
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 3, Number 2, pages 205–216, July 2013

Constant-Time Approximation Algorithms for the Optimum Branching Problem on Sparse Graphs

Mitsuru Kusumoto

School of Informatics, Kyoto University
mkusumoto@kuis.kyoto-u.ac.jp

Yuichi Yoshida

Preferred Infrastructure, inc.
National Institute of Informatics

yyoshida@nii.ac.jp

Hiro Ito

The University of Electro-Communications
itohiro@uec.ac.jp

Received: February 19, 2013
Revised: May 26, 2013
Accepted: June 18, 2013

Communicated by Sayaka Kamei

Abstract

We propose a constant-time algorithm for approximating the weight of the maximum weight
branching in the general graph model. A directed graph is called a branching if it is acyclic and
each vertex has at most one incoming edge. An edge-weighted digraph G of average degree d
whose weights are real values in [0, 1] is given as an oracle access, and we are allowed to ask
degrees and incoming edges for any vertex through the oracle. Then, with high probability,
our algorithm estimates the weight of the maximum weight branching in G with an absolute
error of at most εn with query complexity O(d/ε3), where n is the number of vertices. We also
show a lower bound of Ω(d/ε2). Additionally, our algorithm can be modified to run with query
complexity O(1/ε4) for unweighted digraphs, i.e., it runs in time independent of the input size
even for digraphs with d = Ω(n) edges. In contrast, we show that it requires Ω(n) queries to
approximate the weight of the minimum (or maximum) spanning arborescence in a weighted
digraph.

1 Introduction

In recent years, we often deal with massive data sets such as the world-wide web graph, social
networks and genome data. A lot of research was conducted to deal with such data efficiently. For
example, the area of constant-time algorithms is concerned with algorithms whose running time
is independent of the input size. To solve optimization problems or decision problems exactly, we
usually need at least linear time since we must read the whole input. However, by allowing some
approximation errors and randomized behavior, it has been revealed that many problems become
solvable in constant time.

205

Constant-Time Approximaxion Algorithms for the Optimum Branching Problem

We first introduce several notions to describe our results. Throughout the paper, n denotes the
number of vertices in the input graph, m denotes the number of edges, and d denotes the average
degree. A (randomized) algorithm is called an (α, β)-approximation algorithm for a maximization
problem if it outputs z with αz∗ − β ≤ z ≤ z∗ with high probability (say, at least 2/3) where
z∗ is the optimal value. Similarly, an algorithm is called an (α, β)-approximation algorithm for a
minimization problem if the algorithm outputs z with z∗ ≤ z ≤ αz∗+β with high probability. For an
(α, β)-approximation algorithm, we call α (resp., β) the multiplicative (resp., additive) error of the
algorithm. An (α, 0)-approximation algorithm is simply called an -approximation algorithm. Since
constant-time algorithms must not read the whole input, we assume the existence of oracles to read
input digraphs. As the model of the oracles, we slightly modify the general graph model, originally
designed for undirected graphs (see [9]), to deal with weighted digraphs. In this model, each edge
has a real weight between 0 and 1, and we often regard the average degree d as a constant. Also, we
are allowed to ask the oracle about (i) the indegree of a vertex v, and (ii) the weight and the other
end of the i-th incoming edge of a vertex v for an arbitrary vertex v and a number i. We note that we
will never make use of outgoing edges in this paper. The efficiency of an algorithm is measured by its
query complexity, i.e., the number of queries to the oracle. In this paper, constant-time algorithms
refer to algorithms whose query complexities are independent of the input size.

It is rare that we have constant-time algorithms in the general graph model (see, e.g., [9, 15]).
In this paper, we consider constant-time algorithms for the optimum branching problem. A digraph
B is called a branching if B is acyclic and the indegree of each vertex is at most one. The weight
of a branching B is defined as the sum of the weight of each edge in B. In the optimum branching
problem, given a weighted digraph G, the objective is to find the a branching of the maximum
weight in G. The optimum branching problem is a fundamental problem on digraphs that has many
applications such as data compression [16].

We now state our main results.

Theorem 1. In the general graph model, there exists a (1, εn)-approximation algorithm for the
optimum branching problem with query complexity O(d/ε3) for any 0 < ε < 1/2.

Theorem 2. Assume that C/
√
n < ε < 1/2, where C is a large enough constant. In the general

graph model, any (1, εn)-approximation algorithm for the optimum branching problem must make at
least Ω(d/ε2) queries.

Remark that we can easily extend Theorem 1 for digraphs with weight at most W , for some
constantW . By setting ε = ε′/W , we have a (1, ε′n)-approximation algorithm with query complexity
O(dW 3/ε′3). Also, note that it is impossible to obtain a constant-time (1 − ε, 0)-approximation
algorithm: In such a setting, we must make at least Ω(n) queries to distinguish a graph with no
edges, where the weight of the optimum branching is 0, and a graph with only one edge with weight
one, where the weight of the optimum branching is 1. From the same reason, every known nontrivial
constant-time algorithm has been allowed to introduce such additional additive errors [12].

For unweighted digraphs, our algorithm can be modified to run in time independent of the average
degree d.

Theorem 3. In the general graph model, if digraphs are restricted to be unweighted, there exists a
(1, εn)-approximation algorithm for the optimum branching problem with query complexity O(1/ε4)
for any ε > 0.

Note that the query complexity in Theorem 3 is still constant even if the average degree is Ω(n).
To approximate optimization problems in such dense graphs in constant time, the adjacency matrix
model [6] is often used, in which we are allowed to have an additive error of εn2 (see e.g., [6]). In
contrast, our algorithm only makes an additive error of εn.

In the general graph model, a graph is called ε-far from a property P if we must add or remove
εdn edges to make the graph satisfy P [9]. An algorithm is called an ε-tester for P if it decides
whether the input graph satisfies P or is ε-far from P with high probability, say at least 2/3.

A digraph B is called an arborescence if B is a connected branching and spans all vertices.
Thus, an arborescence has exactly one vertex with no incoming edge. Such a vertex is called the

206

International Journal of Networking and Computing

root of the arborescence. Remark that (the weight of the optimum branching) plus (the minimum
required number of edges to make a given graph have an arborescence) is equal to n − 1 if the
graph is unweighted. Thus, to construct an ε-tester for checking whether a given graph has an
arborescence, it is enough to approximate the weight of the optimum branching with parameter εd.
From Theorem 3, we obtain the following corolloray.

Corollary 4. In the general graph model, there exists an ε-tester with query complexity O(1/(εd)4)
for the property of having an arborescence for any ε > 0.

Note that, the larger d becomes, the less the query complexity becomes in Corollary 4. This is
because the allowed error in the ε-tester is εdn, not εn.

The basic strategy of our algorithm is locally simulating Edmonds’ algorithm [4] (found by
Chu-Liu as well [3]), a standard polynomial-time algorithm that computes the optimum branching.
Specifically, we will show a procedure that, given a vertex v, locally computes the incoming edge of
v in the optimum branching returned by Edmonds’ algorithm, and we use the procedure to estimate
the weight of the optimum branching. However, if we simulate Edmonds’ algorithm exactly, it may
take Ω(n) time since the number of iterations in the algorithm may become Ω(n). To overcome this
issue, we modify Edmonds’ algorithm so that we only need to see a constant number of vertices to
decide the incoming edge in the optimum branching, and the weight of the output branching is close
to the optimum. Then, we give a procedure that locally simulates the modified algorithm.

The lower bound is shown by reducing the optimum branching problem to the minimum spanning
tree (MST) problem and applying lower bound by Chazelle et al. [2]. By Theorem 3 and Theorem 2,
we can see a big gap between the query complexity for the unweighted case and that for the weighted
case. In Section 4, we show a stronger result: This gap is still big even if there are only two types
of weights for weighted digraphs.

In the minimum spanning arborescence (MSA) problem, given a weighted digraph, the objective
is to find an arborescence of the minimum weight in the digraph. It is known that the MSA problem
is polynomial-time equivalent to the optimum branching problem [10]. Thus, it is also natural
to consider constant-time approximation algorithms for the MSA problem. However, we have the
following linear lower bound in contrast to the optimum branching problem.

Theorem 5. In the general graph model, for any 0 ≤ ε < 1/2, any (1, εn)-approximation algorithm
for the MSA problem requires at least Ω(n) queries.

Note that arborescences must be spanning as opposed to branchings. Then, we can construct
two digraphs that differ in one edge whereas their optimal values differ a lot, and we have a strong
lower bound as in Theorem 5.

Related works Edmonds [4] gave the first polynomial-time algorithm for the optimum branching
problem, and Gabow et al. [5] improved the time complexity to almost linear.

Constant-time approximation to graph problems is currently an active area. Chazelle et al. [2]
proposed an (1+ε)-approximation algorithm for the MST problem with query complexity Õ(dW/ε2)
in the general graph model, assuming that the input graph is connected and the each edge has an
integer weight between 1 and W . Note that their algorithm is essentially a (1, εn)-approximation
algorithm since the weight of any spanning tree is at least n − 1, because the weights are at least
one in their problem. They used the fact that the weight of the MST is computed just by counting
the number of connected components in subgraphs with weights at most w for each 1 ≤ w ≤ W .
However, it seems there is no such simple formula for the optimum branching problem, and we need
to resort to Edmonds’ algorithm. Constant-time (2, εn)-approximation algorithms for the minimum
vertex cover are also known in the general graph model [13, 19].

As we mentioned, constant-time testers in the general graph model are rare. Thus, we of-
ten use the bounded-degree model, in which the maximum degree is bounded by a constant. In
this model, several graph properties are known to be constant-time testable, such as k-vertex-
connectivity [18], some problems on the sparsity matroid [7, 8] and minor-closed properties [11]. As
for digraphs, we are aware that there exists constant-time testers for k-edge-connectivity [17] and
k-vertex-connectivity [14].

207

Constant-Time Approximaxion Algorithms for the Optimum Branching Problem

Notations For arbitrary digraph G, we denote the set of vertices in G by V (G) and the set of
edges in G by E(G). For a vertex v ∈ G, we denote by δ−G(v) the set of incoming edges of v. The
indegree of v is the number of edges incoming to v, i.e., |δ−G(v)|. If the digraph is obvious from the
context, we omit the subscript G. We represent the weight of an edge e as c(e). For a graph H, we
denote by c(H) the total weight of graph H. That is, c(H) =

∑
e∈E(H) c(e).

Organization This paper is organized as follows. In Section 2, we explain Edmonds’ algorithm [4].
In Section 3, we propose an algorithm for the optimum branching problem, and prove Theorem 1
and 3. In Section 4, we prove Theorems 2 and 5.

2 Edmonds’ Algorithm

In this section, we explain Edmonds’ algorithm that computes the optimum branching. We use Ed-
monds’ algorithm to design our constant-time approximation algorithm later. Edmonds’ algorithm
consists of two parts, the contraction part and the expansion part.

In the contraction part, we choose the heaviest incoming edge for each vertex, and make the
subgraph formed by them. If the subgraph contains cycles, then we choose one of them and contract
the cycle C into a new vertex vC . We continue this process until the subgraph consisting of heaviest
incoming edges contains no cycle. Then, it is the optimum branching of the current graph.

In the expansion part, we expand the contracted cycles backward until we get the original graph.
Along the way, we compute the optimum branching of the current graph by updating the optimum
branching before expanding. Suppose we expand a contracted vertex vC to a cycle C. Since a
branching must not contain a cycle, the new optimum branching must discard at least one edge in
E(C). We choose the edge as follows. For a cycle C and a vertex y ∈ V (C), let α(y, C) be the
unique edge (x, y) ∈ E(C) where x ∈ V (C). Also, let eC be the lightest edge in E(C). If the vertex
vC has an incoming edge in the optimum branching, we discard the edge α(y, C) where y ∈ V (C) is
the head of the incoming edge. Otherwise, we discard the edge eC .

We show the pseudo-codes of the contraction part and the expansion part in Contract and Expand,
respectively. Also, we show the pseudo-code of Edmonds’ algorithm in OptimumBranching. Here, for
a graph G and its cost function c, the procedure Greedy(G, c) returns the subgraph of G comprised
of the heaviest incoming edges. In the pseudo-codes, we denote by Gi and ci the contracted graph
and its weight function at the phase i of the contraction part, respectively. Also, we denote Bi as
the optimum branching in (Gi, ci).

Edmonds proved that OptimumBranching works correctly.

Theorem 6 ([4]). Algorithm OptimumBranching computes the optimum branching of a graph in
polynomial time.

Note that we might have several cycles in Greedy(Gi, ci) when executing Contract. However, it
is known that the choice of which cycle to contract does not affect the final result B0 of Optimum-
Branching.

3 Approximating the Weight of an Optimum Branching

In this section, we propose a constant-time algorithm that approximates the weight of the optimum
branching and prove Theorems 1 and 3. We denote the result of OptimumBranching by B∗(G).
If the graph G is clear from the context, we denote it by B∗. By Theorem 6, B∗(G) is one of
the optimum branchings. To design our constant-time approximation algorithm, we consider the
problem of computing the incoming edge in B∗(G) of a specified vertex. If we can solve this problem
in constant time, we can estimate the weight of the optimum branching by computing weights of
incoming edges in B∗(G) of a constant number of randomly chosen vertices.

208

International Journal of Networking and Computing

Algorithm 1 Contract(Gi, ci): If Greedy(Gi, ci) contains cycles, contract one of the cycles and
update weights of edges entering the cycle, then return the resulting graph (Gi+1, ci+1). If there is
no cycle, return “No cycle”.

1: B := Greedy(Gi, ci)
2: if B is acyclic then
3: return “No cycle”
4: end if
5: Let C be one of cycles in B.
6: Contract a cycle C into one vertex vC , and set Gi+1 := Gi and ci+1 := ci.
7: for e = (z, y) ∈ E(Gi) where z ̸∈ V (C), y ∈ V (C) do
8: ci+1(z, vC) := ci(e)− ci(α(y, C)) + ci(eC)
9: end for

10: return (Gi+1, ci+1)

Algorithm 2 Expand(Gi−1, ci−1, Gi, Bi): Return the optimum branching Bi−1 in Gi−1 based on
the optimum branching Bi in Gi.

1: Bi−1 := Greedy(Gi−1, ci−1)
2: Let C be a cycle in Gi−1 that is contracted in Gi.
3: if a vertex vC ∈ V (Bi) has an incoming edge in Bi then
4: Let the incoming edge be e := (y, z) ∈ E(Bi−1) where z ∈ C.
5: Remove an edge α(z, C) ∈ E(Bi−1) from Bi−1.
6: else
7: Remove eC from Bi−1.
8: end if
9: return Bi−1

Algorithm 3 OptimumBranching(G, c): Compute the optimum branching.

1: i := 0, G0 = G, c0 = c
2: loop
3: (Gi+1, ci+1) := Contract(Gi, ci)
4: if Contract returned “No cycle” then
5: Bi := Greedy(Gi, ci)
6: break
7: end if
8: i := i+ 1
9: end loop

10: while i > 0 do
11: Bi−1 := Expand(Gi−1, ci−1, Gi, Bi)
12: i := i− 1
13: end while
14: return B0

3.1 Local Execution of Edmonds’ Algorithm

We consider to approximate the weight of the incoming edge of a specified vertex in B∗(G). For this
purpose, we locally simulate Greedy by moving along the heaviest incoming edge of v. The query
complexity to find the heaviest edge is O(|δ−(v)|). We repeat this process until we find a cycle C
or reach a vertex r with no incoming edge. The set of edges we have moved along is a subset of the
edges of Greedy(G0, c0) = Greedy(G, c).

We first consider the former case. Since the found cycle C is a cycle in Greedy(G0, c0), we may
contract C in the same manner of Contract. Note that the resulting graph corresponds to (G1, c1) (if
we choose C as the first contracted cycle in OptimumBranching). Then, we iteratively perform the

209

Constant-Time Approximaxion Algorithms for the Optimum Branching Problem

same procedure on (G1, c1) from a new vertex vC . We keep doing this process on (G1, c1), (G2, c2), . . .
until we come to the latter case, i.e., we reach a vertex r with no incoming edge.

We next consider the latter case. In this case, we just terminate the move process since no
contraction will occur involving the vertex r in OptimumBranching. Then, expand all the contracted
cycles in the same manner as Expand, and return the incoming edge of the vertex v.

Though the time complexity to perform the procedure above is better than the one to run
Edmonds’ algorithm completely, the time complexity could be Ω(n) (consider a cycle of n vertices).
To keep the query complexity constant, we terminate this “local move” procedure if the number of
queries has reached a certain threshold.

We will show the above idea in LocalMove. The parameter t ≥ 1 represents the threshold of
the number of queries. Let Ht be the subgraph of G comprised of edges we obtain by executing
LocalMove from each vertex. Since we stop moving when the number of queries has reached a certain
threshold, the resulting graph Ht may be different from B∗. However, the following formula holds,
whose proof is given in the next section.

Lemma 7. |c(B∗)− c(Ht)| ≤ 2nd/t

Algorithm 4 LocalMove(G, v, t): Return the weight of the incoming edge of v ∈ V (G) in Ht. If v
has no incoming edge, return 0.

1: P := ∅, w := v
2: loop
3: t := t− |δ−(w)|
4: if |δ−(w)| = 0 or t ≤ 0 then
5: break
6: end if
7: Let e = (z, w) be the heaviest incoming edge of a vertex w.
8: Add the edge e to P and set w := z.
9: if P contains a cycle C then

10: Contract C into a vertex vC and update weights of incoming edges of vC .
11: w := vC .
12: end if
13: end loop
14: Expand all the contracted vertices.
15: return the weight of the incoming edge of v (or 0 if v has no incoming edge.)

3.2 Proof of Lemma 7

To prove Lemma 7, we introduce some new notations and show facts about them.
For a cycle C that appears in Contract, let VG(vC) ⊆ V (G) denote the set of vertices that are

contracted to vC . Formally, VG(vC) is defined as follows; if a vertex v is a vertex in the original
graph G, we define VG(v) := {v}. If a vertex vC is the result of a contraction in some phase, we
define VG(vC) := ∪x∈V (C)VG(x), where VG(x) is defined recursively. Additionally, let µ−(vC) be the
sum of indegrees of vertices in VG(vC), i.e., µ

−(vC) =
∑

x∈VG(vC) |δ−(x)|.
For a vertex u ∈ V (G), let Gu be the graph obtained from G by removing all incoming edges of

u, i.e., Gu = (V (G), E(G)\δ−(u)). We have the following inequalities on the weight of the optimum
branching of Gu.

Proposition 8. c(B∗(G))− 1 ≤ c(B∗(Gu)) ≤ c(B∗(G))

Proof. We show the first inequality. Let Bu be the resulting branching obtained by removing an
incoming edge of u in B∗(G). Because Bu may not be the optimum branching of Gu, c(Bu) ≤
c(B∗(Gu)). In addition, since the weight of each edge is at most one and Bu is a graph obtained
from B∗(G) by removing at most one edge, we get c(B∗(G)) − 1 ≤ c(Bu). Hence, c(B∗(G)) − 1 ≤
c(B∗(Gu)).

210

International Journal of Networking and Computing

The second inequality is obvious since Gu is a subgraph of G and any branching in Gu is also a
branching in G. □

Let x be the vertex obtained by the contraction in the phase i (Thus, x ∈ V (Gi+1).) In Opti-
mumBranching, the way the vertex x is expanded in the expansion part depends on whether x has
an incoming edge or not in Bi+1. Suppose that x has an incoming edge in Bi+1. If we remove the
incoming edge of x right before x is expanded, the resulting graph might have been different. To
consider the effect of removing the incoming edge of x, we formalize this situation as follows.

Let H be the subgraph of G induced by VG(x) and (y, z) ∈ E(G) be an incoming edge of x
in Bi+1. Note that y ̸∈ V (H) and z ∈ V (H). Although G may have edges connecting V (H)
and V (G) \ V (H) other than (y, z), we may ignore such edges since such edges do not affect the
process of the contraction part. Also, for every vertex w ∈ Gi+1 with w ̸= x, the expansion of w
is not affected by the removal of the incoming edge of x. Therefore, when we do not remove the
incoming edge (y, z), the resulting graph obtained by expanding the vertex x is equal to B∗(H ′),
where H ′ = (V (H) ∪ {y}, E(G) ∪ {(y, z)}). Also, when we remove the incoming edge (y, z) right
before the expansion of x, the resulting graph is equal to B∗(H). Therefore, to consider the effect
of removing incoming edges, it suffices to consider the difference between B∗(H ′) and B∗(H). The
following proposition holds.

Proposition 9. Assume that a graph H is contracted to one vertex x in the contraction part of
OptimumBranching. Let H ′ = (V (H)∪ {y}, E(H)∪ {(y, z)}) where y is a new vertex and z ∈ V (H)
and c({y, z}) is any value between 0 and 1. Then, |c(B∗(H))− c(B∗(H ′))| ≤ 1.

The proof of Proposition 9 is the same as that of Proposition 8 and is thus omitted.
We introduce two variants of Edmonds’ algorithm, which we call ApproxBranching and Approx-

Subgraph. We use these algorithms just for proving Lemma 7.
ApproxBranching is almost the same as Edmonds’ algorithm. The only point where the behavior

of ApproxBranching differs from Edmonds’ algorithm is how it deals with vertices v ∈ V (G) with
µ−(v) ≥ t and cycles C with µ−(vC) ≥ t, where t is a parameter determined later. More precisely,
differences are as follows.

The preprocessing part: For all vertices v with |δ−(v)| ≥ t, remove all incoming edges of v.

The contraction part: If a chosen cycle C is contracted to a vertex vC with µ−(vC) ≥ t, remove
all incoming edges to vC .

The expansion part: Suppose we are expanding a cycle C. If µ−(vC) < t, then we do exactly
the same as Expand. Suppose µ−(vC) ≥ t. Note that vC has no incoming edges since we have
discarded them in the contraction part. When expanding vC , however, we discard the edge
in C discarded by OptimumBranching. In other words, although all incoming edges of vC are
removed in the contraction part, we assume that we did not remove the incoming edges and
they are intact to decide which edge we discard. Remark that this procedure is well-defined,
since if a cycle C is expanded in this procedure, the cycle C also appears in OptimumBranching.

Also, ApproxSubgraph is as follows.

The preprocessing part and the contraction part: These parts are the same as Approx-
Branching.

The expansion part: For a contracted vertex vC with µ−(vC) ≥ t, we do not discard any edge
in C. Remark that the resulting graph may not be a branching, but just a subgraph of G.

Let Bt and H ′
t denote the subgraphs obtained by ApproxBranching and ApproxSubgraph on the

input graph G, respectively. We have the following lemmas. Lemma 7 follows by combining these
three formulae and the triangle inequality.

Lemma 10. |c(B∗)− c(Bt)| ≤ nd/t

Lemma 11. |c(Bt)− c(H ′
t)| ≤ nd/t

211

Constant-Time Approximaxion Algorithms for the Optimum Branching Problem

Lemma 12. H ′
t = Ht

Proof of Lemma 10. Let BOpt and BApx be the resulting branchings output by OptimumBranching
and ApproxBranching, respectively.

In both the algorithms, The order of contracting cycles does not affect results. In this proof,
we assume that we avoid to contract cycles with µ−(vC) ≥ t for as long as possible. Also, suppose
that we execute OptimumBranching and ApproxBranching simultaneously for as long as possible. If all
contracted vertices satisfy µ−(vC) < t, both algorithms produce the same branchings, thus B∗ = Bt.

Suppose there is a cycle C with µ−(vC) ≥ t. In this case, at some phase i of the contraction
part, all remaining cycles satisfy µ−(vC) ≥ t. Let k be the number of cycles in Greedy(Gi, ci)
and C1, · · · , Ck be the cycles in Greedy(Gi, ci). Since all vertex sets VG(vC1), · · · , VG(vCk

) do not
intersect, k · t ≤ nd holds.

Suppose that we contract k cycles C1, · · · , Ck after the phase i in both algorithms. Let GOpt
i+k and

GApx
i+k be the resulting graphs after contracting these cycles by OptimumBranching and ApproxBranch-

ing, respectively. Note that GOpt
i+k and GApx

i+k are the graphs at the phase i+ k. We classify edges of

BOpt according to whether GOpt
i+k contains them or not. That is, we let FOpt

in = E(BOpt) ∩E(GOpt
i+k)

and FOpt
out = E(BOpt) \ FOpt

in . Also, we classify edges of BApx in the same manner. That is, we let

FApx
in = E(BApx)∩E(GApx

i+k) and FApx
out = E(BApx) \FApx

in . By Proposition 8, the difference between

the weight of FOpt
in and the weight of FApx

in is at most k. Also, by the definition of ApproxBranching,

FOpt
out and FApx

out are the same. Therefore, we have an inequality |c(B∗)− c(Bt)| ≤ k ≤ nd/t. □

Proof of Lemma 11. Since the contraction parts of ApproxBranching and ApproxSubgraph are the
same, we only need to consider the expansion part. In the same way as the proof of the first
formula, let k be the number of cycles with µ−(vC) ≥ t, and let C1, . . . , Ck be such cycles. While
ApproxBranching discards some edge in Cj for each j, ApproxSubgrpah keeps all edges. Thus, by
Proposition 9, |c(Bt)− c(H ′

t)| ≤ k ≤ nd/t. □

Proof of Lemma 12. It suffices to prove that the following equation holds for every vertex v.

δ−Ht
(v) = δ−H′

t
(v) (1)

Suppose we execute ApproxSubgraph. For each v ∈ V (G), we consider the following three cases:
(i) |δ−G(v)| ≥ t. (ii) |δ−G(v)| < t and any cycle C with v ∈ VG(vC) satisfies µ−(vC) < t. (iii)
|δ−G(v)| < t and there exists a cycle C with v ∈ VG(vC) and µ−(vC) ≥ t.

In Case (i), both sides of (1) are empty sets.
In Case (ii), δ−H′

t
(v) = δ−Bt

(v) since ApproxSubgraph and ApproxBranching compute the same

incoming edge for v. Since LocalMove(G, v, t) can detect all the contracted vertices vC with v ∈
VG(vC), the equation δ−Ht

(v) = δ−Bt
(v) holds. Thus, (1) holds.

In Case (iii), such vC exists uniquely by the definition of ApproxSubgraph. When we execute
LocalMove(G, v, a), the algorithm stops moving on vertices of VG(vC). Thus, Ht contains all the
edges in C. There exists a unique vertex x ∈ V (C) with v ∈ VG(x) (Note that x may not be a
vertex of G but be a vertex created in the contraction part.) Remark that µ−(x) < t. Since a vertex
x appears in LocalMove and ApproxSubgraph, and we choose the same incoming edge of x by both
the algorithms, the edge sets in subgraphs obtained after expanding x are the same in both the
algorithms. Hence, Equation (1) holds. □

3.3 Constant-time Approximation Algorithm

Using Lemma 7, we design a constant-time approximation algorithm for the optimum branching
problem by executing LocalMove from randomly chosen vertices. The algorithm is given in Approx-
Weight.

Theorem 13. Let c∗ = c(B∗). For any 0 < ε < 1/2, Algorithm ApproxWeight outputs an (1, εn)-
approximation to c∗ with probability at least 2/3. The query complexity is O(d/ε3).

212

International Journal of Networking and Computing

Proof. Since the query complexity of LocalMove is t, the query complexity of this algorithm is
O(t · q) = O(d/ε3). We show that the algorithm approximates c∗ well. Let s = c(Ht). By the
definition of Ht, E(βi) = s/n. In addition, since βi ≤ 1, Var(βi) ≤ E(β2

i) ≤ 1 · E(βi) = s/n.
Thus, E(ĉ) = q · (n/q) · (s/n) = s, Var(ĉ) ≤ q · (n/q)2 · (s/n) ≤ n2/q. By Chebyshev’s inequality,

Pr (|ĉ− s| ≥ εn/4) ≤ 16n2/q
(εn)2 = 1/3. By Lemma 7, |ĉ − c∗| ≤ εn

4 + 2nd
8d/ε = εn/2 with probability at

least 2/3; therefore, c∗ − εn ≤ ĉ− εn/2 ≤ c∗. □

Algorithm 5 ApproxWeight(G, c): Approximate the weight of B∗(G).

1: Choose q := 48/ε2 vertices v1, · · · , vq ∈ V (G) uniformly at random.
2: t := 8d/ε
3: for i = 1 to q do
4: βi := LocalMove(G, vi, t)
5: end for
6: ĉ = (n/q) ·

∑
i βi

7: return ĉ− εn/2

3.4 Approximation Algorithms for Unweighted Graphs

Suppose that inputs are unweighted graphs. In this case, we can estimate the weight of the optimum
branching with query complexity independent of the average degree. The following lemma is useful.

Lemma 14 ([1]). For weighted graph G, let Gk be the subgraph of G comprised of the k heaviest
incoming edges from each vertex. Then,

|c(B∗(Gk))− c(B∗(G))| ≤ 1

k + 1
· c(B∗(G)).

Proof of Theorem 3. By setting k = O(1/ε) in Lemma 14, we obtain an inequality |c(B∗(Gk)) −
c(B∗(G))| ≤ εn/2 since c(B∗(G)) ≤ n. Therefore, it suffices to compute a (1, εn/2)-approximation
to the optimum branching of Gk. We use ApproxWeight to this end. We can obtain Gk by just
ignoring edges of G whose indices are larger than k. Since the average degree of Gk is O(k), the
query complexity is O(k/ε3) = O(1/ε4). □

4 Lower Bounds

In this section, we show lower bounds for approximating weights of optimum branchings and mini-
mum spanning arborescences.

4.1 Lower Bounds on the Optimum Branching Problem

Chazelle et al. [2] showed lower bounds for approximating weights of MSTs of undirected graphs.

Theorem 15. Suppose that W > 1 and Ω(
√
W/n) < ε < 1/2. In the general graph model, any

randomized (1 + ε)-approximation algorithm for weights of MSTs of connected graphs with integer
weights between 1 and W requires Ω(dW/ε2) queries.

Proof of Theorem 2. We show a reduction from the MST problem to the optimum branching prob-
lem. Assume that we are given a connected undirected graph G′ with the weight of each edge
either 1 or 2 as an input of the MST problem. We denote the weight function of G′ by c′. Let
G := (V (G′), {(x, y) ∪ (y, x) | {x, y} ∈ E(G′)} be a digraph and its weight function c({x, y}) =
(3− c′(x, y))/2. By the definition of G, the optimum branching of G is an arborescence. Thus, the
number of edges in B∗(G) is n − 1. Let T ′ be a spanning tree of G′. Let B be an arborescence
in G corresponding to T ′, where the root of B is arbitrarily chosen. Let m∗ be the weight of the

213

Constant-Time Approximaxion Algorithms for the Optimum Branching Problem

MST in G′ and c∗ be the weight of the optimum branching in G. Then m∗ =
∑

e∈E(T ′) c
′(e) =∑

e∈E(T ′) (3− 2c(e)) = 3(n− 1)−
∑

e∈E(B) 2c(e) = 3(n− 1)− 2c∗.

Suppose that we obtain ĉ as the (1, εn)-approximation to the optimum branching of G′. Let
m̂ = 3(n − 1) − 2ĉ. Since c∗ − εn ≤ ĉ ≤ c∗ and n < 2m∗ for large enough n, we have m∗ ≤ m̂ ≤
m∗ + 2εn < (1 + 4ε)m∗. Therefore, the value m̂ is (1 + 4ε)-approximation to the MST of G.

In addition, one query in the MST problem exactly corresponds to one query in the optimum
branching problem. Hence, from Theorem 15, we have the lower bound of query complexity Ω(d/ε2)
for approximating the weight of the optimum branching. □

By the proof of Theorem 2, we obtain the following corollary by setting W = 2 in Theorem 15.

Corollary 16. In the general graph model, even if there exists a restriction that the weight of each
edge on digraphs is either 1/2 or 1, any (1, εn)-approximation algorithm for the optimum branching
problem must make Ω(d/ε2) queries. In particular, when d = Ω(n), the algorithm must make Ω(n)
queries.

Remark that Theorem 3 shows that approximating weights of optimum branchings for unweighted
graphs is possible with constant query complexity. On the other hand, Corollary 16 shows that
approximation for weighted graphs with Ω(n2) edges requires Ω(n) queries even if there are only
two types of edges. Therefore, there is a big gap between the query complexity for the unweighted
case and that for the weighted case.

4.2 Lower Bounds on the MSA Problem

When we consider constant-time approximation algorithm for the MSA problem, we assume that
the root vertex is specified.

2

1

r v
2 2

1

v
3 2

1

v
4

v
n/2

Gheavy1

2v
n

v
n-1

1

2 v
n-2

1

2 v
n-3

v
n/2+1

11 22

2

1

r v
2 2

1

v
3 2

1

v
4

v
n/2

Glight 1

2v
n

v
n-1

1

2 v
n-2

1

2 v
n-3

v
n/2+1

1 22

Figure 1: Two graphs Glight, Gheavy

Proof of Theorem 5. We consider two distributions Dlight,Dheavy of graphs. Here, Dlight and Dheavy

generate isomorphic copies of Glight and Gheavy, respectively (see Figure 1). Then, labels of vertices
in the generated graphs are randomly permuted. The difference between Glight and Gheavy is that
the edge (vn/2+1, vn/2) does not exist in Gheavy. Thus, the weights of the optimum branchings of
Glight and Gheavy are n − 1, 3n/2 − 2, respectively. Since ε < 1/2, we must distinguish these two
graphs. Let D be the distribution of graphs such that it generates a graph according to Dlight with
probability half and generates a graph according to Dheavy with probability another half. From
Yao’s minimax lemma, it suffices to show that any deterministic algorithm requires Ω(n) queries to
decide whether a graph generated by D is generated by Dlight or Dheavy with high probability (over
D). However, this clearly holds since Glight and Gheavy differs only by one edge (see e.g., [7] for a
detailed argument). □

5 Conclusion

For the optimum branching problem, we proposed a (1, εn)-approximation algorithm with query
complexity O(d/ε3). We also showed the lower bound of Ω(d/ε2). A natural open problem is

214

International Journal of Networking and Computing

tightening this gap. For unweighted graphs, it is possible to modify our algorithm to run with query
complexity O(1/ε4). However, we also believe that our algorithm can be improved further.

The optimum branching problem can be formalized as the (weighted) matroid intersection prob-
lem of a graphic matroid and a certain partition matroid. For undirected graphs, it is known that the
property of having two edge-disjoint spanning trees is testable in constant time [8], and this problem
can be also formalized as the (unweighted) matroid intersection problem of a graphic matroid and
the dual of it. Regarding these results, we suspect that other problems involving graphic matroids
can be solved in constant time.

Acknowledgements

Yuichi Yoshida is supported by JSPS Grant-in-Aid for Research Activity Start-up (24800082),
MEXT Grant-in-Aid for Scientific Research on Innovative Areas (24106001), and JST, ERATO,
Kawarabayashi Large Graph Project. Hiro Ito thanks JSPS KAKENHI Grant Number 24650006
and the ELC project (MEXT KAKENHI Grant Number 24106001), through which this work was
partially supported.

References

[1] A. Bagchi, A. Bhargava, and T. Suel. Approximate maximum weight branchings. Information
processing letters, 99(2):54–58, 2006.

[2] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum spanning tree weight
in sublinear time. SIAM Journal on computing, 34(6):1370–1379, 2005.

[3] Y. J. Chu and T. H. Liu. On the shortest arborescence of a directed graph. Science Sinica,
14:1396–1400, 1965.

[4] J. Edmonds. Optimum branchings. Journal of Research of the National Bureau of Standards,
71B:233–240, 1967.

[5] H. N. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan. Efficient algorithms for finding minimum
spanning trees in undirected and directed graphs. Combinatorica, 6(2):109–122, 1986.

[6] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, 45(4):653–750, 1998.

[7] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302–343, 2002.

[8] Hiro Ito, Shinichi Tanigawa, and Yuichi Yoshida. Constant-time algorithms for sparsity ma-
troids. In International Colloquium on Automata, Language and Programming, 2011.

[9] T. Kaufman, M. Krivelevich, and D. Ron. Tight bounds for testing bipartiteness in general
graphs. SIAM Journal on computing, 33(6):1441–1483, 2004.

[10] Bernhard Korte and Jens Vygen. Combinatorial optimization, volume 21. Springer, 2012.

[11] I. Newman and C. Sohler. Every property of hyperfinite graphs is testable. In Proceedings of
the 43rd Annual ACM Symposium on Theory of Computing (STOC), pages 675–684, 2011.

[12] H.N. Nguyen and K. Onak. Constant-time approximation algorithms via local improvements.
In Proc. 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
327–336. IEEE, 2008.

[13] K. Onak, D. Ron, M. Rosen, and R. Rubinfeld. A near-optimal sublinear-time algorithm for
approximating the minimum vertex cover size. In Proc. 23rd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1123–1131, 2012.

215

Constant-Time Approximaxion Algorithms for the Optimum Branching Problem

[14] Y. Orenstein. Property testing in directed graphs. Master’s thesis, 2010.

[15] Yaron Orenstein and Dana Ron. Testing eulerianity and connectivity in directed sparse graphs.
Theoretical Computer Science, 412(45):6390–6408, 2011.

[16] Z. Ouyang, N. Memon, T. Suel, and D. Trendafilov. Cluster-based delta compression of a
collection of files. In Web Information Systems Engineering, 2002. WISE 2002. Proceedings of
the Third International Conference on, pages 257–266. IEEE, 2002.

[17] Y. Yoshida and H. Ito. Testing k-edge-connectivity of digraphs. Journal of Systems Science
and Complexity, 23(1):91–101, 2010.

[18] Y. Yoshida and H. Ito. Property testing on k-vertex-connectivity of graphs. Algorithmica,
62(3–4):701–712, 2012.

[19] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-time approximation
algorithm for maximum matchings. In Proc. 41st Annual ACM Symposium on Theory of Com-
puting (STOC), pages 225–234, 2009.

216

