of_threads)
source_[j]=temp_[j];
synchronize;

}

synchronize;

);

Figure 5: Non-optimized NUMA prefix computation in the e language in which symbol ”_” at the
end of the variable name declares it shared.

To distinguish between loading shared and private memory the compiler recursively analyzes if an
address computation uses shared memory or not inside a NUMA block. Of course, there are rare
cases where it is not possible to do it statically, then it is up to the programmer to manually adapt
the code.

4.5 NUMA optimizations

In order to provide decent performance in the NUMA mode there exists a number of optimizations
familiar from all NUMA systems, e.g. synchronization minimization, locality maximization, as well as
some that are specific to CESM architectures, e.g. scheduling of receive instructions and overlapping
two or more shared memory loads.

Since synchronizations (e.g. with the barrier algorithm) take a long time to execute in the NUMA
mode compared to a single instruction execution, performance increases if the computation is reor-
ganized so that the number of synchronizations is minimized. A typical way to do this is to divide
the data at hand into blocks and process blocks inside processors so that synchronizations are not
used. Unfortunately this is not simple and not even always possible. For the prefix example de-
scribed above there exists a way to do synchronization minimization by blocking although there are
a relatively large number of synchronizations in the unoptimized algorithm. For this we divide the
shared array to P blocks, compute prefix sums of blocks with a sequential algorithm in P parallel
bunches, compute the prefix of the block sums in the bunch 0 with a sequential algorithm, and offset
the blocks with the obtained prefixes of the blocks with a sequential algorithm executed in parallel
in all bunches (see Figure 8).

Locality optimization for the NUMA mode means, in the prefix sums example, dividing the
shared data array source into P private (local) parts that are processed in the same way. This
maximizes the locality since the most data (except computing the prefix sum of the block sums and
distributing the results of it) is then processed locally and the only place in which shared access is
needed is computing prefixes of block sums. The resulting program is shown in Figure 9.

197

NUMA Computing with Hardware and Software Co-Support

#define numa(s) {
int _old_thread_id = _thread._id;
int _old_number_of_threads = _number_of threads;
int _old_group_id = _group_id;
int _old_shared_stack = _shared_stack;
int _processor_id = _thread_id/_threads_per_processor;
shared_stack -= 4;
_group_id = _shared _stack;
_update_region_numa;
join_marker;

{
}

split_instruction;

write_back(32, _private_space_start);

_thread_id = _old_thread_id;
_number_of_threads = _old_number_of_threads;
_group_id = _old_group_id;

_shared_stack = _old_shared_stack;

Figure 6: Implementation of the numa construct. The _update_region_numa routine computes the
new values for _thread_id and _number_of_threads variables and switches execution to the NUMA
mode. The split_instruction routine switches execution back to the PRAM mode.

For suitable algorithms executed in LER-enabled CESM it is possible to schedule the receive
instructions so that their distance to corresponding load instructions is maximized or made long
enough for partially hiding the latencies of loads. The result is even better if two or more loads are
overlapped e.g. with software pipelining. Figure 10 shows the main loop of the block benchmark
in the unoptimized case, after applying maximization of distance between corresponding load and
receive instructions, and after overlapping consecutive shared loads.

For more detailed information on quantitative performance effects given by these optimizations,
see the evaluation in the next section.

5 Evaluation

In order to evaluate the performance, difficulty of programming, and complexity of the hardware
and software techniques proposed in Sections 3 and 4, we applied them to the REPLICA chip
multiprocessor (CMP) framework being developed at VTT.

5.1 Performance

We measured the execution time of 6 micro benchmarks (see Table 1) in 12 configurations of
REPLICA making use of the techniques, the standard ESM (the PRAM mode of REPLICA), CESM
(REPLICA making use of the fastest available mode) and corresponding PRAM assuming idealized
memory system (see Table 2). Note that the benchmarks block, prefir and rand are variable sized
(problem size=T},tq;) while barrier, numa and edge are fixed sized.

The benchmarks were written in the e language, compiled with the e compiler ec [4] applying
options -ilp, -02, synchronization minimization and simulated on our CMP tool IPSMSim [3]. To
determine the effect local memory versus shared memory the NUMA mode tests were done with and
without locality optimization maximizing the locality of memory references by using local memory
where possible.

198

International Journal of Networking and Computing

_RTL_SYNCHRONIZE_NUMA

ADDO R29,00 0PO -4 WB1 A0 ; Save registers
ADDO R29,00 0PO -8 STO R2,R1 WB1 A0
ADDO 00,R32 0PO __group_id STO R3,R1 WB1 A0
LDO R1 WB1 MO ; R1 <-- pointer to shared _group_id
L10_RTL20
LDO R1 WB2 MO ; R2 <- The synchronization variable _group_id
SLEO R2,00 0PO 0 ; If the synchronization variable <= 0 then the previous barrier is still goin on
NOPO
NOPO
BNEZ 01 OP1 L10_RTL20 ; Wait until it is reinitialized
MSUBO 00,R1 0PO 1 : Decrement the synchronization variable of the group
L20_RTL20
LDO R1 WB2 MO ; R2 <-- The synchronization variable _group_id_
SGTO R2,00 0PO 0 ; Test if all threads of the group have arrived
NOPO
NOPO
BNEZ 01 OP1 L20_RTL20; If not, continue waiting
MPSUBO 00,R1 0PO 1 WB2 MO ; Decrement the synch variable, R2 <- previous value
ADDO 00,R32 0PO __number_of_threads WB3 A0 ; R3 <-- number of threads
LDO R3 WB3 MO
ADDO R2,R3 WB2 A0 ; R2 <-- number of threads + previous value of the synchronization variable
SNEO R2,00 0PO 1 ; If the sum <> 1 then do not reinitialize the synchronization variable
NOPO
NOPO
BNEZ 01 OP1 L30_RTL20
STO R3,R1 ; Reinitialize the synchronization var
L30_RTL20
ADDO R29,00 0PO -4 WB1 A0 ; Restore registers
ADDO R29,00 0PO -8 LDO R1 WB1 A0 WB2 MO
NOPO
NOPO
LDO R1 WB3 MO JMP R31 ; Return

Figure 7: The NUMA-specific barrier synchronization routine in REPLICA assembler.

The results of measurements are shown in Figures 11 — 12. From the results we can make the
following observations:

The LER alternative is the fastest shared memory NUMA technique by a small margin while
FP is the slowest. The difference is significant especially in locality optimized prefix and
rand benchmarks This is because freezing the whole processor unbalances the timing of the
synchronization wave leading to relatively long delays.

As expected the PRAM mode is often much faster than the NUMA mode but in the barrier
and strictly sequential rand benchmarks all NUMA executions are much faster than the PRAM
mode. This is because the ESM can not execute sequential code efficiently and because the
number of threads in the PRAM mode is much higher than in the NUMA mode.

CESM can benefit from the NUMA mode but the cost of switching the machine to the NUMA
mode for fast computation and back is substantial ruling fine-grained NUMA exploitation
impractical, see e.g. results for numa.

Locality optimizations speed up execution. If there is enough computation per element, like in
the edge benchmark, this applies even if data is originally in the shared memory. In that case
data needs to be divided into local blocks, processed locally and copied back to the shared
memory. Sometimes moving data between the memories can neglect the speedup as seen in
the rand benchmark executed with the FP alternative.

The LER alternative provides the programmer with an option to overlap also load operations
speeding up operation significantly compared to non-overlapped operation. This opens up
interesting optimization possibilities for programmers and compilers.

199

NUMA Computing with Hardware and Software Co-Support

#define size N
volatile int source_[size]; // Allocate from the shared memory
int main()
{ int i, blocksize, start, stop, prev;
numa(
blocksize=size/procs;
start = _thread_id * thrds;
stop = start + blocksize - 1;
for (i=start; i<=stop; i++) // Initialize blocks in parallel
source_[i]=i; // with a sequential algorithm
synchronize;
for (i=start+1; i<=stop; i++) // Determine prefixes of
source_[i]+=source_[i-1]; // blocks in parallel
synchronize;
if (_thread_id==0) // Prefix for block sums sequentially
{ for (i=start+thrds+thrds-1; i<procs*thrds; i+=thrds)
source_[i]+=source_[i-thrds]; }
synchronize;
prev = start - 1;
if (prev>=0) // Add results of prefix sum
{ for (i=start; i<stop; i++) // of block sums to blocks
source_[i]+=source_[prev]; }
synchronize;

Figure 8: Synchronization optimized NUMA prefix computation.

In order to figure out the potential performance of the LER-specific software pipelining opti-
mizations, we applied them to the block benchmark. We measured the execution time of the shared
memory block in the baseline configuration (BASE), where no optimization is done but the receive
instruction is placed just after each shared load instruction, after maximizing the distance between
load and receive instructions but not overlapping two or more loads (MAX-DIST), after overlapping
each shared memory load with the next one and then maximizing the distance between load and
corresponding receive (OVERLAP-1). For comparison purposes we measured the execution time
of local memory versions of the block benchmark and the baseline version assuming ideal shared
memory. The programs were compiled with the REPLICA compiler and the software pipelining
optimizations (MAX-DIST and OVERLAP-1) were done by hand. The results are shown in Figure
13.

We can do the following observations from these results:

e For this simple but very widely used block copy functionality, maximizing the distance be-
tween load and corresponding receive increases the performance by 46%-60% and overlapping
consecutive loads increases the performance by 89%-124%.

e Overlapping the consecutive loads drops the execution times very close to that of the localized
algorithm and ideal shared memory emphasizing the potential of this optimization.

The cost of applying MAX-DIST and OVERLAP-1 techniques was two and four extra registers,
respectively. This indicates that overlapping a high number of shared memory loads is not possible
without special hardware support.

200

International Journal of Networking and Computing

#define size N
volatile int final_[size]; // Allocate from the shared memory
volatile int sums_[procs]; // Allocate from the shared memory

int main()
{ int i, blocksize, start, stop, prev;
numa(
int source[thrds]; // Allocate from the local memory
int offset;

blocksize=size/procs; // Divide into blocks
start = _thread_id * thrds;
stop = start + blocksize - 1;
for (i=0; i<blocksize; i++) // Initialize blocks in parallel
source[i]=i+start; // with a sequential algorithm
synchronize;
for (i=1; i<blocksize; i++) // Determine prefixes of blocks
source[i|+=sourceli-1]; // with a sequential algorithm
sums_[_thread_id]=source[blocksize-1];
synchronize;
if (_thread_id==0) // Prefix for block
for (i=1; i<procs; i++) // sums sequentially
sums_[i][4+=sums_[i-1]; // in a single processor
synchronize;
if (_thread_id>0)
{ offset=sums_[_thread_id-1];
for (i=1; i<blocksize; i++) // Add results of prefix
source[i]+=offset; } // sum of block sums to blocks
synchronize;
for (i=0; i<blocksize; i++)
final_[i+start]=source][i];

Figure 9: Locality and synchronization optimized NUMA prefix computation.

5.2 Code size and programmability

In order to roughly characterize the difficulty of programming, we determined the size of code of all
benchmarks. The results are shown in Figure 14. We can make the following observations:

e The size of the code is higher for the NUMA execution than it is for the PRAM execution.
The difference is biggest in applications making use of frequent exchange of data, e.g. prefiz,
generating a lot of synchronizations in asynchronous NUMA execution. The synchronization
optimization increases this difference due to application of the blocking technique.

e Optimizing the code with locality optimization increases the code size in all benchmarks except
for barrier and numa that do not make use of user specified statements or contain inter-thread
dependencies.

6 Conclusions
We have proposed a number of hardware and software techniques to support NUMA computing in

CESM architectures in a seamless way. The hardware techniques include different NUMA shared
memory access mechanisms and the software ones provide a way to integrate NUMA computation

201

NUMA Computing with Hardware and Software Co-Support

NON-OPTIMIZED-VERSION

_BB5_2 : Prefix 1

OPO _source_ WB8 00 OPO _source_ WB8 00

0P0 2 SHLO R1,00 WB7 A0 0P0 2 SHLO R1,00 WB7 A0

OPO _target_ WB9 00 OPO _target_ WB9 00

ADDO R8,R7 WB8 A0 ADDO R8,R7 WBS A0

ADDO R2,R1 WB1 A0 ADDO R2,R1 WB1 A0

ADDO R9,R7 WB7 A0 ADDO R9,R7 WB7 A0

LDO R8 WB8 M0 LDO R8 WB10 MO WB11 R7 ; First load odd

WB8 MO RECO R8 SLT R1,R6

STO R8,R7 ; Prefix 2

SLT R1,R6 OPO _source_ WB8 00

0PO _BB5_2 BNEZ 00 0P0 2 SHLO R1,00 WB7 A0

NOPO OPO _target_ WB9 00

NOPO ADDO R8,R7 WB8 A0

ADDO R2,R1 WB1 A0
ADDO R9,R7 WB7 A0 WB12 R10 WB13 R11

DISTANCE-MAXIMIZED-VERSION LDO R8 WB10 M0 WB11 R7 ; First load even
: Prefix SLT R1,R6

OPO _source_ WB8 00 : Main body

0P0 2 SHLO R1,00 WB7 A0 _BB5_2

OPO _target_ WB9 00 OPO _source_ WB8 00

ADDO R8,R7 WB8 A0 0PO0 2 SHLO R1,00 WB7 A0

ADDO R2,R1 WB1 A0 OPO _target_ WB9 00

ADDO R9,R7 WB7 A0 ADDO R8,R7 WB8 A0

LDO R8 WB10 M0 WB11 R7 ; First load ADDO R2,R1 WB1 A0

SLT R1,R6 ADDO R9,R7 WB7 A0
; Main body WB12 M0 RECO R12 ; From the previous iteration
_BB5_2 STO R12,R13 WB12 R10 WB13 R11 ; From the previous iteration

OPO _source_ WB8 00 LDO R8 WB10 M0 WB11 R7

0PO 2 SHLO R1,00 WB7 A0 SLT R1,R6

OPO _target_ WB9 00 OP0 _BB5_2 BNEZ 00

ADDO R8,R7 WB8 A0 NOPO

ADDO R2,R1 WB1 A0 NOPO

ADDO R9,R7 WB7 A0 ; Postfix 1

WB10 MO RECO R10 ; From the previous iteration WB12 M0 RECO R12 ; Final receive odd

STO R10,R11 ; From the previous iteration STO R12,R13 ; Final store odd

LDO R8 WB10 M0 WB11 R7 ; Postfix 2

SLT R1,R6 WB10 M0 RECO R10 ; Final receive even

0PO _BB5_2 BNEZ 00 STO0 R10,R11 ; Final store even

NOPO

NOPO
; Postfix

WB10 MO RECO R10 ; Final receive

STO R10,R11 ; Final store

OVERLAPPED-VERSION

Figure 10: The main loop of the block benchmark without optimizations, after maximizing distance
between receives and corresponding loads, and after overlapping consecutive loads.

into the standard PRAM operation of CESM and to optimize NUMA mode performance with
standard synchronization and locality optimizations. According to the evaluation making use of
our REPLICA CMP framework, the proposed solutions can be used to provide relatively unified
programming scheme for the CESM architecture making use of both the PRAM and NUMA modes.
As expected the PRAM mode is faster in most cases but there are a few clear exceptions, e.g. strictly
sequential code in which NUMA performs better. Since the number of threads in the NUMA mode
is much smaller than in the PRAM mode the barrier synchronizations in the NUMA mode are
much faster. In order to achieve good NUMA performance applying synchronization and locality
optimizations are crucial especially if the problem requires frequent synchronization or involves data
exchange between the computational threads. From the evaluated hardware techniques the one
splitting shared loads to schedulable send and receive instructions (the LER technique) provides
the best performance especially if overlapping of consecutive loads, e.g. with software pipelining, is
applied. This does however not mean that the NUMA mode would be typically better for algorithms
requiring tightly synchronous execution since the implied wave synchronization of the PRAM mode

202

International Journal of Networking and Computing

Benchmark Description

Move a block of T}, integers in memory. Measures the overall throughput of the

block memory system.
. Synchronize the threads in the current group of threads (dependent of the mode).

barrier .

Measures the latency of synchronization.
huma Switch the current thread group from the PRAM mode to NUMA mode and back.

Measures the latency of switchin% between the modes.

Detect edges of an RGB image of 640x30 pixels. For locality optimization divide the
edwe shared array evenly to P blocks, move them to local memory for processing and copy

& the results back to the original array. Measures the the performance for

stencil-access patterns.
prefix Calculate the prefix of T},q; integers. Measures performance for reductions.

Calculate the sequence of Tyo¢q; random numbers using the linear congruential
rand . . .

technique. Measures the performance of sequential computation.

Table 1: Benchmarks used in the evaluation.
Symbol FP-P FB-P LER-P ESM-P CESM-P PRAM-P
#processors Piotal P P P P P P
#threads Tiotal P P P PT, PT, PT,
#registers/thread | Ry R R R R R R
#FUS Ftota,l 3 3 3 F F F
FU organization Forg parallel parallel parallel chained chained chained
Memory scheme Mgepeme NUMA NUMA NUMA PRAM PRAM- ideal
NUMA PRAM

Network diameter | ¢pet 2p0-5 2p05 2p0-5 2p05 2pus 1

Table 2: Configurations used in the evaluation (P=number of processors 4, 16 in the evaluation).

eliminates the most barriers and multithreading provides latency hiding that is not available in the
NUMA mode. The code size for the NUMA mode is higher than that for the PRAM mode. The
difference is most substantial for benchmarks making use of frequent exchange of data between the
computational threads. This points out that while NUMA mode can solve a number of performance
problems related to workloads with low parallelism, this happens with the cost of programmability.

Our future work includes extending the current REPLICA language and compiler tool-chain

with all NUMA-related constructs, investigating possible combined PRAM-NUMA algorithms and
optimization possibilities for NUMA mode execution such as loop unrolling/software pipelining and
load instruction overlapping/scheduling.

References

1]

M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and R.E.
Tarjan. Dynamic Perfect Hashing: Upper and Lower Bounds. STAM Journal on Computing,
23(4):738 — 761, August 1994.

M. Forsell. A Scalable High-Performance Computing Solution for Network on Chips. IEFEE
Micro, 22(5 (September-October)):46-55, 2002.

M. Forsell. Advanced simulation environment for shared memory network-on-chips. In Proceed-
ings of the 20th IEEE NORCHIP Conference, pages 31-36, Copenhagen, Denmark, November
2002.

M. Forsell. Compiling thread-level parallel programs with a C-compiler. In Proceedings of the
1V Jornadas sobre Programacion y Lenguajes, pages 215-226, Malaga, Spain, November 2004.

M. Forsell. E — A Language for Thread-Level Parallel Programming on Synchronous Shared
Memory NOCs. WSEAS Transactions on Computers, 3(3):807-812, 2004.

203

NUMA Computing with Hardware and Software Co-Support

1000000
uFP-4
HFB-4
100000 i 1 i
— " LER-4
w
s W ESM-4
S 10000 -
] L CESM-4
o
)
GE, 1000 - “ PRAM-4
2 HFP-16
2
§ 100 - HFB-16
b | LER-16
10 ~ 1 | | W ESM-16
| I I “ CESM-16
1- PRAM-16
block barrier edge numa prefix rand

Figure 11: Execution time without NUMA optimizations.

[6] M. Forsell. Ec - a compiler for the e-language. In Proceedings of the 2004 International Sym-
posium on System-on-Chip, pages 157-160, 2004.

[7] M. Forsell. Parallel Application Development Scheme for General Purpose NOCs. In Proceedings
of the 2005 ECTI International Conference (ECTI-CON), Paittaya, Thailand, pages 819-822,
2005.

[8] M. Forsell. Configurable Emulated Shared Memory Architecture for General Purpose MP-
SoCs and NoC Regions. In Proceedings of the 3rd ACM/IEEE International Symposium on
Networks-on-Chip, May 10-13, 2009, San Diego, USA, pages 163-172, 2009.

[9] M. Forsell. A PRAM-NUMA Model of Computation for Addressing Low-TLP Workloads.
In Proceedings of the 12th Workshop on Advances in Parallel and distributed Computational
Models (in conjunction with the 24th IEEE International Parallel and Distributed Processing
Symposium, IPDPS’10), April 19, 2010, Atlanta, USA, pages 1-8, 2010.

[10] M. Forsell. TOTAL ECLIPSE — An Efficient Architectural Realization of the Parallel Random
Access Machine, pages 39-64. IN-TECH, Vienna, 2010. Editor: Alberto Ros.

[11] M. Forsell. A PRAM-NUMA Model of Computation for Addressing Low-TLP Workloads.
International Journal of Networking and Computing, 1(1):21-35, 2011.

[12] S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In Proceedings of 10th ACM
STOC, pages 114-118. Association for Computing Machinery, New York, 1978.

[13] J. Jaja. Introduction to Parallel Algorithms. Addison-Wesley, Reading, 1992.
[14] J. Keller, C. Kessler, and J. Tréaff. Practical PRAM Programming. Wiley, New York, 2001.

[15] Martin Kessler, Erik Hansson, Daniel Akesson, and Christoph Kessler. Exploiting instruction
level parallelism for REPLICA - a configurable VLIW architecture with chained functional
units. In Proceedings of PDPTA’12: Volume II, pages 275281, 2012.

[16] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program analysis
and transformation. In CGO, pages 75-88, San Jose, CA, USA, Mar 2004.

204

International Journal of Networking and Computing

1000000
WFP-4
& FP-4opt
100000
= L FB-4
w
S i FB-4opt
S 10000 - P
E i LER-4
)
g 1000 - L LE R'40pt
B
c HFP-16
2
§ 100 & FP-160pt
& " FB-16
10 - i FB-160pt
" LER-16
1- I LER-160pt
block barrier edge numa prefix rand

Figure 12: Execution time without optimizations and with locality and synchronizations optimiza-
tions (opt).

[17]

[18]

[19]

D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy, M. Horowitz, and
M. Lam. The Stanford Dash Multiprocessor. IEEE Computer, 25(3):63-79, 1992.

V. Leppénen. Studies on the realization of PRAM, Dissertation 3. Turku Centre for Computer
Science, University of Turku, 1996.

J. Mikels, E. Hansson, D. Akesson, M. Forsell, C. Kessler, and V. Leppénen. Design of the
language REPLICA for hybrid PRAM-NUMA many-core architectures. In Parallel and Dis-
tributed Processing with Applications (ISPA), 2012 IEEE 10th International Symposium on,
pages 697-704, 2012.

J. Mékeld, E. Hansson, and M. Forsell. REPLICA language specification, 2013. In preparation.
D. Patterson. The Trouble With Multicore. IEEE Spectrum, 47(7):28-32, 2010.

S. Fuller R. Swan and D. Siewiorek. Cm* — A Modular Multiprocessor. In Procedings of NCC,
pages 645-655, 1977.

A. Ranade. How to Emulate Shared Memory. Journal of Computer and System Sciences,
42:307-326, 1991.

U. Vishkin. Towards Realizing a PRAM-on-Chip Vision, 2007. Workshop on
Highly Parallel Processing on a Chip (HPPC), August 28, Rennes, France (see
http://www.hppcworkshop.org/HPPc07 /talks.html).

205

NUMA Computing with Hardware and Software Co-Support

14000

12000

10000 -

8000 -
HLER-4
6000 - K LER-16
4000 -
2000 -
0 - T T T

BASE MAX-DIST OVERLAP-1 LOCAL IDEAL

Execution time (clock cycles)

Figure 13: Execution time of the block benchmark with LER optimizations compared ideal shared
memory and local memory executions.

40

35
¢ 30
= “NUMA sh
o 25
3 ENUMA loc
(8]
5 20 ~ESM
@
£ “ CESM
>
Z 10 - LPRAM

5 -

0 =

block barrier edge numa prefix rand

Figure 14: Length of the measured code segment of the benchmarks in e source code lines.

206

