
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 4, Number 1, pages 131–150, January 2014

Toward a Generic Hybrid CPU-GPU Parallelization of Divide-and-Conquer Algorithms

Alejandro López-Ortiz

David R. Cheriton School of Computer Science, University of Waterloo
200 University Ave West, Waterloo, ON, N2L 3G1, Canada

Alejandro Salinger

Department of Computer Science, Saarland University
Campus, D-66123 Saarbrücken, Germany

and

Robert Suderman

David R. Cheriton School of Computer Science, University of Waterloo
200 University Ave West, Waterloo, ON, N2L 3G1, Canada

Received: July 27, 2013
Revised: October 17, 2013

Accepted: November 29, 2013
Communicated by Akihiro Fujiwara

Abstract

In the last few years, the development of programming languages for general purpose com-
puting on Graphic Processing Units (GPUs) has led to the design and implementation of
fast parallel algorithms for this architecture for a large spectrum of applications. Given the
streaming-processing characteristics of GPUs, most practical applications consist of tasks that
admit highly data-parallel algorithms. Many problems, however, allow for task-parallel solu-
tions or a combination of task and data-parallel algorithms. For these, a hybrid CPU-GPU
parallel algorithm that combines the highly parallel stream-processing power of GPUs with the
higher scalar power of multi-cores is likely to be superior. In this paper we describe a generic
translation of any recursive sequential implementation of a divide-and-conquer algorithm into
an implementation that benefits from running in parallel in both multi-cores and GPUs. This
translation is generic in the sense that it requires little knowledge of the particular algorithm.
We then present a schedule and work division scheme that adapts to the characteristics of each
algorithm and the underlying architecture, efficiently balancing the workload between GPU and
CPU. Our experiments show a 4.5x speedup over a single core recursive implementation, while
demonstrating the accuracy and practicality of the approach.

Keywords: multi-core, GPU, heterogeneous architectures, hybrid algorithms, performance mod-
eling, divide-and-conquer, parallel algorithms

0A preliminary version of this paper appeared in the 15th Workshop on Advances in Parallel and Distributed
Computational Models (APDCM 2013) [18].

131

Toward a Generic Hybrid CPU-GPU Parallelization of Divide-and-Conquer Algorithms

1 Introduction

Since the appearance of multi-core architectures we have witnessed an increase in algorithms and
applications designed to take advantage of the parallel processing capabilities of these now ubiquitous
processors. At the same time, there exists a vast collection of graphic applications for optimized
performance on Graphic Processing Units (gpus). Originally designed as specialized processors
for graphic operations, the development of accessible programming languages such as CUDA and
OpenCL has enabled the use of gpus for general purpose programming, known as General Purpose
computing on gpus (gpgpu). Consequently, researchers and practitioners have developed algorithms
for this architecture for various classes of problems, most notably for problems that admit data-
parallel algorithms, many of which fall under the category of the so-called embarrassingly parallel
problems. In the last few years, the increasing power and the low cost of gpus have transformed
common computers into heterogeneous architectures with tremendous computing power. While for
most applications capable of parallel execution there exist implementations either for multi-cores
or gpus, the vast majority of existing applications and algorithms do not yet take full advantage
of the available computing power, thus leaving the current processing resources of even middle-end
commodity computers largely underutilized. This scenario has motivated the development of projects
in several areas, from the proposal of new operating systems [9, 21] to the continuous development
of tools and languages to enable an easy transition from traditional cpu code to heterogeneous
platforms [28, 19, 20, 27].

Since the vector processing nature of gpus is suitable for problems that allow efficient data-
parallel algorithms, many of the existing gpu algorithms fall into this category. However, many
problems allow for parallel algorithms that are task-parallel, or a combination of both task-parallel
and data-parallel [12]. Thus, such problems can benefit from the use of cpu cores for non-data-
parallel tasks. In fact, plans for the convergence of cpus and gpus into one platform by the largest
microprocessor manufacturers are becoming a reality [26, 4], which confirms the relevance of algo-
rithms that can be sped-up using the power of both architectures together [8]. Many algorithms for
hybrid cpu-gpu architectures have been designed in the last years, most notably for fundamental
linear algebra problems [31, 15, 14], among many others. The design of efficient hybrid algorithms
encompasses many challenges. A careful task division must be done so that each portion of the
algorithm can run on the platform that suits best its characteristics. In addition, it is desirable that
algorithms and schedulers adapt to the characteristics and current availability of the computing
devices.

In this work we describe a generic approach to develop algorithms for a hybrid cpu-gpu archi-
tecture, which we term Hybrid Processing Unit or hpu. We focus on algorithms for a large class of
problems suitable for divide-and-conquer solutions. Starting from a sequential recursive implemen-
tation of a divide-and-conquer algorithm, we translate this implementation to parallel code that is
suitable for running on both cpu and gpu, with a generic translation that can be applied with little
knowledge of the particular algorithm. We propose a model for the hpu platform and analyze the
optimal division of work for parallel divide-and-conquer under this model. While the analysis pre-
sented applies to divide-and-conquer algorithms, the ideas behind it are applicable to other classes
of algorithms with structured dependencies between a large number of independent tasks. We then
present a case study for the application of our framework using mergesort as a sample algorithm.
The simplicity of our implementations confirms the practicality of our approach, while at the same
time leading to significant improvements in performance over sequential implementations.

2 Related Work

Several researchers have developed algorithms for heterogeneous architectures. An important set
of hybrid algorithm implementations are grouped in the Matrix Algebra on GPU and Multicore
Architectures (MAGMA) library [30, 31]. MAGMA provides hybrid implementations of several
linear algebra algorithms to enable execution in both multi-core and gpus, thus extending and
adapting the LAPACK [5] and ScaLAPACK [10] libraries to heterogeneous architectures. Examples
of these algorithms are Cholesky [3], LU [1, 7], and QR factorizations [2, 17], as well as Hessenberg
reductions [32]. In general, the approach for implementing hybrid cpu-gpu code in MAGMA is to

132

International Journal of Networking and Computing

schedule tasks in each computing unit according to their nature: tasks which exhibit small parallelism
and that are often on the critical path are scheduled on the cpu while sets of independent tasks are
scheduled in the gpu [30, 31]. A recent work implements a hybrid divide-and-conquer strategy for
dense symmetric and Hermitian eigenproblems [34]. The divide-and-conquer approach is specific to
these problems, in contrast to our generic approach.

Another library of high-performance linear algebra cpu-gpu hybrid implementations is CULA [15],
which divides computation so as to enable the cpu and gpu to execute the tasks that each is best
suited for, while at the same time carefully overlapping operations in both units.

Hybrid algorithms have been recently developed for other types of problems such as ray trac-
ing [11], encryption and decryption of block cyphers [8], and stencil computations [33], as well as to
accelerate domain decomposition methods [23].

An important part of computation on heterogeneous architectures is the proper load balancing
among computing units. While some implementations follow analytically determined static sched-
ules [8], others rely on dynamic schedules by runtime systems. StarPU was proposed as a runtime
layer to facilitate the dynamic scheduling of parallel tasks in heterogeneous architectures [6]. The
programmer is responsible for the implementation of tasks for each computing unit and to declare
data dependencies between them, while the runtime system is responsible for handling data move-
ments and efficient scheduling of tasks. The programmer can provide hints for the latter, and thus
StarPU provides a high-level framework for the design of scheduling policies. StarPU has been incor-
porated into MAGMA for dynamic scheduling of routines on multi-gpu environments [1, 2]. Other
runtime systems for heterogeneous cpu-gpu architectures are Anthill [29] and SuperMatrix [24].

In this work we target problems with known dependencies, and thus a tailored static division
of work suits our purpose. In addition, unlike most of the works described above, which target
High Performance Computing applications and solutions, the primary focus of our framework is on
generality and ease of programming, and secondarily on performance. While in many cases it is
possible to design and implement parallel algorithms for specific problems that will likely exhibit
better performance than the general solutions provided by our approach, we emphasize that our main
goal is to provide a simple strategy to develop algorithms that can take advantage of the computing
power available in commodity computers, rather than extracting the last ounce of performance from
a given hardware architecture.

3 A Hybrid CPU-GPU Model

We propose a hybrid cpu-gpu model which we term Hybrid Processing Unit (hpu) and describe a
balancing scheme which shares the load optimally in a near automatic fashion for certain well known
families of problems. We first briefly review the basic characteristics of gpu architectures. Since we
use AMD gpus in our experimental setup, we describe the gpu architecture from the point of view
of the OpenCL standard. The model and ideas presented hereafter, however, are generic and apply
to other languages and vendors as well.

3.1 OpenCL Architecture and Programming Model

An OpenCL platform consists of a host connected to one or more devices [16]. Usually, the host
corresponds to a cpu and a device to a gpu. An OpenCL device consists of one or more computing
units, which are further divided into processing elements (PEs). The PEs within the same computing
unit execute in Single-Instruction-Multiple-Data (SIMD) mode. An OpenCL program consists of
host programs which manage the execution of kernels on the device. An instance of a kernel is known
as a work-item. All work-items execute the same code but the execution path they follow and the
data on which they operate might differ across work-items. Each work-item is uniquely identified by
a globalID, which can be obtained by the item to enable a specific execution path. Work-items are
further organized in work-groups, with all work-items in a given work-group executing concurrently
in a single computing unit.

An OpenCL device contains different memory regions. Each work-item has access to a private
memory which is not visible to other work-items. Work-items can share variables in local memory.

133

Toward a Generic Hybrid CPU-GPU Parallelization of Divide-and-Conquer Algorithms

A global memory allows access by work-items in all work-groups. A region of this global memory
is known as the constant memory, and it is used by the host to allocate memory objects in the
device. Data transfers between the host and the device and within different types of memories must
be explicitly managed by the program. The performance of a gpu application is highly dependent
on its memory access patterns. In general, accesses to local memory are much faster than accesses
to global memory. In particular, programs should seek memory accesses to contiguous data by
work-items in the same group, which are known as coalesced memory operations.

3.2 Hybrid Processing Unit

The hpu consists of a multi-core cpu processor with p cores and a gpu device with g processing
elements, which for simplicity we call gpu cores. Given that the true parallelism provided by a
gpu varies significantly depending on execution aspects such as scheduling and memory accesses, we
do not think about the number of gpu cores as exactly matching the number of physical processing
elements but rather as a measure of the empiric degree of parallelism observed when running a
suitable test program1. In turn, in general the number of cpu cores p might not be equal to the
number of physical cores but to a parameter indicating the number of cores available for processing
tasks (e.g., one or more cores can handle thread launching or other scheduling tasks).

To account for the different characteristics (and in particular speed) of cpu and gpu cores, we
denote as γc and γg the number of operations per unit of time that a single cpu and gpu core
can complete, respectively, with γc > γg. For simplicity, we normalize these factors, setting γc = 1
and γg = γ < 1. We assume that these architectures are balanced in the sense that the ratio γ of
operations per unit hold for any kind of operations (logic or memory access), similarly to what is
assumed, for example, in [25]. We also assume that γg > p, and thus the raw computational power
of the gpu is higher than that of the cpu.

The focus in this work is on the most common scenario of one multi-core cpu unit along with
one gpu card (which we call processing units), although the model could easily be extended to the
case of multiple gpu cards.

In terms of communication, transmitting w words between cpu and gpu takes time λ + δw,
where λ is a fixed latency cost, and δ is the variable cost per word. For the kind of application that
we consider in this work we do not explicitly take this cost into account, but we limit the number
of data transfers between processing units to the minimum possible. Similarly, we do not explicitly
consider scheduling costs, as preliminary experiments showed that the overhead was negligible.

4 Generic Divide-and-Conquer Parallelization

The standard approach to a divide-and-conquer (DC) algorithm involves dividing the problem into
smaller subproblems, recursively solving these subproblems, and combining the solutions of the sub-
problems into a final solution (see Algorithm 1). We consider DC algorithms whose time complexity
can be expressed by:

T (n) = aT (n/b) + f(n), T (1) = Θ(1)

Naturally, the algorithm works by dividing the problem in a subproblems of size n/b each and
combining their solutions to obtain the final solution to the problem. The division and combination
portion of the algorithm takes time f(n). A DC algorithm can be parallelized in a straightforward
manner by executing recursive calls in parallel, leading to a simple thread-based implementation
suitable for multi-cores. Nevertheless, practical issues such as the efficient use of private and shared
caches might hinder the ideal parallel performance of such implementation, with the chosen thread
schedule playing a major role in this respect.

In general, a strategy in which each recursive call launches a thread does not suit the gpu multi-
processing model, since at least in some architectures gpu threads are unable to launch additional

1We defer the details about how to estimate g to Section 6.4.

134

International Journal of Networking and Computing

Algorithm 1 Generic divide-and-conquer implementation

Recursive(param)

1: if endCondition(param) then
2: return BaseCase(param)
3: {paramj} ← Divide(param)
4: for j = 1 to |{paramj}| do
5: Sj ← Recursive(paramj)
6: S← Combine({Sj}, param)
7: return S

Algorithm 2 Breadth-first divide-and-conquer

BreadthFirst(params)

1: split params into basecases and recursions
2: if recursions is empty then
3: for each param in basecases do
4: BaseCase(param)
5: return
6: add basecases to next params
7: for each param in recursions do
8: {paramj} ← Divide(param)
9: for j = 1 to |{paramj}| do

10: add paramj to next params
11: BreadthFirst(next params)
12: for each param in recursions do
13: Combine(param)

threads during execution2. Instead, they are designed to run hundreds of parallel threads executing
one same kernel launched by the cpu host. In this sense, a breadth first execution of a DC algorithm
can suit this execution mode better: the independent tasks on one level of the recursion tree can
be seen as the same task being executed on different parts of the input. Given enough independent
tasks, one kernel can be launched to execute an entire level of the tree in parallel.

4.1 Breadth-First Structure

The first step of our strategy to obtain a hybrid implementation of a DC algorithm is to convert the
sequential code from the form in Algorithm 1 to one that will execute in breadth-first order. We do
this by replacing multiple recursive calls with one recursive call that represents multiple subproblems,
encoded in the parameters of the recursive call. Algorithm 2 shows the modified pseudocode. At
each level of the recursion, parameters for all subproblems are encoded in params, some of which
correspond to base cases. The rest of the parameters (recursions) are divided according to the
algorithm’s divide procedure (line 7) and grouped in one list of parameters (next params) to be
passed on to the one recursive call in line 11. After the recursive call, the results of subproblems
in each group in the level are combined according to the combine procedure (line 12). Note that
at each level subproblems corresponding to base cases are passed on to the next recursive call, and
their execution is delayed until no more recursive calls remain.

4.2 Conversion to GPU Code

In order to modify the existing code for gpu execution, the thread launching system and the base-
case, division, and combination steps must be suitably adapted. Each subproblem will have a

2CUDA 5 does implement dynamic parallelism, enabling kernels to launch other kernels without involvement of the
host. However, currently the depth of the nested computation can be at most 24 and is limited by the availability of
resources in the gpu [22]. While this might change in the future allowing for a more suitable strategy for divide-and-
conquer implementations, our breadth-first strategy remains valid and applicable to a wider range of architectures
which are not CUDA-enabled.

135

Toward a Generic Hybrid CPU-GPU Parallelization of Divide-and-Conquer Algorithms

Algorithm 3 Pseudo-code for functionGPU

functionGPU(parameters, base)

1: id← get global id()
2: param← parameters[id]
3: memory = base + fn(id, param)
4: thread function(param,memory)

Algorithm 4 Pseudo-code for Sum

sum(array, size)

1: if size > 1 then
2: sum(array, size/2)
3: sum(array + size/2, size/2)
4: array[0]← array[0] + array[size/2] {array[0] stores the result}

separate thread. As gpu threads have a relatively small overhead for launching more threads than
available cores, the advantage of processing as many tasks in parallel will take priority over launching
only as many threads as can be run in parallel. Then, during execution, each gpu thread is provided
a unique thread id that can be used to load its unique set of parameters and to determine any
(previously allocated) memory blocks on which it will operate. This generic description is shown in
Algorithm 3, where fn is a function on the thread’s id and parameters that determines the thread’s
relevant memory blocks, and thread function denotes the operations performed by the gpu thread.

4.3 Example: Divide-and-Conquer Sum

We show an example of the code translation described above for a simple divide-and-conquer pro-
cedure that computes the sum of elements in an array (see Algorithm 4). The pseudocode of the
resulting gpu program is shown in Algorithm 5. This program is executed at each level of the
recursion, with numSubProblems indicating the number of subproblems at the current level. For a
level with b subproblems, the i-th thread computes the sum of elements i and i+ b in the array. The
final result is stored in array[0]. In this case, the relevant parameter to the thread is only numSub-
Problems, and the relevant memory blocks for the thread are given by its id and numSubProblems.
Lines 2-3 in Algorithm 5 correspond to thread function in Algorithm 3.

5 Work Division and Scheduling Strategies

A proper work division and scheduling is key to an efficient implementation. In a heterogeneous
architecture, tasks in an algorithm should be assigned to each processing unit according to the
tasks’ nature and dependencies. Implementations on cpu-gpu architectures generally assign to
the cpu tasks with many dependencies [14] or tasks in the critical path [30]. In the case of the
regular DC algorithms that we consider in this work, what we regard as tasks are the division and
combination portions of the algorithm. Hence, all tasks are similar to each other in nature. On
the other hand, in regular DC algorithms all paths from the root to the leaves in the tree have
approximately equal lengths, and in this sense there are several critical paths, thus they cannot all
be assigned to cpu cores. Instead, we assign tasks to the cpu or gpu according to the availability of
parallel independent tasks at each level of the recursion tree. Note that although at each level of the
recursion there are several subproblems whose division and combination functions are independent
and can execute in parallel, the division and combine functions of each subproblem remain sequential.
In other words, the only source of parallelism is in the recursive calls, and we do not consider
parallelizations of divide and combine functions of particular algorithms. Recall that our main goal
is to provide a generic approach for translating recursive DC algorithms to hybrid code with little
effort.

It is desirable that the task division involves minimal communication costs. With this goal in

136

International Journal of Networking and Computing

Algorithm 5 Pseudo-code for GPU Sum

sum(numSubProblems, array)

1: id← get global id()
2: if id < numSubProblems then
3: array[id]← array[id] + array[id + numSubProblems]

i = loga(p/γ)

i = logb n

i = 0

GPU

CPU

Figure 1: Basic hybrid work division. Each level of the recursion tree is executed in the platform in
which it runs faster according to the characteristics of the architectures and the divide-and-conquer
problem. Thus, levels above i = loga(p/γ) are executed in the cpu (while the gpu is idle), whereas
levels below i are executed in the gpu (while the cpu is idle).

mind, we design two division and scheduling strategies, which we call basic and advanced. We
explain next these strategies and analyze the conditions for scheduling tasks in each computing unit
for each strategy.

5.1 Basic Hybrid Work Division

Consider the recursion tree of a DC algorithm as depicted in Figure 1. Each level of the recursion
tree consists of division and combination tasks that are independent of each other and can thus be
executed in parallel. The basic work division strategy schedules each level on the cpu or gpu de-
pending on where it is more efficient to execute the entire level. There is an advantage to schedule
a level in the gpu when the number of independent subproblems allows the use of enough cores to
overcome their comparatively slower speed.

Consider the execution time of each processing unit for a given level i in the recursion tree, where
0 ≤ i ≤ logb(n) − 1, the 0-th level being the top of the tree. Recall that the DC algorithm solves a
subproblems of size b and that the division and combination steps take time f(n).

1. 0 ≤ i < loga(p): TCPU (n, i) = f(n/bi), TGPU (n, i) = f(n/bi)/γ. Since γ < 1, it is faster to
run the level on the cpu.

2. loga(p) ≤ i < loga(g): TCPU (n, i) = (ai/p)f(n/bi), TGPU (n, i) = f(n/bi)/γ. It becomes faster
to run the level on the gpu when ai/p ≥ 1/γ, i.e., i ≥ loga(p/γ).

3. loga(g) ≤ i < logb(n): TCPU (n, i) = (ai/p)f(n/bi), TGPU (n, i) = (ai/(γg))f(n/bi). Since we
assume gγ ≥ p, it is faster to run the level on the gpu.

4. leaves: TCPU (n) = nlogb a/p, TGPU (n) = nlogb a/(γg). Again it is faster to run the leaves on
the gpu.

137

Toward a Generic Hybrid CPU-GPU Parallelization of Divide-and-Conquer Algorithms

αnlogb a (1− α)nlogb a

i = y

i = logb n

i = loga
(
p
α

)

i = 0

GPUCPU

CPU

i = loga p

Figure 2: Advanced hybrid work division. The gpu will execute so long as the cpu has enough tasks
to keep all cores busy (until it reaches level loga(p/α) in a bottom up execution of the left part of
the tree in the figure), while keeping only one transfer between processing units. The goal is to find
the value of α that maximizes the total work executed by the gpu. In the figure, dark blue and light
blue subproblems are executed by the cpu and gpu, respectively.

Hence there is only one transfer at level i = loga(p/γ). Note that if gγ < p then at every level it
is faster to execute on the cpu and there is no transfer to the gpu at any point with this strategy.
As only a single data synchronization point occurs when work is transferred from the cpu to the
gpu and back, transfer time is minimized and accounts for only a small part of the overall processing
time.

A drawback of this strategy is that at any point only one of the computing units (i.e., cpu or
gpu) is active. We now describe a strategy that builds on this basic strategy while minimizing idle
periods.

5.2 Advanced Hybrid Work Division

The new strategy that we propose for dividing the work among cpu and gpu aims to minimize idle
periods and communication between units. If all tasks could be executed in parallel the division
would be straightforward: we should divide the work so that both processing units take the same
time in their assigned portions. However, in general in DC algorithms there is not enough parallelism
at all levels of the tree to maintain a uniform division of work. For example, when the number of
available subproblems is less than p, any fraction of them assigned to the gpu will leave at least one
cpu core idle. Since cpu cores are faster than gpu cores, it is preferable to execute these serial tasks
in the cpu. Therefore, all tasks at levels of the recursion tree where there is at most p subproblems
(0 ≤ i ≤ loga p) are assigned to the cpu (see Figure 2).

For lower level of the trees, we can execute some tasks on the gpu while keeping all cpu cores
busy. Consider the recursion tree depicted in Figure 2. When there are more than p subproblems,
there is an advantage in running some subproblems in the cpu and some in the gpu. The idea is
to run subproblems in the gpu so long as no cpu core is idle. At the same time, we want to keep
communication and synchronization costs low. Toward this end, we restrict the number of data
transfer between cpu and gpu to two points during the execution. Let y be a parameter denoting
the level in the tree (from the top) at which we offload any computation to the gpu, and let α be
the parameter denoting the fraction of subproblems that are assigned to the cpu. Thus, at level y,

138

International Journal of Networking and Computing

the cpu is assigned αay subproblems, while the gpu is assigned (1 − α)ay. Note that once a level
has been divided in this way, lower levels of the tree will keep the same fraction of subproblems
for each processing unit, and hence no further synchronization or data transfer is required until the
gpu has solved all subproblems. The choice of y and α determines the amount of work that the
gpu will do. Our strategy maximizes the work that the gpu does with two data transfers while
avoiding idle cpu cores. In the rest of this section we show how to determine the parameters y and
α that maximize gpu work.

5.2.1 Parameter Optimization

For the sake of analysis, consider a bottom up execution of the recursion tree in Figure 2. Starting
from the bottom level, both cpu and gpu execute with a work ratio of α. Since we want to avoid
idle cpu cores, we run both cpu and gpu until the cpu portion reaches p subproblems. We only
consider α ≥ p/n, so that the cpu starts at the bottom level with at least p tasks. Then, the
cpu portion reaches p subproblems at level loga(p/α). At this point, we stop the gpu execution and
let the cpu compute all the unfinished portions of the tree. The time that it takes to the cpu to
reach level loga(p/α) from the bottom is

Tc(n) =
α

p


nlogb a +

logb(n)−1∑

i=loga(p/α)

aif
(n
bi

)



During this time, the gpu executes bottom up and reaches level y in the tree. The value of y can
be determined by making the gpu and cpu times equal. We have 3 cases, depending on whether
the gpu is never saturated or always saturated throughout, or a combination of both. Let Tmaxg (n)
denote the maximum time the gpu can execute while using all its cores (i.e., before it reaches g
subproblems). Thus,

Tmaxg (n) =
(1 − α)

γg


nlogb a +

logb(n)−1∑

i=loga(g/(1−α))

aif
(n
bi

)



(i) (1 − α)nlogb a < g. In this case, the gpu is never saturated and thus Tg(n) = (1/γ)(1 +∑logb(n)−1
i=y f(n/bi)).

(ii) Tc(n) ≤ Tmaxg (n). In this case, the gpu is always saturated and thus Tg(n) = 1−α
γg (nlogb a +

∑logb(n)−1
i=y aif(n/bi)).

(iii) Tc(n) > Tmaxg (n). In this case, Tg(n) = Tmaxg (n) + (1/γ)
∑loga(g/(1−α))−1
i=y f(n/bi).

The goal is to determine the value of α that maximizes the work done by the gpu from the
bottom until level y. We first determine y by solving the equation Tg(n) = Tc(n) for each of the 3
cases above. This yields a piecewise function y = y(α). The work done by the gpu in this period is
given by

Wg(n) = (1 − α)


nlogb a +

logb(n)−1∑

i=y(α)

aif
(n
bi

)

 .

Maximizing for α yields the optimal work ratio value.

After the gpu reaches level y, it transfers the results back to the cpu, which finishes the compu-
tation. Note that it could still be advantageous to continue execution on the gpu for levels above
y. However, this would invariably imply either having idle cpu cores or a new work ratio α, which
would in turn imply further synchronization and data transfer between processing units.

139

Toward a Generic Hybrid CPU-GPU Parallelization of Divide-and-Conquer Algorithms

Algorithm 6 Pseudo-code for Mergesort

mergesort(array, size)

1: if size > 1 then
2: mergesort(array, size/2)
3: mergesort(array + size/2, size/2)
4: merge(array, array + size/2, size/2)

5.2.2 Example

We illustrate this procedure using the characteristics of a sample architecture and a divide-and-
conquer algorithm whose division and combination function takes time Θ(nlogb a) (and thus T (n) =
Θ(nlogb a log n)). Mergesort is an example of such algorithm. We assume that the implementation of
the combination and division function is the same both in the cpu and gpu, and thus the constants
hidden in the complexities are the same and will cancel out when solving for the level y.

The time that the cpu takes to reach p problems from the bottom is

Tc(n) =
αnlogb a

p

(
logb n− loga

p

α
+ 1
)
.

The maximum time the gpu can be fully saturated is

Tmaxg (n) =
(1 − α)nlogb a

γg

(
logb n− loga

g

1 − α
+ 1

)
.

Thus, we have the following function for the gpu time:

Tg(n) =





(1/γ)(nlogb a a
a−1a

−y − 1
a−1), if (1 − α)nlogb a < g

(1−α)nlogb a

γg (logb n− y + 1), if (1 − α)nlogb a ≥ g and Tmaxg (n) ≥ Tc(n)

Tmaxg (n) + nlogb a a
γ(a−1)

(
a−y − 1−α

g

)
, if (1 − α)nlogb a ≥ g and Tmaxg (n) < Tc(n)

We now solve Tc(n) = Tg(n) for y for each of the cases above, obtaining a piecewise function y(α)
that depends on each case. The work done by the gpu is then

Wg(n) = (1 − α)nlogb a(logb n− y(α) + 1).

By replacing in this equation the parameters of a divide-and-conquer algorithm, of a particular
architecture, and the input size, we can maximize the work using numeric methods. For example,
using mergesort as the divide-and-conquer algorithm and the parameters of one of our architectures3

(i.e., a = b = 2, f(n) = Θ(n), p = 4, g = 212, γ = 1/160) and an input size n = 224, we obtain
the y function and the fraction of gpu work over total work function depicted in Figure 3. In this
case the total work is nlogb a(logb n+ 1). The work ratio that maximizes the gpu work is α∗ ≈ 0.16,
for which the gpu does approximately 52% of the total work. The level reached by the gpu with
α∗ is approximately 10. Since log2 g = 12, this means that for the gpu is both saturated and
non-saturated during its execution for α = α∗. Figure 4 depicts the work division for this example.

6 Case Study: Mergesort

The ideas of our method are applicable in general to algorithms whose parallel structure can be
specified by directed acyclic graphs. In this section we use mergesort as a test case for the gains
of our general framework for divide-and-conquer algorithms. We particularly chose mergesort as
an example of a task-parallel algorithm that is not readily made for execution on a gpu, but that
nevertheless is amenable to the kind of hybrid parallelization that we propose.

3The architectures and parameters are described in Section 6.4.

140

International Journal of Networking and Computing

Figure 3: For mergesort (a = b = 2, f(n) = Θ(n)) and parameters p = 4, g = 212, γ−1 = 160 and
n = 224, (left) level reached by the gpu while the cpu has at least p tasks at the same level as a
function of the work ratio α, and (right) the percentage of work done by the gpu as a function of α.

GPU

CPU

i=0

i = 10

i = 24
0.16n 0.84n

Figure 4: Advanced hybrid work division for mergesort. The figure represents the recursion tree
shown in Figure 2 with the height and width of the rectangles representing the height and work of
the computation. For the parameters in the example (p = 4, g = 212, γ−1 = 160 and n = 224) the
work ratio that maximizes the gpu work is α ≈ 0.16 and the transfer level is 10.

141

Toward a Generic Hybrid CPU-GPU Parallelization of Divide-and-Conquer Algorithms

Algorithm 7 Pseudo-code for Breadth-first Mergesort

mergesort bf(array, totalSize, size, numSublists)

1: if size > 1 then
2: mergesort bf(array, totalSize, size/2, 2 · numSublists)
3: for i = 0 to numSublists− 1 do
4: offset← i · size
5: merge(array + offset, array + offset + size/2, size)

Consider the classic recursive mergesort implementation as shown in Algorithm 6. As described
in Section 4.1, we first convert the recursive divide-and-conquer implementation to a breadth-first
one. Compared to the pseudocode in Algorithm 2, a breadth-first execution of mergesort is somewhat
simplified as the division into subproblems and condition for basecases are data independent. Thus,
a single recursion is performed with parameters indicating the sublists to be sorted. A sublist
can be specified by an offset with respect to the beginning of the entire list and the size of the
sublist. The offset for the i-th sublist is simply offset = i · size. This limits the parameters to
the array being sorted, the total array size, and the number of sublists, which are the same for
each sublist. Furthermore, determining when only base cases remain becomes trivial: once the
number of current sublists equals or exceeds the total length of the array, the maximum number
of elements in a sublist is one, and therefore only base cases remain. To finish the conversion, the
base-case, division, and combination steps must be performed for each sublist. For mergesort, as
no division and base case exist, these parts are removed entirely and only the combine step must
be performed, which corresponds to merging pair of sublists. Algorithm 7 shows the breadth-first
mergesort implementation4.

6.1 Basic Hybrid Implementation

The merge operations for each sublist in line 5 in Algorithm 7 are independent of each other and can
potentially be executed in parallel. For the basic hybrid work division as described in Section 5.1,
these operations are executed either on the gpu or on one or more cpu cores. For each recursion
level in which merge operations are executed on the gpu, a program running in the host launches a
gpu kernel with parameters indicating the size and number of sublists to be merged. Based on its
id, each gpu thread identifies the sublist on which it will operate. Similarly, when merge operations
are executed on the cpu, depending on the recursion and number of cores available, multiple threads
are created to merge sublists in parallel (with each thread merging a pair of sublists sequentially).

6.2 Advanced Hybrid Implementation

The advanced work-division strategy as described in Section 5.2 is implemented by, when reaching
certain threshold level in the recursion tree, launching two simultaneous cpu threads, one that exe-
cutes the basic hybrid strategy, and another one that executes a cpu implementation (see Figure 2).
For these threads, the input is divided according to the division ratio α. Since this ratio remains con-
stant across levels, when the hybrid thread switches to execution on the gpu (level y in Figure 2),
the number of subproblems executed in each processing unit will respect the chosen ratio. This
implementation is shown in Algorithm 8. In this algorithm, the methods mergesort bf cpu and
mergesort bf hybrid correspond, respectively, to implementations of Algorithm 7 to be executed
exclusively on the cpu, and in a hybrid fashion according to the basic model.

6.3 GPU Optimizations

So far, the hybrid implementation of mergesort described above is oblivious to the characteristics of
the particular divide and combine functions. In the case of the merge method, certain optimizations

4In order to keep the description of the approach simpler, we assume that the input size is a power of 2. The same
general approach is applicable in general, although some adjustments to the implementation are required.

142

International Journal of Networking and Computing

Algorithm 8 Pseudo-code for Advanced Hybrid Mergesort

HybridMergesort(array, totalSize, size, numSublists)

1: if size > 1 then
2: if numSublists > threshold then
3: cpuLists← α · numSublists
4: gpuLists← numSublists− cpuLists
5: mergesort bf cpu(array, size · cpuLists, size, cpuLists)
6: mergesort bf hybrid(array + size · cpuLists, size · gpuLists, size, gpuLists)
7: else
8: HybridMergesort(array, totalSize, size/2, 2 · numSublists)
9: for i = 0 to numSublists− 1 do

10: offset← i · size
11: merge(array + offset, array + offset + size/2, size)

Table 1: Specification of hybrid platforms used in experiments.
Platform CPU GPU

HPU1 Intel R© CoreTM 2 ATI RadeonTM HD 5970
Extreme CPU Q6850

HPU2 AMD A6 3650 ATI RadeonTM HD 6530D

to the implementation are possible and have a significant impact on performance. In order to achieve
coalesced memory accesses, prior to executing a parallel merge operation on the gpu, we permute
the input so that the set of i-th elements in all sublists are in contiguous locations. Thus, various
parallel threads operating on different sublists will access contiguous memory segments. To adapt
the gpu kernel to use this method, sublists are iterated using the thread id as the initial position,
and increasing this value by the total number of sublists. As the cpu cache benefits from reading
from sequential blocks, before transferring the array to the cpu, the array is permuted back to
the original arrangement. Thus this optimization is transparent to the cpu implementation. We
note that by incorporating this optimization, which is specific to the application, we have chosen to
improve performance at the cost of some minor generality. Similar considerations could be applied
to other applications, and one can choose whether to incorporate them or not, depending on their
difficulty of implementation and the performance gains they may lead to.

6.4 Experimental Results

We implemented the hybrid mergesort algorithm and tested its performance on two OpenCL plat-
forms: an Intel R© CoreTM 2 Extreme CPU Q6850 (4 cores at 3.00 GHz, 8 Mb cache) with an ATI
RadeonTM HD59705 gpu card (which we call HPU1), and an AMD Accelerated Processing Unit A6
3650 (4 cores at 2.6 GHz, 4 Mb Cache) with an integrated ATI RadeonTM HD 6530D card (called
HPU2) (see Table 6.4). The algorithms were implemented with OpenCL 1.1 AT-Stream-v2.3 in
Ubuntu 10.04.4 64-bit (HPU1), and OpenCL 1.2 AMD-APP in Ubuntu 12.04 64-bit (HPU2).

We estimated the parameters γ (ratio between cpu and gpu scalar performance) and g (number
of gpu cores) for each platform as shown in Table 6.4. Recall that g does not actually correspond
to the physical number of cores or processing elements of the gpu but rather to an approximation
of the number of threads that fully saturates the device when running a suitable procedure. In
this case, in order to estimate g, we ran an implementation of an elementwise sum of two arrays
in which all threads worked in consecutive array segments. We measured the running time as the
number of threads used increased, and set g to the value after which no improvement in performance

5The HD5970 is a Dual gpu card, but only one card was used in the experiments, as the parallelism available in
the application could only saturate both cards at the lowest levels of the recursion tree, not justifying the overhead
of additional data transfers.

143

Toward a Generic Hybrid CPU-GPU Parallelization of Divide-and-Conquer Algorithms

Table 2: Platforms parameters (p: number of cpu cores, g: number of gpu cores, γ: cpu-gpu scalar
performance ratio).

Platform p g γ−1

HPU1 4 4096 160
HPU2 4 1200 65

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E
xe

cu
tio

n
T

im
e

(s
)

Number of Threads

Execution time vs Parallel Threads

GPU inter

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0 500 1000 1500 2000 2500

E
xe

cu
tio

n
T

im
e

(s
)

Number of Threads

Execution time vs Parallel Threads

GPU inter

Figure 5: Running time as a function of the number of gpu threads used in an elementwise sum of
two arrays for platform HPU1 (left) and HPU2 (right). The size of each array is 224.

was detected6. Figure 5 shows the running times as a function of the number of threads for each
platform. The parameters were set to g = 4096 for HPU1 and g = 1200 for HPU2. In order to
estimate γ, a 1-thread merge operation over two lists was executed on both cpu and gpu. Figure 6
shows the running time for different input sizes. As expected, the time ratio remains relatively
constant. These parameters were set to γ−1 = 160 for HPU1 and γ−1 = 65 for HPU2.

We measured the performance of the advanced hybrid mergesort implementations for various
transfer levels and ratios. Figure 7 shows the speedups of the hybrid implementation on HPU1
(using 4-cpu cores) with respect to a 1-core cpu recursive implementation, as a function of the ratio
α for various transfer levels for an input of size n = 224 (elements in all input sequences were chosen
uniformly at random between 0 and 2n− 1). Recall from the example in Section 5.2.2 that for this
input size the estimated optimal ratio and transfer levels were α ≈ 0.16 and y = 10. We observe that
the speedups do not differ too much across transfer levels, although speedups increase from level 7
and start decreasing with level 11, in accordance with the estimation. Similarly, the performance is
slightly better for transfer ratios that are close to the estimated one.

Figure 8 shows the speedups obtained in both platforms with the values of transfer level and
ratio that resulted in the best speedups (in red). The green lines in the figures show the speedup
estimated in the advanced model analysis for the parameters of the platforms. The maximum
speedups achieved were 4.54x for HPU1 and 4.35x for HPU2, which are close to the estimated 5.47x
and 5.7x by the analysis for the corresponding input size, respectively. Recall that the overall gains
in performance are limited by the sequential execution of the merge methods on large input sizes at
the top levels of the recursion tree, which also limits the performance of a similar multi-core only
implementation to 2.5x-3x speedups on 4 cores [13]. In this sense, the performance gains obtained
through the hybrid implementation are considerable, as we should take into account that according
to the analysis the gpu does about 50% of the total work, which in the best case could lead to a

6The sum of two arrays used to estimate g shares the characteristics of the merge with optimization for memory
coalesced access of our application, and thus it provides a good approximation of the degree of parallelism of the
architecture in this case. Another option would have been to use the same merge function, and in general, the same
divide or combine function of the application can be used for this purpose. Note that the parameter estimation is
done only once.

144

International Journal of Networking and Computing

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07 2e+07

T
im

e
G

P
U

/T
im

e
C

P
U

Test Size

Merge scalar GPU-CPU ratio HPU1

GPU/CPU

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

T
im

e
G

P
U

/T
im

e
C

P
U

Test Size

Merge scalar GPU-CPU ratio HPU2

GPU/CPU

Figure 6: Ratio between scalar performance of single gpu and cpu cores when executing a merge
operation on HPU1 (left) and HPU2 (right).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

S
pe

ed
up

 o
ve

r
1-

C
P

U

Transfer ratio (alpha)

CPU(4)-GPU Mergesort Speedups

7
8
9

10
11
12

Figure 7: Speedup of hybrid mergesort implementation on HPU1 with an instance of size n = 224

as a function of the transfer ratio α. Each curve corresponds to a different transfer level between
processing units (parameter y in Figure 2).

2x speedup over a 4-core execution. Recall as well from the advanced hybrid model description in
Section 5.2 that the gpu should execute so long as the cpu has enough tasks to keep cores busy (as
shown in the bottom of the tree in Figure 2). The blue line in Figure 8 shows the ratio between
these parallel gpu and cpu times. Observe that the ratio is in general close to one and that the
best speedup points coincide with the instances in which this ratio is closest to one.

We observe as well that as the input size grows, the obtained speedups (red) decrease and do
not keep up with estimated ones (green). We believe that as the input size increases, poor cache
utilization hurts the performance of the multi-core portion of the execution. Speedups start to
decrease around an input size of n = 220. The space used by the algorithm is roughly 2n · sizeof(int),
i.e., 223 = 8 Mb. The sizes of the last level CPU caches in HPU1 and HPU2 are 8 Mb and 4 Mb,
respectively. Thus, for larger input sizes multiple cores will compete for cache use.

For the sake of comparison with a fully parallel solution, we show the times and speedups of
a mergesort gpu implementation that implements a parallel algorithm for the merge phase. Like
the implementation with sequential merge, the parallel gpu implementation executes the recursion

145

Toward a Generic Hybrid CPU-GPU Parallelization of Divide-and-Conquer Algorithms

 0

 1

 2

 3

 4

 5

 6

 7

 1000 10000 100000 1e+06 1e+07 1e+08

S
pe

ed
up

Input size

Hybrid Mergesort Speedups

time(CPU(1))/time(hybrid)
predicted

GPU/CPU

 0

 1

 2

 3

 4

 5

 6

 7

 1000 10000 100000 1e+06 1e+07 1e+08

S
pe

ed
up

Input size

Hybrid Mergesort Speedups

time(CPU(1))/time(hybrid)
predicted

GPU/CPU

Figure 8: Speedup of hybrid mergesort implementation (red) as a function of the input size for
HPU1 (left) and HPU2 (right). The green line depicts the estimated speedups in the analytical
model. The blue line shows the ratio between the time of execution of gpu and the time while the
cpu is fully utilized (see Section 5.2).

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1000 10000 100000 1e+06 1e+07 1e+08

T
im

e
[s

]

Input size

Mergesort Times

time(GPU) sort
time(GPU) sort + transfer

time(CPU)

 0

 5

 10

 15

 20

 25

 1000 10000 100000 1e+06 1e+07 1e+08

S
pe

ed
up

Input size

Parallel GPU Mergesort Speedups

time(CPU)/time(GPU) sort
time(CPU)/time(GPU) sort + transfer

Figure 9: Times (left) and speedups (right) of a gpu only implementation of mergesort with parallel
merge compared to a sequential cpu recursive implementation as a function of the input size running
on HPU1. Red lines correspond to the times and speedups for sorting only on the gpu while the
green lines include the time of data transfers.

tree in breadth-first order as well, merging pairs of sublists in each level. Merging two sublists is
implemented by performing a binary search for each element in parallel in order to find its position in
the merged list. Figure 9 shows the times and speedups compared to a recursive divide-and-conquer
execution on one cpu core on HPU1. We observe that speedups are only significantly larger than
those of our solution for large input sizes, reaching 18x-20x speedups for sorting only and being
reduced to about 12x when considering the overhead of data transfers.

Finally, to see how the resulting best parameters compare to the predicted ones by the advanced
hybrid model, Figure 10 shows the ratio α and transfer level y that resulted in the smallest running
times for each input size compared to the ones predicted by the model for HPU1. Note that resulting
parameter values are closer to the predicted ones as the input size grows, which coincides with higher
speedups. Observe as well that in the case of the optimal transfer level, the obtained values essentially
coincide with the predicted ones for larger values of the input size, as the fractional numbers shown
in the figure can only take integer values in an actual execution.

146

International Journal of Networking and Computing

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1000 10000 100000 1e+06 1e+07 1e+08

R
at

io

Input size

Hybrid Mergesort Optimal Ratio

obtained ratio
predicted

 8

 9

 10

 11

 12

 13

 14

 15

 1000 10000 100000 1e+06 1e+07 1e+08

Le
ve

l

Input size

Hybrid Mergesort Optimal Transfer Level

obtained level
predicted

Figure 10: Red points show the work ratio α (left) and transfer levels y (right) between cpu and
gpu that resulted in the smallest running times for each input size (for HPU1). Green points
correspond to the optimal values as predicted by the model.

7 Conclusions

We presented the Hybrid Processing Unit, a model for hybrid computation on heterogeneous cpu-
gpu architectures. In this model, we describe a generic framework to implement hybrid divide-and-
conquer algorithms and provide a work-division strategy that minimizes idle times and communica-
tion between processing units.

Experimental results on a mergesort example confirm the accuracy of the model at predicting
speedups and parameters that yield the best performance, thus suggesting that a model based
on traditional approaches to the design and analysis of parallel computation can be useful in a
heterogeneous scenario.

For future work, it would be interesting to explore optimizations to the scheduler of the model to
obtain better performance for some problems. For example, for problems in which the parallelization
of the divide and conquer portions of algorithms is simple—such as dense matrix operations—, the
recursive schedule could be stopped at a certain level of the tree, after which parallel versions of the
gpu kernels could be executed. Another approach that could lead to performance gains could be
to switch to non-recursive sequential versions of the algorithms at the lowest levels of the tree. In
either case, the optimal switching level and cpu-gpu work ratio would have to be determined either
analytically or experimentally for each particular application.

In addition, we plan to refine the model by considering cache, communication, and scheduling
costs explicitly, as well as to extend its applicability to other classes of problems that are suitable
for obtaining performance gains in heterogeneous architectures.

Acknowledgments

This project was partially funded by the Natural Sciences and Engineering Council of Canada
(NSERC) and Advanced Micro Devices, Inc. (AMD) through the NSERC Engage Grants Program.
We would like to thank anonymous reviewers for comments that helped to improve the presentation
of this paper.

References

[1] E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, J. Langou, H. Ltaief, and S. Tomov. LU
factorization for accelerator-based systems. In Computer Systems and Applications (AICCSA),
2011 9th IEEE/ACS International Conference on, pages 217 –224, Dec. 2011.

147

Toward a Generic Hybrid CPU-GPU Parallelization of Divide-and-Conquer Algorithms

[2] E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief, S. Thibault, and S. Tomov. QR
factorization on a multicore node enhanced with multiple GPU accelerators. In 25th IEEE
International Symposium on Parallel and Distributed Processing, IPDPS’11, pages 932 –943,
May 2011.

[3] E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst, S. Thibault, and S. Tomov. Faster,
Cheaper, Better – a Hybridization Methodology to Develop Linear Algebra Software for GPUs.
In W. mei W. Hwu, editor, GPU Computing Gems, volume 2. Morgan Kaufmann, Sep. 2010.

[4] AMD. The industry-changing impact of accelerated computing. AMD Whitepaper, Advance
Micro Devices, 2008. 09/04/2011.

[5] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK’s user’s guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992.

[6] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: a unified platform for task
scheduling on heterogeneous multicore architectures. Concurrency and Computation: Practice
and Experience, 23(2):187–198, 2011.

[7] M. Baboulin, S. Donfack, J. Dongarra, L. Grigori, A. Rémy, and S. Tomov. A class of
communication-avoiding algorithms for solving general dense linear systems on CPU/GPU par-
allel machines. Procedia CS, 9:17–26, 2012.

[8] G. Barlas, A. Hassan, and Y. A. Jundi. An analytical approach to the design of parallel block
cipher encryption/decryption: A CPU/GPU case study. In Proceedings of the 19th International
Euromicro Conference on Parallel, Distributed and Network-Based Processing, PDP ’11, pages
247–251, Washington, DC, USA, 2011. IEEE Computer Society.

[9] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach,
and A. Singhania. The multikernel: a new OS architecture for scalable multicore systems. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP ’09,
pages 29–44, New York, NY, USA, 2009. ACM.

[10] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK user’s
guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1997.

[11] B. C. Budge, J. C. Anderson, C. Garth, and K. I. Joy. A hybrid CPU-GPU implementation
for interactive ray-tracing of dynamic scenes. Technical Report CSE-2008-9, University of
California, Davis Computer Science, 2008.

[12] S. Chakrabarti, J. Demmel, and K. Yelick. Modeling the benefits of mixed data and task
parallelism. In Proceedings of the Seventh Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA ’95, pages 74–83, New York, NY, USA, 1995. ACM.

[13] R. Dorrigiv, A. López-Ortiz, and A. Salinger. Optimal speedup on a low-degree multi-core
parallel architecture (LoPRAM). In Proceedings of the Twentieth Annual Symposium on Paral-
lelism in Algorithms and Architectures, SPAA ’08, pages 185–187, New York, NY, USA, 2008.
ACM.

[14] P. Ezzatti, E. Quintana-Ort́ı and, and A. Remon. High performance matrix inversion on a
multi-core platform with several GPUs. In Parallel, Distributed and Network-Based Processing
(PDP), 2011 19th Euromicro International Conference on, pages 87 –93, Feb. 2011.

[15] J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L. Paolini, and E. J. Kelmelis. Cula: hybrid
GPU accelerated linear algebra routines. In Proc. of SPIE Defense and Security Symposium
(DSS), April 2010.

148

International Journal of Networking and Computing

[16] Khronos OpenCL Working Group. The OpenCL Specification, version 1.2.19, 14 November
2012.

[17] J. Kurzak, R. Nath, P. Du, and J. Dongarra. An implementation of the tile QR factorization
for a GPU and multiple CPUs. In Proceedings of the 10th international conference on Applied
Parallel and Scientific Computing - Volume 2, PARA’10, pages 248–257, Berlin, Heidelberg,
2012. Springer-Verlag.

[18] A. López-Ortiz, A. Salinger, and R. Suderman. Toward a generic hybrid CPU-GPU paral-
lelization of divide-and-conquer algorithms. In Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International, pages 601–610, 2013.

[19] M. D. McCool, K. Wadleigh, B. Henderson, and H.-Y. Lin. Performance evaluation of GPUs
using the RapidMind development platform. In Proceedings of the 2006 ACM/IEEE conference
on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM.

[20] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming with CUDA.
Queue, 6(2):40–53, Mar 2008.

[21] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and G. Hunt. Helios: heterogeneous
multiprocessing with satellite kernels. In Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, SOSP ’09, pages 221–234, New York, NY, USA, 2009. ACM.

[22] NVIDIA. Dynamic parallelism in CUDA, 2012. Retrieved on 01/19/2013.

[23] M. Papadrakakis, G. Stavroulakis, and A. Karatarakis. A new era in scientific computing:
Domain decomposition methods in hybrid CPU-GPU architectures. Computer Methods in
Applied Mechanics and Engineering, 200(13-16):1490–1508, Mar. 2011.

[24] G. Quintana-Ort́ı, F. D. Igual, E. S. Quintana-Ort́ı, and R. A. van de Geijn. Solving dense
linear systems on platforms with multiple hardware accelerators. In Proceedings of the 14th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’09,
pages 121–130, New York, NY, USA, 2009. ACM.

[25] A. L. Rosenberg and R. C. Chiang. Toward understanding heterogeneity in computing. In 24th
IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2010, Atlanta,
Georgia, USA, pages 1–10, 2010.

[26] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, P. Dubey, S. Junkins, A. Lake, R. Cavin,
R. Espasa, E. Grochowski, T. Juan, M. Abrash, J. Sugerman, and P. Hanrahan. Larrabee: A
many-core x86 architecture for visual computing. IEEE Micro, 29(1):10–21, 2009.

[27] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A parallel programming standard for heteroge-
neous computing systems. Computing in Science and Engineering, 12:66–73, 2010.

[28] L. Surhone, M. Tennoe, and S. Henssonow. Intel Array Building Blocks. VDM Verlag Dr.
Mueller AG & Co. Kg, 2010.

[29] G. Teodoro, R. Sachetto, O. Sertel, M. Gurcan, W. Meira, U. Catalyurek, and R. Ferreira.
Coordinating the use of GPU and CPU for improving performance of compute intensive ap-
plications. In Cluster Computing and Workshops, 2009. CLUSTER ’09. IEEE International
Conference on, pages 1 –10, Aug.-Sep. 2009.

[30] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra for hybrid GPU accel-
erated manycore systems. Parallel Comput., 36:232–240, June 2010.

[31] S. Tomov, J. Dongarra, P. Du, and R. Nath. Magma version 0.2 user guide. MAGMA, 2009.
09/06/2011.

149

Toward a Generic Hybrid CPU-GPU Parallelization of Divide-and-Conquer Algorithms

[32] S. Tomov, R. Nath, and J. Dongarra. Accelerating the reduction to upper hessenberg, tridiago-
nal, and bidiagonal forms through hybrid GPU-based computing. Parallel Comput., 36(12):645–
654, Dec. 2010.

[33] S. Venkatasubramanian and R. W. Vuduc. Tuned and wildly asynchronous stencil kernels for
hybrid CPU/GPU systems. In Proceedings of the 23rd international conference on Supercom-
puting, ICS ’09, pages 244–255, New York, NY, USA, 2009. ACM.

[34] C. Vömel, S. Tomov, and J. Dongarra. Divide and conquer on hybrid GPU-accelerated multicore
systems. SIAM Journal on Scientific Computing, 34(2):C70–C82, 2012.

150

