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Abstract

Field Programmable Gate Arrays (FPGAs) are a dominant implementation medium for
digital circuits which are used to embed a circuit designed by users instantly. FPGAs can
be used for implementing parallel and hardware algorithms. Circuit design that minimizes
the number of clock cycles is easy if we use asynchronous read operations. However, most of
FPGAs support synchronous read operations, but do not support asynchronous read operations.
The main contribution of this paper is to provide one of the potent approaches to resolve this
problem. We assume that a circuit using asynchronous ROMs is given. In our previous work,
we have presented a circuit rewriting algorithm to convert a circuit with asynchronous ROMs
into an equivalent circuit with synchronous ones. The resulting circuit with synchronous ROMs
can be embedded into FPGAs. However, this circuit rewriting algorithm can handle circuits
represented by a directed acyclic graph and does not work for those with cycles. In this paper,
we succeeded in relaxing the cycle-free condition of circuits. More specifically, we present an
algorithm that automatically converts a circuit with cycles using asynchronous ROMs into an
equivalent circuit using synchronous ROMs.

Keywords: FPGA, Read Only Memories, Asynchronous read operations, Circuit rewriting algo-
rithm

1 Introduction

An FPGA is a programmable VLSI (Very Large Scale Integration) in which a hardware designed by
users can be embedded quickly. Typical FPGAs consist of an array of programmable logic blocks
(slices), memory blocks, and programmable interconnects between them. The logic block contains
four-input logic functions implemented by a LUT and/or several registers. Using four-input logic
functions, registers, and their interconnections, any combinational circuit and sequential logic can
be implemented. The memory block is a dual-port RAM which can perform read and/or write
operations for a word of data to two distinct or same addresses in the same time. Usually, the
dual-port RAM supports synchronous read and synchronous write operations. The read and write
operations are performed at the rising clock edges. The dual-port RAM outputs data of a specified
address after the rising clock edge. Similarly data is written to a specified address at the rising edge
of clock if write enable is high. Design tools are available to the users to embed their hardware
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logic into the FPGAs. Some circuit implementations are described [1, 2, 3, 5, 6, 7, 8, 13, 14] to
accelerate computation. In particular, the FPGAs can implement hundreds of circuits that work
in parallel to accelerate useful computations. For example, in paper [6], parallel implementation
for the exhaustive verification of the Collatz conjecture is presented. In this implementation, 24
co-processors embedded in a Xilinx Virtex-2 Family FPGA perform the exhaustive verification in
parallel.

We mainly focus the asynchronous and synchronous read operations of memory blocks in this
paper.

Asynchronous read operation
The memory block outputs the data specified by the address given to the address port. When
the address value is changed, the output data is updated immediately within some delay time.
In other words, the output data port always outputs M [d ], which is the data stored in the
input address value d.

Synchronous read operation
Even if the address value is changed, the output data is not updated. The output data is
updated based on the address value at the rising edge of clock. More specifically, the output
data port outputs M [d ], where d is the address data at the previous point of rising clock edge.

In other words, we say that asynchronous ROMs (AROMs) and synchronous ROMs (SROMs) sup-
port asynchronous and synchronous read operations respectively. In asynchronous read operation,
the value of a specified address can be obtained immediately. However, in synchronous read op-
eration, one clock cycle is required to obtain it. Hence, latency of asynchronous read operation
is 0, while synchronous read operation is 1. To understand clearly, readers may refer to Figure 5
that shows the timing chart of AROM and SROM supporting asynchronous and synchronous read
operations respectively. Embedded block memories in most modern FPGAs support synchronous
read operation, but do not support asynchronous one. Hence, users who design circuits embedded
into FPGAs can not use asynchronous read operation. However, circuit design using asynchronous
one is easier, because it has 0 latency.

The main contribution of this paper is to provide one of the potent approaches to resolve this
problem. Suppose that user design a circuit with ROMs supporting asynchronous read operation
(AROMs for short). We present an algorithm that automatically converts the circuit into an equiv-
alent circuit with ROMs supporting synchronous read operation (SROMs for short). The resulting
circuit can be implemented into FPGAs.

Our circuit rewriting approach, presented in this paper is used to convert an asynchronous circuit
consisting

Combinational Circuits (CCs), Registers (Rs), and ROMs with asynchronous read oper-
ations (AROMs)

into an equivalent synchronous circuit consisting

Combinational circuits (CCs), Registers (Rs), and ROMs with synchronous read opera-
tions (SROMs).

Note that, most of the current FPGAs support synchronous read operation, but do not support
asynchronous one. We are thinking the following scenario to use our circuit rewriting algorithm:

• An asynchronous circuit designed by a non-expert, or quickly designed by an expert is given.

• Our circuit rewriting algorithm converts it into an equivalent synchronous circuit.

• The resulting synchronous circuit can be implemented in FPGAs.

In other words, designers can design a circuit for FPGAs under the assumption of asynchronous
read operation, which is simpler and easier than one with synchronous read operation.

We will show a simple example illustrating that the circuit design is simpler if AROMs are
available. Suppose that for an input X0, we need to compute Xn = Xn−1 + f(Xn−1) for every
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Figure 1: An example of circuits using an AROM and an SROM

n ≥ 1. We assume that the function f is computed using a ROM. More specifically, we use a ROM
such that address i is storing a value of f(i). Figure 1 (a) illustrates a circuit with an AROM to
compute X1, X2, . . . for an input X0. An AROM is used to compute the value of f(Xn) for a given
Xn. It should be clear that this circuit outputs X1, X2, . . . in every clock cycle. Figure 1 (b) shows
a circuit with an SROM. Since one clock cycle is necessary to read the value of f(Xn) for input Xn,
we need to insert a register to synchronize two inputs Xn and f(Xn) of the adder as illustrated in
the figure. This circuit outputs X1, X2, . . . in every two clock cycles. Hence, the circuit in Figure 1
(b) needs double clock cycles over the circuit in Figure 1 (a). Using our algorithm to the circuit in
Figure 1 (a), we can obtain the circuit in Figure 1 (c) automatically. In the circuit with an SROM in
Figure 1 (c), X1, X2, . . . is output in every clock cycle. Thus, the timings of the circuits in Figure 1
(a) and (c) are identical.

By our rewriting algorithm, obviously we can minimize the number of clock cycles in the AROM-
free resulting circuits as illustrated in Figure 1 (c), but it is not trivial for the non-expert or quickly
designed by an expert to minimize the number of clock cycles to obtain circuit in Figure 1 (c).
However our algorithm can do it automatically.

On the other hand, the readers may think that the resulting AROM-free circuit has large prop-
agation delay and low clock frequency, because our rewriting algorithm moves registers towards the
output ports. Hence, in general, the resulting circuits may have long paths from input ports to regis-
ters/SROMs and/or from registers/SROMs to registers/SROMs. Therefore, the circuit performance
degrades. If this is the case, then it is possible to improve circuit performance of the AROM-free
resulting circuit. The ideas to improve the performance of the AROM-free resulting circuit in terms
of the latency and delay are the same as described details in our paper [12] by the same authors,
although performance improvement of the AROM-free resulting circuits is beyond of this paper.
However, we will briefly describe the circuit performance improvement techniques of the AROM-free
resulting circuit. The techniques are as follows:

• In order to minimize latency in the AROM-free resulting circuit, we first need to define redun-
dant registers. The redundant registers are the registers which are connected to output ports
of the AROM-free resulting circuit. For minimizing latency, we may remove all the redundant
registers, if they do not create the timing problems for a circuit connected to the output ports.

• Clock performance of the AROM-free resulting circuit degrades due to the longest path between
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input ports to registers/SROMs or registers/SROMs to registers/SROMs or registers/SROMs
to output ports. For this case, we can add registers by dividing the AROM-free resulting
circuit into several layers so that the longest path becomes small. Hence clock performance is
increased in the AROM-free resulting circuit.

The outlines of our idea are described as follows:

• We use a Negative Register (NR) which is originally introduced in our previous paper [12] by
the same authors. The NR is an imaginary register latching a future input data.

• We define simple six rules that rewrite a circuit.

• The rewriting algorithm that we propose just repeats applying these rules until no more rules
can be applied. When the rewriting algorithm terminates, we have an equivalent AROM-free
circuit to the original circuit.

We use the key and innovative idea of introducing Negative Register (NR). For the reader’s
benefit, we briefly describe the behavior of our rewriting algorithm. In our rewriting algorithm,
a circuit with AROMs is first converted into an AROM-free circuit with negative registers. After
that, our algorithm continues to rewrite circuit such that all NRs are removed. When the algorithm
terminates, all negative registers will be removed if possible and the resulting circuit becomes an
equivalent to the original circuit. The readers may refer to the Section 5 for the details about the
behavior of our rewriting algorithm.

A circuit implementation with AROMs is better than SROMs implementation, because of less
power consumption, easy to design etc. But it has some problems like small in size so that it
does not support the designer’s demand, more expensive, and less speedy [4, 9, 10]. To cut the
clock distribution power, an asynchronous circuit design in FPGAs is very much suitable, described
in [11, 16, 18]. However, it is not supported by the current FPGAs.

On the other hand, a circuit implementation with SROMs is dominating the modern digital
circuit design industry, because it supports the modern FPGA architecture although it has some
drawbacks to design like clock distribution, more power consumption etc [4, 10]. Therefore, we
should use SROMs when we need a function of ROMs. There are some dedicated FPGAs to test
asynchronous circuits. However, these FPGAs are closely associated to a style of design. For
example, MONTAGE [15] is based on an asynchronous design and PAPA [17] is a fully asynchronous
FPGA dedicated to optimize pipeline circuits.

The main contribution of this paper is to modify the circuit rewriting algorithm, presented in [12]
to process practical circuits with cycles. More specifically, our new circuit rewriting algorithm can
convert any circuit represented by a directed reachable graph (DRG), illustrated in Figure 2 (2). A
directed reachable graph is a directed graph such that, for every internal node, there exists a directed
path from an input node to an output node which includes it. Note that, one node and/or one di-
rected path may appear twice or more in a directed path. For example, (B, E, H, I, F, E,H, K,N, O)
is a directed path. It should not have any difficulty to confirm that, every internal node in Fig-
ure 2 (2) is included. Clearly, a class of the DRG includes that of the DAG. Also, almost all practical
circuits can be represented by a DRG. If there exists a node that is not in the directed path from
an input node to an output node, the directed graph is not a DRG. Clearly, circuit elements cor-
responding nodes that are not in the directed path to an output node make no sense because such
circuit elements do not affect the outputs. However, practical circuits may have circuit elements
corresponding nodes that are not in the directed path from an input node. We will show that, even
if a circuit graph has such nodes, we can convert it to an equivalent AROM-free circuit graph.

Our results have several significant points as follows:

• The correctness of our algorithm is proved in a rigorous manner.

• Our algorithm works for the practical circuits. In particular, we handle practical circuits which
have cycles.
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• Our circuit rewriting algorithm moves all redundant registers towards the output ports. They
can be removed to decrease the latency of the circuit. Therefore, the circuit that obtained has
minimum latency in the sense that all redundant registers are deleted.

• We can also improve the clock frequency by inserting registers appropriately. We briefly
discuss these performance improvement techniques for the resulting circuit which are the same
as described details in our paper [12].

• We additionally describe a technique to generate AROM-free circuit even if the input circuit
is beyond the DRG circuit. Particularly, if the input circuits have such elements which are not
in the path of DRG circuits, we can also convert those circuits into the equivalent AROM-free
circuits as illustrated in Section 7.

• FPGA vendors may think that they will support asynchronous read operation for next-
generation FPGAs satisfying low latency circuits with forfeiting the high clock frequency.
If this is the case, our rewriting approach is useless. However, our results suggest to the
FPGA vendors that support of asynchronous read operation is not necessary, because it can
be automatically converted into synchronous one using our algorithm.

This paper is organized as follows: Section 2 briefly describes the related work so far. We briefly
review the circuits and their equivalency in Section 3. In Section 4, we describe our rewriting
algorithm, circuit graph and also explain the equivalency for our rewriting rules. For the reader’s
benefits, Section 5 shows how our circuit rewriting algorithm works for circuit graphs. Section 6
presents the proof of the correctness of our rewriting algorithm. Section 7 shows how we handle
nodes that are not in the path from an input node. Finally Section 8 concludes this work.

2 Related Work

In this section, briefly we will describe about the related work so far. However, there is no related
work except our previous one [12]. Hence, we will briefly summarize our previous work [12] as a
related one such that readers may compare our contribution in the current work, described in Section
1 with the previous one [12]. Note that, we are providing an innovative approach which is devoted
for implementing asynchronous read operation in the current FPGAs. We assume that the input
circuit with AROMs supporting asynchronous read operation, designed by users is given. However,
we can not implement this circuit into the current FPGAs, because current FPGAs have SROMs
supporting synchronous read operation. For this purpose, we provide one of the potent circuit
rewriting approaches to implement circuits with AROMs supporting asynchronous read operation
in the current FPGAs. In our previous paper [12], we have presented a circuit rewriting approach
for circuits represented by a directed acyclic graph (DAG), illustrated in Figure 2 (1) which has
no directed cycle. This graph has 3 input nodes and 3 output nodes, each of which corresponds
to input ports and output ports of the circuit, respectively. The other internal nodes correspond
to circuit elements such as combinational circuits, registers, and ROMs. The presented circuit
rewriting approach converts a circuit with combinational circuits, registers and AROMs represented
by a DAG, illustrated in Figure 2 (1) into an equivalent AROM-free circuit with combinational
circuits, registers and SROMs for implementing in the current FPGAs.

However, the circuit rewriting approach presented in [12] has a strict restriction in terms of input
circuits. It works only for a circuit whose underlying graph is a DAG, illustrated in Figure 2 (1).
Although most of practical circuits have cycles, it can not handle such circuits as illustrated in
Figure 2 (2). To overcome this problem, a modified circuit rewriting approach is presented in this
paper. More specifically, our new circuit rewriting algorithm can convert any circuit with AROMs,
represented by Directed Reachable Graph (DRG), illustrated in Figure 2 (2) into an equivalent
circuit with SROMs for implementing in the current FPGAs.
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Figure 2: A directed acyclic graph(DAG) and a directed reachable graph(DRG)

3 Circuits and Their Equivalence

Let us consider a synchronous sequential circuit that consists of input ports, output ports, combi-
national circuits (CCs), registers (Rs), Read Only Memories (ROMs), a global clock input (clock),
and a global reset input (reset).

A combinational circuit (CC) is a network of fundamental logic gates with no feedback. So, it
can compute Boolean functions represented by Boolean formulas, such as F = A · B + B · C and
G = B · C as illustrated in Figure 3. Once inputs are given, the outputs are computed in small
delay.

A register has a clock input and a reset input as illustrated in Figure 4. It can store fixed bits
of data. If reset is 1, then the b-bit data is initialized by 0. If reset is 0, the stored data is updated
by the value given to the input port d at every rising clock edge. The data stored in the register is
always output from port q.

A ROM (Read Only Memory) has a (address) input d and a data output q as illustrated in
Figure 4. It is storing 2b words such as M [0], M [1], . . ., M [2b− 1], where b is the number of address
bits. We deal with two types of ROMs in terms of read operations as follows:

• Synchronous ROM (SROM) An SROM has a clock input and a reset input. If reset is 1
then the stored value is initialized by 0. The read operation is performed at every rising clock
edge when reset is 0. The output q is the value of M [d] at the latest rising clock edge.

• Asynchronous ROM (AROM) An AROM has no clock input and no reset input. The
value of M [d] is continuously output from port q.

The Figure 5 shows a timing diagram of reading operations of the R, SROM, AROM and NR
(Negative Register). In the figure, time 0, 1, 2, . . . correspond to rising edges of the periodic clock
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Figure 3: An example of a combinational circuit (CC).

input. Initially global reset is 1 and it drops to 0 just before time 0. Data d0, d1, d2, . . . are given to
the input port d. The value of output, q of R and SROM is 0 at time 0. Also, at time 1, 2, . . . the
values of output, q of R and SROM are d0, d1, d2, . . . and M [d0], M [d1], M [d2], . . ., respectively.
For the AROM, the data M [d0], M [d1], M [d1], . . . are taken from the output port, q immediately
at time 0, 1, 2, . . ., respectively.

In current FPGAs, an SROM can be implemented in embedded block RAMs. However, an
AROM is implemented in LUTs, which are very costly. Hence, we should use SROMs when we need
a function of ROMs. On the other hand, AROM is easy to use, because we can get output data
from the AROM immediately.

We will describe a behavior of a circuit element using a sequence of output at every rising clock
edge for the periodic clock (clock is inverted into a fixed frequency), and initial reset (initially, reset
is 1 and drops to 0 before the first rising clock edge) as illustrated in Figure 5. The behavior of each
circuit element is described by the output sequences as follows:

• Combinational Circuit (CC) For simplicity, we assume 3-input 2-output combinational
circuit which is shown in Figure 3. There is no difficulty to extend the definition for general
m-input n-output combinational circuit. We assume that, at time i (i ≥ 0), ai, bi, and ci are
given to the 3 input ports A, B, and C. Let f and g be the two functions with three arguments
that determine the value of output ports F and G. The output sequences of F and G are as
follows:

CC(F):〈f(a0, b0, c0), f(a1, b1, c1), f(a2, b2, c2), . . .〉
CC(G):〈g(a0, b0, c0), g(a1, b1, c1), g(a2, b2, c2), . . .〉

• Register (R) Let di denotes an input value given to an input port d at time i (i ≥ 0). The
output sequence is described as follows:

R: 〈0, d0, d1, d2, . . .〉

• Synchronous and Asynchronous ROMs (SROMs and AROMs) Let M [j] denotes the
value stored in address j (j ≥ 0) of the ROM. The output sequences of SROM and AROM are
as follows:

SROM: 〈0,M [d0],M [d1],M [d2], . . .〉
AROM: 〈M [d0],M [d1],M [d2], M [d3], . . .〉

In this paper, we assume that a fully synchronous circuit has data inputs, data outputs, a global
clock input, a global reset input, combinational circuits (CCs), registers (Rs), SROMs, AROMs,
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Figure 4: A register (R), a synchronous ROM (SROM) and an asynchronous ROM (AROM).

and their interconnects. The readers should refer to Figure 6 for illustrating an example of a fully
synchronous circuit. The global clock and the global reset are directly connected to the clock input
ports and the reset input ports of all Rs and SROMs. Also, we assume that a circuit has cycles.

Let us define an equivalence of two fully synchronous circuits for the periodic clock and initial
reset. We say that two circuits X and Y are an equivalent if, for any input sequence, the output
sequences are the same except for first several outputs. For the reader’s benefit, we will show an
example of the equivalence. Let us consider a circuit SROM+R, that is, the output of the SROM is
connected to the input of the R as illustrated in Figure 7. We also consider a circuit R+SROM, in
which the output of the R and the input of the SROM are connected. In this regard, we consider
another circuit which consists 2 registers (2 Rs) and an AROM. The output of the R is connected to
the input of the AROM whereas the output of the AROM is connected to the input of the other R, as
illustrated in Figure 7. For the periodic clock with initial reset, the output sequences of SROM+R,
R+SROM, and R+AROM+R are as follows:

SROM+R: 〈0, 0,M [d0],M [d1], . . .〉
R+SROM: 〈0,M [0],M [d0],M [d1], . . .〉
R+AROM+R: 〈0,M [0],M [d0],M [d1], . . .〉

Since these three circuits have the same output in time 2, 3, . . ., they are an equivalent. Note that,
the outputs in time 0 and 1 are not equal. In this paper, we ignore first several clock cycles when
we determine the equivalency of the circuits.

Suppose that a circuit X with AROMs is given. The main contribution of this paper is to show

• a necessary condition such that an AROM-free circuit, Y can be generated, which is an equiv-
alent to X, and

• an algorithm to derive Y if the necessary condition is satisfied.

We will introduce a negative register (NR), which is a nonexistent device used only for showing
our algorithm to derive Y and related proofs. This is originally introduced in our previous paper [12].
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Figure 5: A timing chart of a register (R), an SROM, an AROM and a negative register (NR).

Recall that, a regular register latches the input at the rising clock edge. A negative register latches a
future input. The Figure 5 also shows a timing diagram of a negative register (NR). An NR latches
the value of input d at the rising edge of two clock cycles later as illustrated in Figure 5. Thus, the
NR has the following output sequence for a periodic clock with an initial reset is as follows:

NR: 〈d1, d2, d3, . . .〉.

In our algorithm to derive an AROM-free circuit Y , circuits with NRs will be used as interim results.

4 Circuit Graph and Rewriting Rules

We simply use a directed graph to denote the interconnections of a fully synchronous circuit. We
call such graph as a circuit graph. A circuit graph consists of a set of nodes and a set of directed
edges for connecting two nodes. Each node is labeled by either I (Input port), O (Output port),
CC (Combinational Circuit), R (Register), NR (Negative Register), AROM, or SROM. A node
with label I is connected with one or more outgoing edges. A node with label O is connected with
exactly one incoming edge. A node with label CC has one or more incoming edges and one or more
outgoing edges. A node with label R, NR, AROM, or SROM has one incoming and one outgoing
edge. We also assume that a circuit graph is a directed reachable graph (DRG), such that for every
internal node, there exists a directed path from an input node to an output node which includes it.
Figure 2 (2) illustrates an example of a DRG.

Note that, nodes with label I, R, NR, AROM, or SROM has only one outgoing edge. The readers
may think that one outgoing edge is a too stringent restriction because it does not allow two or more
fan-outs. However, we can implement multiple fan-outs by attaching a simple Combinational Circuit
(CC) that just duplicates the input. For example, a CC with one input port A and two output ports
F and G such that F = A and G = A is used to implement fan-out 2 as illustrated in Figure 8.

For a given circuit X with AROMs, we will show an algorithm to derive an AROM-free and
NR-free circuit, Y by rewriting circuits. We assume that X is given as a circuit graph. We will
define rules to rewrite a circuit graph. The readers should refer to Figure 9 for illustrating the rules,
where P and S denote predecessor and successor nodes respectively. The nodes between predecessor
and successor nodes are rewritten as follows:

Rule 0 AROM node is rewritten into SROM+NR.

Rule 1 Adjacent R and NR nodes are rewritten into NULL circuit, that is, they are removed.
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Rule 2 R+SROM is rewritten into SROM+R.

Rule 3 If all the incoming edges of a CC node are connected to an R node, then Rs are moved to
all the outgoing edges of the CC node.

Rule 4 NR+SROM is rewritten into SROM+NR.

Rule 5 If one of the incoming edges of a CC node is connected to an NR node, then the NR node
is removed, an R node is added to all the other incoming edges, and the NR node is moved to
all the outgoing edges of the CC node.
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Let us confirm that, after applying one of the rewriting rules, an original circuit and the resulting
circuit are equivalent. Let ai, bi, ci, and di (i ≥ 0) denote inputs given from the predecessor node
at time i.

Rule 0 Both AROM and SROM+NR have the output sequence 〈M [d0], M [d1], M [d2], M [d3],
. . .〉, and thus they are an equivalent.
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Rule 1 R+NR and NR+R have the output sequences 〈d0, d1, d2, d3, . . .〉 and 〈0, d1, d2, d3, . . .〉,
respectively. Also, NULL circuit has the output sequence 〈d0, d1, d2, d3, . . .〉. Thus, they are
an equivalent.

Rule 2 R+SROM and SROM+R have the output sequences 〈0, M [0], M [d0], M [d1], . . .〉 and 〈0,
0, M [d0], M [d1], . . .〉, respectively and thus they are an equivalent.

Rule 3 The output sequences of the left-hand side of the rule are 〈f(0, 0, 0), f(a0, b0, c0), f(a1, b1, c1),
. . .〉 and 〈g(0, 0, 0), g(a0, b0, c0), g(a1, b1, c1), . . .〉. Those of the right-hand side are 〈0, f(a0, b0, c0),
f(a1, b1, c1), . . .〉 and 〈0, g(a0, b0, c0), g(a1, b1, c1), . . .〉. Thus, they are an equivalent.

Rule 4 NR+SROM and SROM+NR have the output sequences 〈0, M [d1], M [d2], M [d3], . . .〉 and
〈M [d0],M [d1],M [d2],M [d3] . . .〉, respectively and thus they are an equivalent.

Rule 5 The output sequences of the left-hand side of the rule are 〈f(a1, b0, c0), f(a2, b1, c1),
f(a3, b2, c2), . . .〉 and 〈g(a1, b0, c0), g(a2, b1, c1), g(a3, b2, c2), . . .〉. Those of the right-hand side
are 〈f(a1, b0, c0), f(a2, b1, c1), f(a3, b2, c2), . . .〉 and 〈g(a1, b0, c0), g(a2, b1, c1), g(a3, b2, c2), . . .〉.
Thus, they are an equivalent.

We are now in position to describe the rewriting algorithm. Suppose that an input circuit graph
has nodes with labels I, O, R, AROM, SROM, and CC. The following rewriting algorithm generates
a circuit graph equivalent to the original circuit graph.

Find a minimum i such that Rule i can be applied to the current circuit graph. Rewrite
the circuit graph using such Rule i. This rewriting procedure is repeated until no more
rewriting is possible.

In other words, our algorithm invokes the Rule i (i varies from 0 to 5) and applies (whenever
applicable) as a priority basis to the current circuit graph until no more applying is possible. For
example, Rule 0 has higher priority than Rule 1, Rule 1 has higher priority than Rule 2 and so
on. When no rule is applicable to the current circuit graph, we have an equivalent AROM-free and
NR-free resulting circuit graph to implement into the current FPGAs for the given input circuit
graph with AROMs.

For the reader’s benefit, we will show more concrete description of our rewriting algorithm. Our
rewriting algorithm repeatedly changes a circuit graph. Let #nodes denote the number of nodes of
the current circuit graph, and v0, v1, . . . , v#nodes−1 denote all the nodes. Note that, the number of
nodes may change by applying a rule. If this is the case, we assume that the value of #nodes is
automatically updated. Our rewriting algorithm can be described as follows:

START:
for i← 0 to 5 do
for j ← 0 to #nodes − 1 do
if Rule i can be applied for vj or vj with its neighbors
begin
Apply Rule i for vj or vj with its neighbors
goto START

end

It should be clear that, when a rule is applied, our rewriting algorithm starts over. Thus, our
rewriting algorithm repeatedly applies Rule i, where i be the minimum possible number.

5 Behavior of Our Circuit Rewriting Algorithm

Let us observe the behavior of our circuit rewriting algorithm.

• First, Rule 0 is applied to all AROM nodes, and they are rewritten into SROM+NR. After
that, Rule 0 is never applied.
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• Rules 1 is applied and adjacent R and NR nodes are removed whenever possible.

• R nodes are moved towards the output nodes using Rules 2 and 3 whenever possible.

• NR nodes are moved towards the output nodes or are rotated in cycles using Rules 4 and 5.

Let us see how our circuit rewriting algorithm works using an example of a circuit in Figure 10,
which shows the interim and resulting circuit graphs. First, Rule 0 is applied to the AROM, it is
converted into SROM+NR. After that, Rule 3 is used to move the R, and two Rs are generated.
Rule 5 is applied to move the NR and it is duplicated. Finally, adjacent R and NR are removed by
Rule 1.
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Figure 10: Interim and resulting circuit graphs obtained by our rewriting algorithm for a circuit
graph.

Our circuit rewriting algorithm may not terminate for a circuit graph that has no way to convert
an equivalent AROM-free circuit. Figure 11 shows an example of such circuit graph. It has a cycle
with two AROMs and one R. Intuitively, one R is necessary to convert an AROM into an SROM.
Thus, this circuit graph can not be converted into an equivalent AROM-free circuit. Let us see how
our circuit rewriting algorithm works for the circuit graph in Figure 11. After applied Rule 0 and
Rule 1, the interim circuit graph has an NR in the cycle. Rule 5 is applied to move the NR, and
a new R is generated between the I node and the CC node. After that, the NR jumps over the
SROM by Rule 4. Rule 5 is applied again, and a new NR is generated between the CC node and
the O node. Again, the NR jumps over the SROM by Rule 4. The readers should have no difficulty
to confirm that, while the NR is rotated in the cycle, one new R is generated between the I node
and the CC node and one new NR is generated between the CC node and the O node. Rule 5 and
Rule 4 can be repeated applied in the same way. In general, after Rule 5 and Rule 4 applied 2n
times, new n R’s and n NR’s are generated, and our circuit rewriting algorithm never terminates.

For the purpose of clarifying the condition such that our rewriting algorithm can generate AROM-
free and NR-free circuit graph, we define the potentiality of the nodes in a circuit graph. Suppose
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Figure 11: Example of a circuit graph for which our rewriting algorithm does not terminate.

that a node v of a circuit graph has m (≥ 0) incoming edges such as (u1, v), (u2, v), . . . , (um, v). Let
us define the potentiality p(v) of a node v as follows:

• If v is I, then p(v) = 0.

• If v is O or SROM, then p(v) = p(u1).

• If v is AROM or NR then p(v) = p(u1)− 1.

• If v is R then p(v) = p(u1) + 1.

• If v is CC, then p(v) = min(p(u1), p(u2), . . . , p(um)).

From the definition, the potentiality of a node can be determined if the potentiality of all predecessor
nodes are determined. Unfortunately, as we will show next, we may not determine the potentiality
of every node by the above definition, if a circuit graph has a cycle.

Let us discuss the potentiality for a circuit graph with a cycle using three circuits in Figure 12.
Let the potentiality p(a) of the CC node a be k. From the definition of the potentiality, we can
write the equations of potentiality for Figure 12 (1) as follows:

p(a) = k, p(b) = min(p(a), p(e)), p(c) = p(b) + 1, p(d) = p(c), p(e) = p(c) + 1, and
p(f) = p(d).

From these equations, we have, p(e) = p(c) + 1 = p(b) + 2 and thus, p(b) = min(k, p(b) + 2). Hence,
we can determine the value of p(b) such that p(b) = k. Further, we can determine the potentiality
of the other nodes as follows: p(c) = p(d) = p(f) = k +1, and p(e) = k +2. Intuitively, the equation
p(b) = min(k, p(b)+2) means that the cycle is a positive cycle because the cycle b−c−d−e increases
the potentiality by +2.

We can do the same discussion for Figure 12 (2) as follows:
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p(a) = k, p(b) = min(p(a), p(e)), p(c) = p(b) + 1, p(d) = p(c), p(e) = p(c) − 1, and
p(f) = p(d).

From these equations, we have, p(b) = min(k, p(b)). Regardless the value of p(b), this equation is
satisfied. If this is the case, we assume that p(b) = k. We can then determine the potentiality of
the other nodes as follows: p(c) = p(d) = p(f) = k + 1, and p(e) = k. Similarly, from the equation
p(b) = min(k, p(b)), we can think that the cycle is a zero cycle.

Figure 12 (3) shows an example of a negative cycle. We have the equations as follows:

p(a) = k, p(b) = min(p(a), p(e)), p(c) = p(b) − 1, p(d) = p(c), p(e) = p(c) − 1, and
p(f) = p(d).

From these equations, we have, p(b) = min(k, p(b) − 2). If p(b) 6= k then p(b) = p(b) − 2. Hence
p(b) = k must be satisfied. If this is the case, p(b) = min(k, k−2) = k−2, a contradiction. Therefore,
p(b) = min(k, p(b)− 2) has no solution.
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Figure 12: The potentiality for circuits with a cycle

From this observation, we define the potentiality of a cycle as follows: Let v0, v1, . . . , vm(= v0)
be a cycle such that there is a directed edge (vi, vi+1) (0 ≤ i ≤ m − 1). We define the potentiality
p′(vi) of node vi (1 ≤ i ≤ m) with respect to the cycle starting v0 as follows:

• p′(v0) = 0.

• If vi+1 is CC or SROM, then p′(vi+1) = p′(vi) (0 ≤ i ≤ m− 1).

• If vi+1 is AROM or NR then p′(vi+1) = p′(vi)− 1 (0 ≤ i ≤ m− 1).

• If vi+1 is R then p′(vi+1) = p′(vi) + 1 (0 ≤ i ≤ m− 1).

We say that the potentiality of the cycle is p′(vm). For example, the potentialities of the cycles in
Figure 12 (1), (2), and (3) are 2, 0, and -2, respectively.

We have the following theorem.

Theorem 1 Our rewriting algorithm generates an AROM-free and NR-free circuit graph, equivalent
to the original circuit graph, if all O nodes and all cycles of a circuit graph have non-negative
potentiality.

In other words, we can determine a fully synchronous circuit that can be converted into an
AROM-free circuit by evaluating the potentiality of all O nodes and all cycles of the corresponding
circuit graph. Also, the potentiality of all O nodes and all cycles are non-negative, our rewriting
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algorithm generates an AROM-free and NR-free circuit graph, and the corresponding fully syn-
chronous circuit is AROM-free and an equivalent to the original fully synchronous circuit. For the
reader’s benefit, we will explain two examples as shown in Figure 10 and Figure 13. In Figure 10,
the potentiality of the O node and cycle are non-negative. Hence, our rewriting algorithm generates
an AROM-free and NR-free circuit graph. In Figure 13, the potentiality of the O node is nega-
tive, however the potentiality of the cycle is non-negative. Hence, our rewriting algorithm does not
generate an AROM-free and NR-free circuit graph. In fact, we recall the Figure 10 with a slight
modification as illustrated in Figure 13 to understand the failure case of our rewriting algorithm.
A slight modification is that we just move the position of the AROM and R nodes in the designed
input circuit graph as illustrated in Figure 13. It is observed in Figure 13 that the resulting circuit
graph has an NR node and hence we say, our rewriting algorithm fails to remove all NRs.
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Figure 13: A circuit and its corresponding circuit graph with a slight modification of the Figure 10
that can not be converted into an AROM-free circuit

6 Proof of Theorem 1

The main purpose of this section is to show a proof of Theorem 1. We will show several lemmas for
a proof of Theorem 1.

First, let us observe how the potentiality of nodes is changed by our rewriting algorithm. We
focus the potentiality of successor nodes. Let P and S denote the predecessor and successor nodes
for Rules 0, 1, 2 and 4. Also, let P1, P2, P3, and S1, S2 be the three predecessor and two successor
nodes in Rules 3 and 5. We compute the potentiality of each successor node both before and after
applying the rules as follows.

Rule 0 p(S) = p(P )− 1.

Rule 1 p(S) = p(P ).

Rule 2 p(S) = p(P ) + 1.

Rule 3 p(S1) = p(S2) = min(p(P1) + 1, p(P2) + 1, p(P3) + 1) = min(p(P1), p(P2), p(P3)) + 1.
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Rule 4 p(S) = p(P )− 1.

Rule 5 p(S1) = p(S2) = min(p(P1)− 1, p(P2), p(P3)) = min(p(P1), p(P2) + 1, p(P3) + 1)− 1.

Thus, the potentiality of every successor node is never changed by applying the rules. In every rule,
O nodes can only be successor nodes. Thus, we have,

Lemma 2 The potentiality of every O node of the resulting circuit graph is the same as that of the
corresponding O node of the original circuit graph.

For this lemma, the readers may see the Figure 10. In this figure, the potentiality of the O node is
0 and this value is never changed. Similarly, we can prove the following lemma:

Lemma 3 The potentiality of every cycle of the resulting circuit graph is the same as that of the
corresponding cycle of the original circuit graph.

In Figure 10, we see that the cycle increases the potentiality by +1 and this value is also never
changed. Readers may refer to the Figure 12 for making clear about the potentiality of the cycles
in circuits.

In a circuit graph, let a segment be a directed path u1, u2, . . ., um such that, u1 and um are either
I, O, SROM, or CC, and u2, . . ., um−1 are either R or NR. Note that, if m = 2 then it represents a
null segment with u1, u2. We have the following lemma:

Lemma 4 Once our circuit rewriting algorithm uses either Rule 4 or Rule 5 to move an NR node,
it never applies Rule 2 and Rule 3 to move an R node.

Proof If either Rule 4 or Rule 5 is applied an interim circuit, both Rule 2 and Rule 3 cannot be
applied to it. If this is the case, all Rs are either (1) in the segment of Rs ending at an O node, or
(2) in the segment of Rs ending at a CC node and another incoming edge of the CC node is not
connected to R (Figure 14). To apply Rule 2 and Rule 3 later, the non-R node in Figure 14 must
be an R node. However, to be an R node, Rule 2 and Rule 3 must be used. Thus, both Rule 2 and
Rule 3 are never applied.

R

O

R

CC

R

R
R

non-R

(1) (2)

Figure 14: Illustration for the proof of Lemma 4

We will prove that all NRs in a cycle with non-negative potentiality will be removed by our
rewriting algorithm.

Lemma 5 Suppose that all cycles in a circuit graph have non-negative potentiality, and Rule 0 are
repeatedly applied to remove all AROMs. If a cycle has m NRs, it also has at least m Rs. If either
Rule 2 or Rule 3 is applied, the Rs are moved and adjacent R and NR may be removed by Rule 1. If
either Rule 4 or Rule 5 is applied, the NRs are moved. Note that, from Lemma 4, the Rs are never
moved, once either Rule 4 or Rule 5 is applied. In other words, the NRs are moved along the cycle,
while Rs are never moved. Thus, at some point, all NRs in the cycle will be removed by Rule 1.
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Note that, if there exists a cycle with negative potentiality, our circuit rewriting algorithm does
not terminate. As illustrated in Figure 11, an NR moves along the cycle and Rs and NRs are
repeatedly generated. It should be clear that, there exists no way to generate an equivalent AROM-
free circuit for such circuit.

When our rewriting algorithm terminates and the resulting circuit graph is obtained, we have
the following lemma:

Lemma 6 Let u be an NR node and (u, v) be its outgoing edge in the resulting circuit graph. Node
v must be either NR or O node. Also, all NR nodes must be in segments ending at O node.

Proof If v is an R, SROM, or CC node then Rules 1, 4, or 5 can be applied. Since no more rules
can be applied to the resulting circuit graph, v must be either NR or O nodes. Since the successor
of NR nodes must be NR or O nodes, all NR nodes must be in segments ending at O node.

The reader may refer to Figure 13 for making clear about the proof of this lemma. In this figure,
the resulting circuit graph (circuit graph in where no rule is applicable) has an NR which is in
segment ending at O node.

A simple directed path is a directed path if it has no repeated nodes. For example, in Figure 2 (2),
(B,E, H, K, N, O) is a simple directed path, but (B, E, H, I, F, E, H,K, N, O) is not. We say that
nodes are regular if it is on a simple directed path from an input node to an output node. Note that
nodes on a cycle in a DRG can be a non-regular node. For example, nodes F and I are non-regular
nodes.

From Lemma 6, we will prove that all regular SROM and CC nodes in the resulting circuit graph
have zero potentiality.

Lemma 7 All regular SROM and CC nodes in the resulting circuit graph have non-negative poten-
tiality.

Proof Since the resulting graph is AROM-free, nodes follows NR nodes can have negative po-
tentiality. Since no segment ending at SROM or CC has NR nodes, their potentiality must be
non-negative.

Similarly, we have the following lemma.

Lemma 8 All regular SROM and CC nodes in a simple directed path from an input node to an
output node in the resulting circuit graph have non-positive potentiality.

Proof We assume that the resulting circuit graph has a positive potentiality SROM or CC node
in a simple directed path from an input node to an output node, and show a contradiction. Let
v be a first SROM or CC node with negative potentiality, that is, all SROM and CC nodes in all
directed paths incoming to v have non-positive potentiality and SROM or CC node v has positive
potentiality.

Case 1 v is an SROM node
Let (u, v) denotes the incoming edge. If u is either R or NR, then Rule 2 or Rule 4 can be
applied. Since no more rules can be applied to the resulting circuit graph, it must be either I,
SROM, or CC. If this is the case, p(u) = 0 and thus, p(v) = 0, a contradiction.

Case 2 v is a CC node
Let (u1, v), (u2, v), . . . , (uk, v) (k ≥ 1) denote the incoming edges. From Lemma 6, none of
u1, u2, . . . , uk is an NR node. If all of them are R nodes, then Rule 3 can be applied. Thus,
at least one of them is not an R node. It follows that at least one of them is either I, SROM,
or CC node. From the assumption, the potentiality of such node is non-positive, Hence, the
potentiality of v is non-positive, a contradiction.
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We are now in position to show the proof of Theorem 1. From Lemma 7 and 8, all SROM and
CC nodes in a simple directed path from an input node to an output node of the resulting circuit
graph have zero potentiality. Hence, if the potentiality of one of the O nodes in the resulting circuit
graph is negative, a segment ending at O node in the resulting graph should have NR from Lemma 6.
Similarly, if the potentiality of all the O nodes is non-negative, no segment ending at an output node
has NR in the resulting circuit graph. From Lemma 2, the potentiality of O nodes does not change
by our rewriting algorithm. Thus, from Lemma 5, if all output nodes and all cycles of a circuit
graph have negative potentiality our rewriting algorithm generates the resulting circuit graph with
NR nodes. This completes the proof of Theorem 1.

From Theorem 1, it is not always possible to generate an equivalent AROM-free circuit. However,
we may modify a circuit such that it can be converted into an almost equivalent AROM-free circuit.
For this purpose, we compute the potentiality of all O nodes and all cycles in the corresponding
circuit graph. After that, we insert registers just before O nodes with negative potentiality so that
the potentiality of the corresponding O nodes turns into a zero. In this case, we assume that all
the cycles have non-negative potentiality. Since the potentiality of the corresponding O nodes now
is 0, it can be converted into an equivalent AROM-free circuit according to our Theorem 1. The
readers should refer to Figure 15 for illustrating an example. Note that, the resulting circuit graph
is not an equivalent to the original circuit graph. However, the difference is the latency of the output
node. Thus, we can say that, the resulting AROM-free circuit is an almost equivalent to the original
circuit.
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Figure 15: An almost equivalent circuit with corresponding circuit graph to that of Figure 13 that
can be converted into an AROM-free circuit

As we have discussed, our circuit rewriting algorithm does not terminate for a circuit graph with
a negative cycle. We can modify our circuit rewriting algorithm that always terminates as follows:
First, we compute the potentiality of every cycles. If one of them is negative, we do not execute
our circuit rewriting algorithm. Since it is impossible to generate an equivalent AROM-free circuit
if this is the case, it is not reasonable to execute our circuit rewriting algorithm.
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7 How to handle nodes that are not in a path from an input
node

In this section, we will describe for understanding how to handle nodes corresponding circuit elements
that are not in a path from an input of the circuits. For this purpose, we include a no input practical
circuit such as counter in conjunction with DRG circuit as a designed input circuit instead of DRG
circuit only. By this addition, in fact, we relax a restriction to the designed circuit by users in terms
of input circuits. However, we assume that our no input practical circuit has no memory elements
such as ROMs. It consists of Registers (Rs) and Combinational Circuits (CCs).

For the benefit of readers, we will show an example of a no input practical circuit as illustrated
in Figure 16 (a). The circuit in Figure 16 (a) has one Register (R) and one adder. Register (R) has a
reset input and a clock input as illustrated in Section 3. Readers may also refer to the Section 3 for
details about Combinational Circuit (CC). Initially stored data value in R is 0 if reset is 1. When
reset is 0, then stored data value is updated by the data value given to the input port at every rising
clock edge.

Let us recall the circuit, shown in Figure 16 (a). In this figure, we see that we may have output
data sequence 0, 1, 2, . . . of the time 0, 1, 2, . . ., respectively. If this is the case, then we say that
the output sequence of the circuit as shown in Figure 16 (a) is deterministic which is similar to
other inputs of the DRG circuit. Hence, we treat this citcuit as illustrated in Figure 16 (a) as a
dummy input to the DRG circuit, as shown in Figure 16 (b). Readers may refer to Figure 16 (a),
where dotted circle is indicating the dummy input for the DRG circuit as shown in Figure 16 (b) in
which the dummy input is connected to the adder of the DRG circuit. Note that, in Figure 16 (b),
DRG circuit is shown by enclosed dotted line. If this is the case, then we consider whole circuit in
Figure 16 (b) as an input circuit for our algorithm. Since, the dummy input can be treated as the
same as other inputs to the DRG circuit, our rewriting algorithm is applied to the whole circuit,
instead of only considering DRG circuit, as illustrated in Figure 16 (b) by enclosed dotted line. For
the benefit of readers, we have shown an application of our rewriting algorithm in Figure 16 (c).
Figure 16 (c) represents a converted circuit (by our rewriting algorithm) with no AROMs for the
circuit, shown in Figure 16 (b). It is noted that one Register (R) is generated to the connecting
edge from the dummy input to the adder (CC) of the DRG circuit by our algorithm, shown in
Figure 16 (c). Obviously, we can conclude from the converted circuit in Figure 16 (c) for an input
circuit in Figure 16 (b) that users can design their input circuit in wider range instead of only
considering DRG circuit, shown in Figure 16 (b) by enclosed dotted line.

8 Conclusions

We presented a rewriting algorithm and six rewriting rules to obtain the equivalent circuits with
Synchronous ROMs (SROMs) for the practical circuits with Asynchronous ROMs (AROMs). The
practical sequential circuit with AROMs represented by a directed reachable graph (DRG) can be
converted by our rewriting algorithm into an equivalent fully synchronous sequential circuit with
no AROMs to support the architecture of the most FPGAs. In this paper, we also described a
technique to extend the input designed circuits by users in wider range rather than DRG circuits.
It is not trivial to convert the practical sequential circuits with AROMs into the equivalent fully
synchronous circuits with no AROMs for supporting the modern FPGA architecture. However, our
algorithm can do it automatically.
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