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Abstract

In aerospace industry, computational fluid dynamics (CFD) is used as a common design
tool. Fast Aerodynamics Routines (FaSTAR) is one of the most recent CFD software package,
convenient for users with various solvers and automatic generation of grid data. The problem of
FaSTAR is hard to be executed in parallel machines because of its irregular and unpredictable
data structure. Exploiting reconfigurable hardware with their advantages to make up for the
inadequacy of the existing high performance computers had gradually become the solutions and
trends. However, a single FPGA is not enough for the FaSTAR package because the whole
module is very large. Instead of using a large number of chips, partially reconfigurable hard-
ware available in recent FPGAs is explored for this application. Advection term computation
module in FaSTAR is chosen as a target subroutine. We proposed a reconfigurable flux calcula-
tion scheme using partial reconfiguration technique to save hardware resources to fit in a single
FPGA. We developed flux computational module and three flux calculation schemes are imple-
mented as reconfigurable modules. This implementation has advantages of up to 42% resource
saving and enhancing the configuration speed by 6.28 times. Performance evaluation also shows
that 2.65 times acceleration is achieved compared to Intel Core 2 Duo at 2.4GHz.

Keywords: Computational Fluid Dynamics (CFD), Field-Programmable Gate Array (FPGA),
Scientific Computation, Reconfigurable Hardware, Partial Reconfiguration
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1 Introduction

CFD (Computational Fluid Dynamics) has been widely utilized in the design and optimization
of fluid flow applications. In aerospace industry, CFD is a cost-effective design tool for aircraft
components. It presents methods to solve and analyze problems of the physical phenomena of fluids
involving fluid flow on discrete space and time. Ground test facilities do not exist in all flight regimes
covered by such hypersonic flight. No wind tunnels that can simultaneously simulate the higher Mach
numbers and high flow-field temperatures to be encountered by trans-atmospheric vehicles. Hence,
CFD has become the major player in the design of such vehicles. In addition, compressible flow
simulations are of vital importance to the aerospace engineering community, which will always seek
more accuracy and higher resolution creating a demand for faster codes and making the use of high
performance computing strategies invaluable.

A typical simulation platform in the aeronautics industry consists of a CFD specific software
application, normally written in a high-level language. FaSTAR (Fast Aerodynamics Routines),
a compressible flow analysis code developed by JAXA (Japan Aerospace Exploration Agency) is
one of such CFD software packages [6]. FaSTAR adopts unstructured mesh as grid data in the
simulation. Although it is a convenient tool for aerodynamics analysis, it sometimes takes several
days or weeks when an analytical area grows large. This is mainly caused by low parallel processing
efficiency accompanied with pointer links and a complicated memory access pattern. In FaSTAR,
the increasing demands for accuracy and simulation capabilities produce an exponential growth of
the required computational resources.

Recently, reconfigurable systems using FPGAs have been utilized for acceleration of specific
applications including bio-informatics and financial problems [8, 9]. Even though the early recon-
figurable systems did not focus on large-scale numerical scientific application, the use of FPGAs for
such areas has been growing remarkably because of the rapid performance improvement of modern
FPGAs with a large number of configurable logic blocks, memory blocks and embedded multipliers.
However, although some research works using FPGAs achieved significant speed-up ratio to the
software, targets were simple programs rather than practical software packages.

The goal of our research is to improve the performance of FaSTAR by using FPGAs as a reconfig-
urable platform. Previously, we have proposed out-of-order mechanisms to cope with unstructured
mesh for efficient execution of FaSTAR [1]. Another problem of FaSTAR is its versatile functions
using a lot of solvers. For implementation of the whole package, a lot of expensive FPGAs each of
which has a certain level of size are required. Using partial reconfiguration is a hopeful strategy for
reducing the total cost. This work is the first trial of applying the partial reconfiguration technique
to a practical scientific computation package. The total required hardware becomes large if all func-
tions of the package are implemented in a single design. We can avoid it by providing a set of subset
designs with only required functions in advance. However, the number of designs to be prepared
in advance becomes large for a complicated application package, since there are several parts each
of which has selectable functions and required numbers of subset designs are their products. By
introducing the partial reconfiguration, we can quickly prepare the appropriate design for the user.
This trial is the first step of using partial reconfiguration technique for a large practical scientific
package, and it has a possibility to extend the application field of the partial reconfiguration for
this field. Here, as a target function, we select the advection term computation, which is a time
consuming large function in FaSTAR.

The rest of this paper is organized as follows. Section 2 discusses related work to this study.
Section 3 is an explanation regards to FaSTAR and target subroutines. Section 4 introduces the
theory of implemented flux calculation schemes. Section 5 describes about the implementation of
this work. Then, following to Section 6 for performance evaluation, Section 7 discusses about future
work, and Section 8 summarizes this work with conclusion.

2 Related Work

In fluid dynamics simulation, execution time is one of the largest concerns. There are various
studies using FPGAs reported so far to examine the issue. Andres et al. and Sano et al. reported
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Table 1: Example of available solutions used in FaSTAR.
Solutions Available Solvers

Governing Equation
Euler Equation

Navier-Stokes Equation
Reynolds Averaged Navier-Stokes Equation

Turbulent Flow Model
Spalart-Allmaras Model (SA)

Menter k-ω Shear Stress Transport Model (SST)
Automatic Wall Processing Capability

Inviscid Flux Calculation Scheme
Roe Scheme

HLLE Scheme
HLLEW Scheme

Flux Evaluation Least-Square Law
Green-Gauss Law

Flux Limiter Function

Hishida Limiter
Venkatakrishnan Limiter
Bart-Jespersen Limiter

minmod Limiter
Time Integration LU-SGS(regular/unsteady, local/global time stepping)

Convergence Acceleration Multigrid (FAS:Full Approximation Storage)
Krylov Law (GMRES)

the result for FPGA accelerations [2, 15]. However, their implementations are not for practical
software packages. Another result is reported for implementation of FPGA flow solver based on the
systolic architecture for CFD [14]. This work proposed a systolic algorithm for the fractional-step
method employing the central difference schemes. Although satisfactory performance is achieved,
their implementation focuses on systolic algorithms.

Partial reconfiguration technology has attracted many researchers for filling the gap between
hardware and software for algorithm implementation. Recently, in computer security applications,
partial reconfiguration is applied in AES (Advanced Encryption Standard) algorithm implementa-
tion [7]. It also had been used to accelerate video processing in driver assistance system [3]. Also,
a few researches had been done on an aerospace applications using partial reconfiguration method.
LaMeres et al. [10] designed and prototyped the computing architecture which dynamically recon-
figures the system depending on the environment. Another work has proposed the SoCWire archi-
tecture verification, test and results on network on chip for safe dynamic partial reconfiguration in
spaces applications [12].

Our previous trial [16], was the first example of using partial reconfiguration in CFD implemen-
tation. However, it was applied to small limiter functions in a subroutine called MUSCL used in
UPACS [18]. Although the total hardware is reduced, the effect is limited since it only occupies a
small portion of the target FPGA.

3 FaSTAR

FaSTAR is a CFD software package developed by JAXA to simulate compressible flow using un-
structured grids [6]. FaSTAR consists of many solvers with multiple solutions. Its source code is
written in Fortran 90 with message passing interface (MPI). By choosing certain solvers, users can
select various solutions supported by the application and run simulation in parallel with their sys-
tems without specific software tunings. Users just are requested to prepare parameter file and grid
data file before the simulation. Table 1 shows example solvers available in FaSTAR. By combining
these solvers, a user can simulate with desired solutions. When the partial reconfiguration is applied
to selectable solutions, first, the profiling is required. Then, the part in which multiple schemes are
available is picked up from the subroutines, which take a long computation time.
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Figure 1: FaSTAR profiling result.

3.1 Target Subroutine

As a first step, we profiled the execution time of FaSTAR to find out which routines consume the
highest percentage. Compiler used is Intel Fortran Compiler 10.1 on Intel Core 2 Duo processor at
2.66 GHz with Linux Kernel 2.6. The profiling results are shown in Figure 1.

Code for a single core without MPI was compiled. The result indicates that more than 60% of the
total execution time is occupied by two calculations part: limiter and advection term. FaSTAR
limiter part is difficult for implementation in reconfigurable hardware because of its complicated
iteration. Here, we selected the advection term, since it occupies a large part of the total computation
time, and has a selectable function whose hardware requirement is relatively large.

Advection term is consisting of three subroutines:

• pre-processing,

• flux calculation, and

• surface integral of flux.

In pre-processing, data of a specific cell number are prepared. Using these data, flux is
obtained by applying to scheme equations in flux calculation part. Here, we try to apply partial
reconfiguration to make reconfigurable scheme selection as a focus of this paper. The finite volume
method for discretization of the space is processed in surface integral of flux. We have reported
our study for this part in [1].

4 Flux Calculation Scheme

In flux calculation subroutines, there are three schemes available for selection: Roe’s scheme, HLLE
scheme and HLLEW scheme [13, 4, 11]. We describe how to compute the inviscid flux using Riemann
solver approximation. As shown in Figure 2, conserved quantities, Qna and Qnb in cell A and cell
B were used to determine flux, Fn. In this case, with the respective to cell A, the normal vector, ds

has same right direction with flux. On the other hand, with respect to cell B, the opposite direction
is positive.

4.1 Roe’s Scheme

The method proposed by Roe [13] is based on Euler’s equation into windward of the linearization.
The numerical flux function can be written as follows:

Fn =
1
2
[f(Qna) + f(Qnb) − |A|ave(Qnb − Qna)] (1)
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Fn=Fn(Qna,Qnb)

Cell A Cell B

Qna Qnb

ds

Figure 2: Flux in definition of cell surface boundary.

In this example, Fn is evaluated when it is viewed from the cell A. If it is viewed from the cell
B, negative sign is added to become -Fn. In detail we may write:

f(Qna) =


ρauna

ρau2
na + pa

ρaunaut1a

ρaunaut2a

ρaunaHa

 = ρauna


1

una

ut1a

ut2a

Ha

 +


0
pa

0
0
0

 (2)

Qna =


ρa

ρauna

ρaut1a

ρaut2a

ea

 (3)

That is, the way to obtained f(Qnb) and Qnb is the same. In addition, A is the Jacobian matrix
for flux,

|A|ave = Rave|Λ|aveR
−1
ave (4)

R is the matrix with right eigenvector, Λ is matrix with eigenvalue and R−1 is matrix with
left eigenvector. The matrix with subscript ave, is composed by variables which obtained by Roe
average. The Roe average can be expressed as follows:

ρave =
√

ρaρb

uave =
√

ρaua +
√

ρbub√
ρa +

√
ρb

Have =
√

ρaHa +
√

ρbHb√
ρa +

√
ρb

cave =

√
(γ − 1)(Have −

1
2
u2

ave)

(5)

Here, c is the speed of sound, H is the total enthalpy per unit mass, and γ is specific weight
representing the force exerted by gravity on a unit volume. Therefore, γ = ρ∗g. Then, we can write
the matrix in details as follows:

R =


1 0 0 ρ

2c
ρ
2c

u 0 0 ρ(u+c)
2c

ρ(u−c)
2c

v 0 −ρ ρv
2c

ρv
2c

w ρ 0 ρw
2c

ρw
2c

u2+v2+w2

2 ρw −ρv ρ
2c (H + uc) ρ

2c (H − uc)

 (6)
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|Λ| =


|u| 0 0 0 0
0 |u| 0 0 0
0 0 |u| 0 0
0 0 0 |u + c| 0
0 0 0 0 |u − c|

 (7)

Here, if ave subscript can be omitted, u = un, v = ut1 and w = ut2.

4.2 HLLE Scheme

Einfeldt [4] discussed an adapted version of the HLL scheme [5], called HLLE (Harten-Lax-van Leer-
Einfeldt) scheme, which can be considered as a modification of Roe’s scheme. This scheme is a
stable procedure that is solved by approximation of two characterized waves, which are valid for the
flow with a strong expansion. However, there is a disadvantage that the numerical viscosity is large.
Total flux can be calculated using the following equations:

Fn =
b+f(Qna) − b−f(Qnb)

b+ − b−
+

b+b−

b+ − b−
(Qnb − Qna) (8)

where,

b+ =max(uave + cave, unb + cb, 0)

b− =min(uave − cave, una − ca, 0)
(9)

In this example, we evaluated Fn when it is viewed from the cell A. Again, if it is viewed from
cell B, it will become -Fn. The average value b, is calculated using Roe average in Eq. 5.

4.3 HLLEW Scheme

Obayashi and Wada proposed a new, modified HLLE scheme that satisfies the positively conservative
condition called HLLEW (Harten-Lax-van Leer-Einfeldt-Wada) scheme [11]. The numerical flux can
be calculated using the following equations:

Fn =
1
2

f(Qna)


1

una

ut1a

ut2a

Ha

 + f(Qnb)


1

unb

ut1b

ut2b

Hb

 +


0

pa + pb + δ2

δ3

0
0


 (10)

where,

δ2 = − (λ+ρave∆u + λ− ∆p

cave
)

δ3 = − (λ1∆p + uaveδ2)

λ+ =
λ2 + λ3

2
− λ1

λ− =
λ2 − λ3

2

(11)

Coefficients, δ2 and δ3 are obtained using the Roe average in Eq. 5. Same as Roe and HLLE
schemes, we evaluated Fn when it is viewed from cell A.
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Table 2: Implementation environments.
Name Tools
HDL Verilog HDL

FPGA Virtex-6 XC6VLX240T FF1156
Synthesis ISE 12.4 XST
Simulation ISim M.81d Simulator
PR Flow PlanAhead 12.4

Programming iMPACT M.81d
Floating-point Unit CORE Generator

5 Design and Implementation on an FPGA

Xilinx Virtex-6 FPGA (XC6VLX240T-1FF1156) is chosen as a target device, which supports partial
reconfiguration. In a large software package, a subroutine itself is not always appropriate as a
target of partial reconfiguration. For example, all three schemes treated here include Roe average
calculation and so it must be implemented as a static module. Before the design, the target is
well re-structured so that the static module and partial reconfiguration modules are appropriately
separated.

Overview of the system is shown in Figure 3. At the beginning, the system will initialize and
updates mesh size for each grid data and face index. Then, it will calculate Roe average value in
Roe average module since this value is needed for all schemes. Inputs for the Roe average module
are density, ρ, velocity, u and total enthalpy per unit mass, H. The result of Roe average module is
directly inputted to the flux calculation module. Meanwhile, grid data file of the cell number and
index are also inputted to the flux calculation module.

After that, in the reconfigurable module, users can choose which scheme they want to use.
Partial reconfigurability of the FPGA and intractability of the bitstream meet the requirements of
this system. Each scheme module has the same inputs and outputs as shown in Figure 4, thus, it
can be specified in the HDL description as the functional modules with the reconfigurable partition
attribute in the description of the top module. Multiple instances corresponding to the schemes are
defined for such a single functional module. Software tools as NGDBuild, MAP and PAR detect
the reconfigurable partition attribute on the instance, and process it correctly. RAM is allocated in
each scheme to store variables values during calculation. It is built with Block RAMs, in which data
are stored temporarily.

Programmable input/output (I/O) module is designed to control the access to memory. A result
of flux calculation module is stored in memory. We implement simple dual-port RAM for each
adjacent cell, cell A and cell B, shows as memory A and memory B. Here, Block RAM used is
36 Kb block, RAMB36E, which is configured in a simple dual-port RAM mode. Read/Write data
width is set to 64 bit. Read/Write process is performed in parallel with the flux calculation module.
Summation of all cell flux values gives the total flux.

Reconfigurable
flux calculation

scheme

Memory A

Memory B
RAM

Read

Write

Flux

Roe Average
Module

ρ

H
u

cell

index

I/O
Module

Figure 3: System overview.
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Figure 4: Implemented flux calculation schemes.

All modules are described using Verilog HDL and simulated with Xilinx ISim simulator. The
modules are synthesized, and used resources are measured with Xilinx ISE 12.4. Floorplanning,
constraint entry and design rule checks (DRCs) are all accessed through the PlanAhead 12.4 soft-
ware environment, which supports partial reconfiguration flow. All modules are implemented using
IEEE754 standard 64-bit double precision floating-point arithmetic. Here, the floating-point com-
putational module is based on the Xilinx Floating-Point Operator v5.0 incorporated into Xilinx ISE
12.4 software. The Floating-Point Operator v5.0 is an IP core for handling floating-point opera-
tions, and it is configurable by the user specifications. Xilinx CORE Generator is used to provide
the core for floating-point arithmetic units. So as to generate high performance computation unit,
the level of DSP48E usage is set to the maximum to get the desired output. In order to demon-
strate that our system works on a real FPGA, Xilinx ML605 board is used with 200 MHz operating
frequency. Finally, for programming the FPGA, Xilinx iMPACT software is used. Summary for the
implementation environments is shown in Table 2.

At one time, only one scheme is used and employed in the FPGA. The top, static and reconfig-
urable modules are consisting of many arithmetic functions. The parameters used for each computing
unit are shown in Table 3. For high performance computation, adder and subtractor are set to 14
clock cycles per operation using high-speed mode. In addition, the multiplier takes 16 clock cycles
with 11 DSP48E usages. The latency of square root and divider is set to be 57 clock cycles. Although
it is possible to decrease the square root and divider pipeline latency, it will severely degrade the
clock frequency. Latency for the comparator unit is the fastest; it only requires one clock cycle.

We used bottom-up synthesis technique to synthesize the design by modules. This synthesis
technique requires that a separate netlist is written for reconfigurable partition ensuring that each

Table 3: Data of used computing units.
Units Latency Registers LUTs DSP48E bit width data type
Adder 14 947 797 3 64 floating-point

Subtractor 14 947 798 3 64 floating-point
Multiplier 16 483 362 11 64 floating-point
Divider 57 5973 3261 0 64 floating-point

Square Root 57 3283 1902 0 64 floating-point
Comparator 1 0 128 0 64 floating-point
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Figure 5: Floorplan of reconfigurable partition with HLLE scheme.

portion of the design is synthesized independently. Top and static module are synthesized with
black box for the reconfigurable partition. In this case, flux calculation scheme module is defined as
a black box in a top module synthesis. Roe, HLLE and HLLEW scheme modules are synthesized
beforehand to provide the required netlist.

Next crucial step is to perform manual floorplanning for reconfigurable partition, which requires
knowledge of the physical architecture of FPGA and understanding of how to floorplan for optimal
performance and area. The challenge is how to create and pack large flux calculation schemes into
a single partition. The partition boundary is defined so that the inserted proxy logic and the extra
wiring cost may not degrade the total performance. Although irregular shaped partition such as T
or L shapes is allowed, placement and routing in such regions sometimes degrade the performance
because of the shortage of the routing resources and long wires. Therefore, we chose a certain
size rectangular shape for flux calculation scheme as shown in Figure 5, which is adequate for all 3
schemes. Figure 5 shows a floorplan of the system with HLLE scheme is deployed. This is important
for all reconfigurable modules to have enough resources to fit in the partition when the bitstream is
loaded. After that, timing constraint entry and design rule checks (DRC) are performed.

5.1 Roe Average Module

As shown in Section 4, all schemes are needed of Roe average values before the flux computation
is processed. Therefore, Roe average module is decided as a static module since it will be used in
all cases. In this module, managing parallelism is an important issue. The FaSTAR source code for
this calculation in Fortran 90 is written as follows:

RAT = SQRT(RRHT/RLFT)
RATI = 1.0/(RAT + 1)
RAV = RAT*RLFT
UAV = (RAT*URHT + ULFT) * RATI
VAV = (RAT*VRHT + VLFT) * RATI
WAV = (RAT*WRHT + WLFT) * RATI
HAV = (RAT*HRHT + HLFT) * RATI
QA2 = UAV*UAV + VAV*VAV + WAV*WAV
CA2 = GM1*(HAV - 0.5d0*QA2)
CAV = SQRT(CA2)

The code is executed sequentially from top to the bottom. The advantage of sequential operations
is that they efficiently use the resources, whereas parallelism can be used to reduce the time to
completion and get the Roe average values at the expense of additional hardware resources.
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Figure 6: Scheduled data flow graph for Roe average module.

The idea behind control parallelism is that the statements used to compute uave (UAV), vave

(VAV), wave (WAV) and Have (HAV) can be performed simultaneously while still producing the correct
answer. A scheduled data flow graph as shown in Figure 6 represents a data dependencies between
operations. After SQRT output to get the value of RAT, all multiplications operations are executed
in parallel. At this stage, ρave and RAV are obtained. Then, after RATI value is obtained, all UAV,
VAV, WAV and HAV can be also computed in parallel. However, CAV cannot begin until QA2 and CA2
finish. At the beginning to compute RAT will take a large number of clock cycles, since square root
and divider computing units require a large number of clock cycles each. Therefore, we implement
pipeline datapath to address this issue. Implemented pipeline datapath for Roe average module is
shown in Figure 7. Registers are inserted in the dot line to create a single stage pipeline.

5.2 Roe Scheme Module

Roe scheme module is implemented in reconfigurable partition as a reconfigurable module. This
module is designed and synthesized separately from the top module. Roe calculation scheme involves
5 steps to get the results:

1. Compute matrix R.

2. Compute matrix R−1.

3. Compute matrix |Λ|.

4. Compute Jacobian matrix |A|.

5. Compute Roe’s numerical flux.

The main arithmetic operation of this module is a 5 × 5 matrix multiplication as shown in Eq. 4.
In general, the standard matrix multiplication C = A × B is defined as follows:

Ci,j =
N−1∑
k=0

Ai,k × Bk,j , (0 ≤ i ≤ M, 0 ≤ j ≤ R)
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Figure 7: Pipeline datapath for Roe average module.

Where A,B and C are M ×N, N ×R, and M ×R matrices, respectively. Since all matrices are
5 × 5, the pseudo code for matrix multiplication is shown in Algorithm 1. However, it requires two
times matrix multiplication to obtain the Jacobian matrix, which utilizes a lot of resources.

However, computation of each matrices R, R−1 and |Λ| are done in parallel. Then, matrix R is
multiplied with matrix R−1. Result of this matrices is multiplied with matrix |Λ| to obtain Jacobian
matrix. Finally, Jacobian matrix is used to compute the numerical flux.

We implemented a MAC (Multiplication and Accumulation) unit structure that couples the
multiplication and the accumulation closely as shown in Figure 8. The multiplier receives the
elements of A and B in a data driven manner. That means whenever both of the data are available,
they will enter the pipeline. After the multiplication, the result is stored in FIFO and loaded
address is generated. The next multiplication result will be added with the prefetch data from
FIFO, and accumulated results are stored in temporary memory. This operation strategy is repeated
continuously until calculation finishes.

5.3 HLLE Scheme Module

HLLE scheme module is rather straight forward compared to Roe scheme module. This module is
also defined as a reconfigurable module same as Roe scheme module. Therefore, it is designed and
synthesized separately from the top module to produce required netlist. HLLE calculation scheme
requires 2 steps to get the final result:

1. Compute HLLE coefficients and eigenvalues.

2. Compute HLLE numerical flux.

Algorithm 1 Pseudocode for Matrix Multiplication.
1: for (i = 0; i < 5; i = i + 1) do
2: for (j = 0; j < 5; j = j + 1) do
3: C[i, j] = 0;
4: for (k = 0; k < 5; k = k + 1) do
5: C[i, j] = C[i, j] + A[i, k] ∗ B[k, j];
6: end for
7: end for
8: end for
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After received the Roe average values, HLLE coefficients, b+ and b− are computed using adder,
subtractor and comparator computing units. Then, HLLE flux function circuit shown in Figure 9
is used to compute the HLLE numerical flux. This hardware implementation divides the fraction of
Eq. 8 into two part. Therefore, calculation of left fraction and right fraction are done in parallel.
Summation of these two values makes the total flux.

5.4 HLLEW Scheme Module

Apparently, HLLEW scheme is a modification of HLLE scheme. This scheme is also based on
Roe scheme as well as HLLE scheme. However, to compute the HLLEW flux, there is no need
to do a matrix computation as suggested for Roe scheme. HLLEW scheme is also implemented
as a reconfigurable module in reconfigurable partition. Therefore, it is synthesized beforehand and
separately to provide the required netlist to the top module. Computation of HLLEW flux requires
the following steps:

1. Compute coefficients and eigenvalues.

2. Compute pressure difference.

3. Compute HLLEW numerical flux.

Again, Roe average values are used here to compute the coefficients and eigenvalues. After that,
pressure difference, ∆p is calculated. When all values are obtained, inputs are sent to the HLLEW
flux function circuit as shown in Figure 10 to compute the numerical flux. This circuit is explicitly
designed to calculate the Qna and Qnb data values in parallel. Total flux is obtained after summation
of result divided by two.
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Figure 10: HLLEW flux function circuit.

5.5 Implementation Issues

Our challenge is to implement large scale scientific computation using partial reconfiguration. Careful
design requirements and considerations are carried out. At the same time, the design specification
must be analyzed thoroughly, and the limitations associated with partial reconfigurable designs are
considered. In addition, difficulties must be resolved to improve the quality of the design. The
challenges and solutions on implementation are listed as follows:

1. I/O in each scheme module
Flux calculation schemes must include the I/O circuitry, input buffer (IBUF) and output buffer
(OBUF) that are required to connect internal logic to package pins. In other words, the I/O
features must be completely contained within the scheme module, but the port list for the
complete design remains at the top-level design description. Besides, the limitation of the I/O
pins of FPGA must be considered, since flux calculation module requires many I/O.

2. DSP blocks in each scheme module
It is also important that the physical region selected has adequate resources especially DSP48E
for all schemes. Flux calculation scheme requires a lot of DSP blocks to perform the computa-
tion. Therefore, we properly set the last blocks occupied in both end column of reconfigurable
partition are DSP blocks, instead of slice or block RAM. Using this strategy, we can maximize
DSP blocks in the partition.

3. Interaction with CORE Generator
Since we used CORE Generator to generate all computing units, netlist-based cores were
created to be instantiated in the design. To make sure these cores can be instantiated easily, the
boundaries of flux calculation scheme partition is not modified. We also made considerations
for the definition of the flux calculation scheme region to ensure the proper elements are
contained within.

4. Optimization
In order to optimize the design time for bit file generation, the most complicated and highly
resource consuming design should be selected first. Here, Roe scheme is done first, then
HLLEW follows, and HLLE is done last.
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Figure 11: Resources utilization for all possible implementation.

6 Evaluation

In order to demonstrate the effectiveness of our design, we used a sample data of NACA 0012 airfoil.
The National Advisory Committee for Aeronautics (NACA) develops the NACA airfoils shapes for
aircraft wings. The grid data consisting of 11,564 grids with 22,883 faces are used in our study. We
evaluated the used resources, configuration speed for full and partial reconfiguration, and system
performance.

6.1 Resource Utilization

The amount of required slice registers, slice LUTs, DSP48E and BlockRAM are evaluated when the
design is synthesized. There are 3 design options for implementation consideration. Result of the
resource utilization is shown in Figure 11. Obviously, the first option is to fit in all modules in a
single FPGA, shown in first column noted by “Full”. The main advantage of this method is that it
only requires one time configuration and no reconfiguration is needed. However, it requires a large
amount of hardware that is not enough in a single FPGA. Total resource utilization for registers
and LUTs usage exceeds 100%. Registers and LUTs required are 119% and 142% respectively.

Second strategy is implementing only a scheme in one design. Means, for three schemes, there
are three difference designs. This is shown in second, third and fourth column noted by “Roe Full”,
“HLLEW Full” and “HLLE Full”. Although there are enough resources to do this, two disadvantages
arise. First, it will require two times full reconfiguration if a user wants to change from one scheme
to another. Second, resource is overused since the same design is used again except the flux scheme
module.

The third option, which is our proposed method, is to utilize partial reconfiguration. This is
shown in fifth column noted by “Partial”. Top, static and reconfigurable modules are fixed in a
single FPGA. Flux calculation schemes bitstreams are stored in the host PC. When users want to
use any particular scheme, it is loaded to an FPGA. Consumed resources when no scheme loaded is
small. In addition, consumed resources when system is in use and one scheme loaded is the same with
the second option. However, another advantage of this technique is the configuration time. If users
want to change from one scheme to another, it can be faster compared to the full reconfiguration.

We examined the amount of resources utilization for each design option. We found out that all
modules cannot be implemented in single Virtex-6 XC6VLX240T-1FF1156 FPGA since resources
available are not enough to accommodate all modules. For the second option design, Roe, HLLEW
and HLLE schemes are implemented separately. Although there are enough resources to implement
this, all designs require full reconfiguration to load in an FPGA independently. In partially recon-
figurable design, bitstreams of Roe, HLLEW and HLLE schemes are stored in host PC. Therefore,
maximum resources reduction is measured when Roe scheme is deployed since it requires the highest
resources. On average, consumed resources for “Full” design is 98.25% while for partially reconfig-
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urable design when Roe scheme is deployed is 56.25%. As a result, resource utilization is successfully
reduced by 42% on average.

Even though the resources are not enough to implement all modules in a single FPGA, there
are resources overhead in partially reconfigurable design. This is because all schemes modules
are implemented in reconfigurable partition. The partition is manually floorplaned and resources
allocated are fixed to fit in all modules. Since Roe scheme occupied higher resources than HLLEW
and HLLE schemes, the reconfigurable partition has wasted resources when HLLE or HLLEW
schemes are loaded. However, unused resources in these schemes are used again when Roe scheme
is selected.

6.2 Configuration Time

The configuration time for the full reconfiguration and partial reconfiguration is compared. The
speed of configuration is directly related to the size of the partial bit file and the bandwidth of the
configuration port. Since we use JTAG configuration port, for Virtex-6 device [17], configuration
time is given by:

configuration time =
(2044 + bits in bitstream)

TCK frequency

where bits in bitstream is size of the configuration bitstream in bits and TCK frequency is maximum
configuration TCK (Test Clock) frequency and used for boundary-scan operations. 2044 is the
total number of clocks needed for pre-processing and post-processing for single device configuration
sequence while programming the bitstream to FPGA. Although the maximum bandwidth available
is 66 Mbps, we found out that while configuring the FPGA using iMPACT, used bandwidth is 16.7
Mbps and data width is 1 bit.

In a full reconfiguration, total bitstream size is 9,017 KB. Based on the given formula, the
configuration time is equal to 4.423 sec. On the other hand, bitstream size for each Roe, HLLE and
HLLEW scheme is 1422 KB. This means configuration time for partial reconfiguration is 0.704 sec.
In short, the partial reconfiguration method accelerated the configuration speed by 6.28 times.

There is no overhead for partial reconfiguration since the users must decide which scheme they
want to use before calculation start. Therefore, configuration time will not affect the computation
time in FPGA. In addition, configuration time will not cause a bottleneck to the system when the
grid size grows large and takes a lot of iterations. This is because all flux schemes bitstream is fixed
and not affected by large input size.

6.3 Performance

Flux calculation scheme is implemented and the total clock cycles are measured. Total clock cycles
for each Roe, HLLEW and HLLE scheme are 205600×103, 197400×103 and 191200×103 respectively.
The execution time for flux calculation scheme in software is compared with the execution time by
hardware. The result summary is shown in Figure 12.

In software, all schemes are executed by Core 2 Duo 2.4GHz with Linux Kernel 2.6.18 operating
system. All schemes are compiled by using Intel Fortran Compiler 10.1. Execution time is measured
by using call system clock prepared in Fortran 90 language. We found out the execution time
took 5.400 sec for Roe scheme, 4.533 sec for HLLEW scheme and 4.399 sec for HLLE scheme. This
is show in first column of Figure 12, noted by “Software”.

In hardware, since we know the total clock cycles required from beginning to the end, and oper-
ating frequency for the FPGA is 200 MHz. Therefore, computation time by FPGA for Roe scheme
is 1.028 sec, 0.987 sec for HLLEW scheme and 0.956 sec for HLLE scheme. Adding the configuration
time and computation time resulting an execution time in hardware. Therefore, the second column
of Figure 12 shows an execution time in FPGA if second option design of full reconfiguration (FR) is
deployed, noted by “FPGA FR”. Adding 4.423 sec configuration time to each scheme computation
time of Roe, HLLEW and HLLE scheme give an execution time become 5.451 sec, 5.410 sec and
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Figure 12: Execution time in software and FPGA.

5.379 sec respectively. Third column of Figure 12 shows an execution time in FPGA if partial recon-
figuration (PR) is used, noted by “FPGA PR”. Adding 0.704 sec configuration time to each scheme
computation time give an execution time of Roe, HLLEW and HLLE scheme are 1.732 sec, 1.691
sec and 1.660 sec respectively. Acceleration speed between hardware and software is compared when
HLLE scheme in partially reconfigurable design is deployed since it is executed fastest in software.
Therefore, the execution time of FPGA is 2.65 times faster compared to the software execution.

Full reconfiguration design strategy for each scheme gives an almost same performance produced
by software. In fact, software execution time for HLLE and HLLEW schemes are faster than FPGA.
However, partial reconfigurable design approach gives a 2.65 fold speed-up compared to software
execution. Therefore, taking configuration time into account, performance improvement using partial
reconfiguration method is justified.

In this implementation, there are three flux calculation schemes for selection. As discussed in
Section 6.1, it is possible to design three different schemes separately. However, this design has
following three advantages. Firstly, practical software package has various parts, which selectively
use several functions. If there are M different parts each of which has Ni functions, the total number
of subset designs becomes

∏M
i=1 Ni. By using partial reconfiguration, the users can select their

favorites combination easily on demand. Secondly, when we want to add another scheme to the
implementation, it is easy to add another reconfigurable module instead of modifying the whole
design. Finally, in advection term computation, there is no obvious scheme for every particular flow
problem. In other words, flux calculation scheme must be able to yield stable and provide solutions
under various flow conditions. Each scheme has their advantages and disadvantages. Therefore, by
trying one scheme to another quickly will help users to draw best conclusion. Thus, reducing the
switching time by using partial reconfiguration will be helpful.

7 Future Work

In this work, our target is only flux calculation scheme in advection term computation. There-
fore, many other routines in FaSTAR are still untapped for further exploration. We must try to
extend partial reconfiguration technique more aggressively using other modules that are available
in FaSTAR. Instead of single partition, multiple reconfigurable partitions in single FPGA are good
design strategy for future research. However, this work shows that single FPGA can fitted only one
subroutine in advection term computation.

While the limitations of a single FPGA are noticed, multi-FPGA platform with multiple reconfig-
urations can be the next target for future work. They offer the potential to mega-boost the capacity
of resource in FPGA as well as many more modules in FaSTAR can be reconfigured such as flux
evaluation, flux limiter function or convergence acceleration. This approach also hopeful because
FaSTAR computational intensive part must be performed iteratively, and that can be parallelized
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for high-performance using multiple FPGA. If this target is realized, it is possible to implement the
whole FaSTAR package on FPGAs. However, a lot of works need to be done such as the interconnec-
tion between FPGA, data transfer and synchronization is another issues to solve before successful
implementation could be achieved.

8 Conclusion

In this study, the efficient use of partial reconfigurability in recent FPGAs is explored. Advection
term computation is chosen as a target, and flux calculation scheme is deployed as a reconfigurable
module. Three flux calculation schemes are implemented: Roe, HLLE and HLLEW schemes.

The implementation using partial reconfiguration platform has successfully reduced required
hardware resources, improved configuration time and its performance. Resources utilization is saved
up to 42% on average. The proposed design also improves the configuration time by 6.28 times
faster and accelerates the system at least 2.65 times in performance.
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