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Abstract

As the data protection with encryption becomes important day by day, the encryption
processing using General Purpose computation on a Graphic Processing Unit (GPGPU) has
been noticed as one of the methods to realize high-speed data protection technology. GPUs have
evolved in recent years into powerful parallel computing devices, with a high cost-performance
ratio. However, many factors affect GPU performance. In earlier work to gain higher AES
performance using GPGPU in various ways, we obtained the following two technical viewpoints:
(1) 16 Bytes/Thread is the best granularity (2) Extended key and substitution table stored in
shared memory and plaintext stored in register are the best memory allocation style.

However, AES is not the only cipher algorithm widely used in the real world. For this reason,
this study was undertaken to test the hypothesis that these two findings are applicable to imple-
mentation of other symmetric block ciphers on two generation of GPU. In this study, we targeted
five 128-bit symmetric block ciphers, AES, Camellia, CIPHERUNICORN-A, Hierocrypt-3, and
SC2000, from an e-government recommended ciphers list by the CRYPTography Research and
Evaluation Committees (CRYPTREC) in Japan. We evaluated the performance of these five
symmetric block ciphers on the machine including a 4-core CPU and each GPU using three
method: (A) throughput without data transfer, (B) throughput with data transfer and over-
lapping encryption processing on GPU, (C) throughput with data transfer and non-overlapping
encryption processing on GPU. Results demonstrate that the throughput of implementation
of SC2000 in method (A) on Tesla C2050 achieved extremely high 73.4 Gbps. Additionally,
the throughput obtained using methods (B) and (C) deteriorated to 33.4 Gbps and 18.3 Gbps,
respectively. Method (B) showed effective throughput with an approximately 4.7 times higher
speed compared to that obtained when using 8 threads on a 4-core CPU.

Keywords: GPU, CUDA, Multicore CPU, Symmetric Block Cipher

1 Introduction

As the data protection with encryption becomes important day by day, the encryption processing
using GPGPU has been noticed as one of the methods to realize high-speed data protection tech-
nology. GPUs have evolved in recent years into powerful parallel computing devices, with a high
cost-performance ratio. However, many factors should be undertaken to improve the performance on
GPUs, for example the granularity, memory allocation style, the number of threads, and the num-
ber of thread blocks. This fact makes it difficult to detect what parameters can extract the GPU’s
performance. In our previous work to gain higher AES performance using GPGPU in various ways,
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we obtained the following two technical viewpoints: (1) 16 Bytes/Thread is the best granularity
(2) extended key and a substitution table stored in shared memory is the best memory allocation
style[10].

However, AES is not the only cipher algorithm widely used in the real world. For example
Camellia is already adopted as one of the cipher algorithms embedded in Firefox internet browser.
For this reason, this study was undertaken to test the hypothesis that these two findings are ap-
plicable to the implementation of other symmetric block ciphers on two generations of GPU. The
algorithm of modern symmetric block ciphers resembles that of AES: integer operations, logical op-
erations, and several table substitutions. Therefore, herein, we targeted five 128-bit symmetric block
ciphers, AES[12], Camellia[2], CIPHERUNICORN-A[18], Hierocyrpt-3[14], and SC2000[17], from an
e-government recommended ciphers list by the CRYPTography research and evaluation committees
(CRYPTREC) in Japan[1].

2 CUDA

CUDA is a GPGPU development environment released by Nvidia Corp. In the CUDA environment,
the GPU is hidden as a parallel computing device. As shown in Figure 1, the GPU has N multi-
processors (MP) and a global memory. Each MP has M scalar processors (SP), a shared memory,
several 32-bit registers, and a shared instruction unit. The shared memory is multi-bank type of
multiport memory. In addition, the global memory has a special area called constant memory. When
reading common data among themselves such as constant, threads get cache effect. We chose an
Nvidia Tesla C2050 and a Geforce GTX 285 from the CUDA GPU family. Tesla C2050 incorporates
the latest Fermi architecture, including 14 MPs; one MP incorporates 32 SPs. In Tesla C2050, the
capacity of the shared memory is 48 KB. By contrast, Geforce GTX 285 has conventional GT200
architecture including 30 MPs, and one MP incorporates 8 SPs. In Geforce GTX 285, the capacity
of the shared memory is 16 KB.

Parallel processing on CUDA is attributed to many-thread parallelism, and the resources in MPs
are assigned evenly among many active threads. Threads can be processed effectively provided that
the number of threads is in multiples of 32. Especially, the SP pipeline can be kept filled if more than
192 threads are activated, which engenders a considerable performance increase [19]. In addition,
GPU has a DMA controller. Therefore, we can divide data into an arbitrary number of segments.
Then we overlap the data processing with the data copy.

Moreover, in the architecture of CUDA GPUs a thread block is switched to other one in round-
robin fashion to hide the memory access latency, unlike traditional CPU architectures. More specifi-
cally, the instructions by the latter thread are executed under the background of the memory access
instruction issued by the former one. This is a unique mechanism of hiding the memory access
latency, based on a feature of the GPU architecture specialized for many-thread execution.

3 Algorithms of targeted symmetric block ciphers

3.1 Overview

The CRYPTREC in Japan publishes an e–government recommended ciphers list, including several
excellent block ciphers, for example AES[12], Camellia[2], CIPHERUNICORN-A[18], Hierocrypt-
3[14], and SC2000[17].

For speeding up of encryption processing, a strategy that optimizes repetitive parts in each
cipher algorithm is valid. In general, the method to take advantage of precomputing substitution
table is available for the optimization of symmetric block cipher on software. This method have also
advantage in the optimization on CUDA, because a GPU has relatively large amount of memories
to store substitution tables. In this section, we show the original algorithm of each cipher first; then
illustrate its optimized algorithm.
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Figure 1: CUDA Architecture.

3.2 Encryption mode

Several modes can be selected at the time of encryption of multiple plaintexts. ECB (Electonic
Code Book), CTR (CountTeR), or XTS (Xor-encrypt-xor Tweakable code book mode with cipher
text Strealing)[9] among them are known as parallelizable modes. ECB is the mode that a single
key is applied to all plaintexts. CTR is the mode that a key stream generated from a secret key is
combined to plaintexts. In this mode, the generation of the key stream is conducted in the same
manner as ECB. XTS is the mode for the disk encryption, specified in IEEE 1619-2007 standard.
In this mode, plaintexts are encrypted with sector number of disk and two 128-bit secret keys using
two ECB modes. For these reason, the performance increase of symmetric block ciphers on GPUs
can be comprehensively evaluated by means of ECB mode. Therefore, in this paper, we will discuss
ECB mode as parallel computing.

3.3 AES

AES[12] is a 128-bit block cipher, of which the structure is an SPN network. Although 128-bit,
192-bit, or 256-bit key size can be selected, we discussed only 128-bit in this paper. The length of
the expanded key generated from 128-bit key is 10 × 128-bit.

Its algorithm of the 128-bit key defines 10-round processes. Each round includes four transfor-
mations: SubBytes, ShiftRows, MixColumns, and AddRoundKey. The final round differs slightly
from the other rounds: it does not include MixColumns.

In AES, a round process can be combined into a transformation simply using a lookup table
called T-box and XOR operation[8]. Letting a be the round input, which is divided into four inputs
a0, a1, a2, a3, each of which consists of 32 bits, the round output e is represented as

ej = T0[a0,j ] ⊕ T1[a1,j+1] ⊕ T2[a2,j+2] ⊕ T3[a3,j+3] ⊕ kj ,

where T0, T1, T2, and T3 are lookup tables and kj is the j-th column of a roundkey. This algorithm
requires only four lookup table transformations and four XOR operations.

3.4 Camellia

Camellia[2] is a 128-bit block cipher, of which the structure is a Feistel network. Although 128-bit,
192-bit, or 256-bit key size can be selected, we discussed only 128-bit in this paper. The length of
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expanded key size generated from 128-bit key is 26 × 64-bit. In Camellia, the algorithm of 128-bit
key defines 18 round processes. Each round includes an F -function, in which 64-bit plaintext and 64-
bit extended key become the input. After the input, the plaintext is combined with the extended key
by XOR; then replaced by S-function consisting of an S-table. After the S-function, the plaintext
is stirred by P -function consisted of 8-bit XOR; then the intermediate of 64-bit plaintext becomes
the output of F -function. The FL and FL−1 functions, consisting of 32-bit AND, OR, XOR, and
cyclic left shift, are inserted per six rounds.

The optimized architecture of Camellia is presented in Figure 2. In Camellia, the F -function
occupies the most parts of the data randomization procedure. The permutation network in the
F -function can be combined with the S-function, which combined S-table is called SP -table. Then,
the F -function can be deformed to the algorithm including eight SP -tables with 8-bit input and
32-bit output.
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Figure 2: Optimized Camellia (Data randomization procedure).

3.5 CIPHERUNICORN-A

CIPHERUNICORN-A[18] is a 128-bit block cipher with a Feistel network structure, as is Camellia’s.
In CIPHERUNICORN-A, 128-bit, 192-bit, or 256-bit key size can be selected. However, the length
of the extended key is constant 18 × 128 bit, irrespective of the length of the secret key. The data
randomization procedure also defines constant 16 processes, irrespective of the length of the secret
key. In CIPHERUNICORN-A, each round includes an F -function, in which 64-bit plaintext and
64-bit extended key become the input. After the input, the plaintext is added with a half of the
extended key, i.e. 2 × 32 bit. After the addition, the plaintext is stirred by XOR, rotate shift,
constant multiplication, and Tn-function. The other half of extended key, 2 × 32 bit, is stirred
by table substitution, constant multiplication, etc. Finally in F -function, the stirred 2 × 32 bit
plaintexts are combined with the 2 × 32 bit extended key by XOR; it then becomes the output as
the intermediate of the plaintext. Additionally, the Tn-function is a function, in which 8-bit out of
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32-bit of plaintext specifies the location of four different tables; then four different 8-bit become the
output. Finally, the four different 8-bit are combined into 32-bit using shift operation.

The optimized architecture of CIPHERUNICORN-A is shown in Figure 3. In CIPHERUNICORN-
A, Tn-function occupies the most part of the F -function. In the Tn-function, the substitution table
with 8-bit I/O can be transformed into a new substitution table with 8-bit input and 32-bit output.
Using this new table, the accesses to substitution table are optimized from four accesses with shift
of operations to one access without a shift operation.
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Figure 3: Optimized CIPHERUNICORN-A (Data randomization procedure).

3.6 Hierocrypt-3

Hierocrypt-3[14] is a 128-bit block cipher, of which the structure is a nested SPN network. Although
128-bit, 192-bit, or 256-bit key size can be selected, we discussed only 128-bit in this paper. The
length of the expanded key generated from 128-bit key is 7 × 256 bit. In Hierocrypt-3, the data
randomization procedure in 128-bit key defines seven round processes. Each round includes a ρ-
function, in which S-table substitution, XOR with extended key, mdsL-function, and mdsH -function
are conducted. The mdsL-function and the mdsH -function consist of matrix operations. However,
the sixth and the seventh rounds differ slightly from the other rounds: The sixth round does not
include mdsH -function, and the seventh round consists of only XOR with the extended key.

The optimized architecture of Hierocrypt-3 is portrayed in Figure 4. The mdsL and mdsH -
function are the bottleneck of the ρ-function in Hierocrypt-3. Each matrix operation can be trans-
formed to table substitution, and then combined with an S-function. The ρ-function can be deformed
eventually to the algorithm including mdsL ST and mdsH ST-table substitution.

3.7 SC2000

SC2000[17] is a 128-bit block cipher, of which the structure is a combined Feistel and SPN network.
The data randomization procedure in 128-bit includes seven round processes. Each round executes
five transformations in sequence: I, B, I, R, and R-function. In the I-function, the input of 128-bit
plaintext is combined with the extended key by XOR. In the B-function, 4 × 32-bit are transformed
into 32 × 4-bit and are replaced by S4-tables. Then it is inversely transformed into 4 × 32-bit. The
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Figure 4: Optimized Hierocrypt-3 (Data randomization procedure).

R-function consists of an S-function, M-function, and L-function. In the S-function, the 32-bit input
is separated into several fragments of arbitrary size, for example (6-bit, 5-bit, 5-bit, 5-bit, 5-bit,
6-bit) or (11-bit, 10-bit, 11-bit). Then they are replaced by S6 and S5-table or S11 and S10-table,
etc. In the M-function, the input is multiplied with M-matrix of 32-bit × 32-bit over GF(2). In the
L-function, the input of 2 × 32-bit is stirred by AND with a constant value and XOR operation.
The final round differs slightly from the other rounds: it does not include two R-functions

The optimized architecture of SC2000 is portrayed in Figure 5. In SC2000, B-function, and S-
function and M-function can be optimized. In the B-function, 32 accesses to S4-table can be replaced
to logical operation, for whose operation B-function with logical operation can be processed faster
than that with S4-table. In addition, M-function can be transformed to table substitution, and then
combined with an S-table in S-function. As a result, according to [17], multiple combinations, (6-bit,
5-bit, 5-bit, 5-bit, 5-bit, 6-bit), (6-bit, 10-bit, 10-bit, 6-bit), (11-bit, 10-bit, 11-bit), or (16-bit, 16-
bit), can be selected as the 32-bit input in the combined S-function. The coarser the combination
of the 32-bit input in the combined S-function, the less frequent of table access becomes; at the
same time the larger the table size becomes. For Nvidia GPUs, the capacity of shared memory
varies among their architectures. Therefore, the feature of arbitrarily changeable table size is valid
to exhaustively use the capacity of shared memory and to attract GPU performance.

4 Related works

In this section, we sum up several related works of implementation for symmetric block cipher using
GPGPU. Regarding our investigation, no related work for CIPHERUNICORN-A, Hierycrypt-3, and
SC2000 using GPGPU is described in the literature.

4.1 Intel AES-NI instruction set

AES-NI[7] is a extended instruction set introduced from Intel Xeon 5600 processor. The instructions
are designed to implement some of the complex and performance intensive steps of the AES algorithm
using hardware and thus accelerating the execution of the AES algorithms. The instruction set is
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Figure 5: Optimized SC2000 (Data randomization procedure).

comprised of six instructions that perform several compute intensive parts of the AES algorithm.
Four of the new instructions are for accelerating the encryption or decryption of a round and two
instructions are for round key generation. Except of AES, to date acceleration mechanism of other
cipher algorithms are not embedded in a CPU.

4.2 GPGPU implementation of AES

Biagio et al. implemented counter mode AES (AES-CTR) on Nvidia Geforce 8800 GT using
CUDA[4]. Authors of this paper achieved 12.5 Gbps with an input size of 128 MB considering
about processing granularity. They defined as fine-grained design a solution exposing the internal
parallelism of each AES round. They proposed that four 32-bit words blocks were dispatched to four
SPs, each to four SPs, with each thread as a fine-grain processing. Moreover, the coarse-grained
design was design as exploiting higher level parallelism, which exists between independent plaintext
blocks. In this granularity, each thread processes each 128-bit plaintext block.

Iwai et al. implemented AES on CUDA with different granularity and various memory allocation
styles[10]. For the AES encryption module, they contrived what bytes should be mapped to each
thread, granularity, as one factor to increase its performance. They defined the following four ways
of granularity: 16 Bytes/Thread and the other granularities. In 16 Bytes/Thread, a thread is in
charge of encryption of a plaintext block. However, in other granularities, multiple threads are in
charge of encryption of a plaintext block. According to the experimentally obtained results described
in their paper, 16 Bytes/Thread granularity showed a tendency to have higher throughput than the
other granularities because, in other granularities, the processing resulting in a round should be
stored in the shared memory to the next round for synchronization. By contrast, 16 Bytes/Thread
do not require such synchronization. Therefore, it was possible for 16 Bytes/Thread to continue to
hold processing results not in the shared memory but the registers. Consequently, 16 Bytes/Thread
tended to show higher throughput than the other granularities
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4.3 GPGPU implementation of Camellia

Oikawa et al. implemented a plain Camellia encryption module at about 23.0 Gbps without data
transfer using OpenCL on a Nvidia GTX 260 GPU, which has 216 SPs[15]. Moreover, they tried
to implement a Camellia encryption module with bitslice style, which was introduced by [5] and
viewed a N -bit processor as a N -bit SIMD computer. Unfortunately, however, the throughput
was deteriorated to about 5.0 Gbps. They speculated that the reason was that too many registers
were required by a thread. An SP in CUDA GPU is 32-bit processor. Consequently, if 128-bit
cipher Camellia is implemented on CUDA GPU with bitslice style, then the thread consumes 32
parallelism× 128-bit = 512 Byte. Unfortunately in the GTX 260, more than 32 threads can not be
activated because each 512 Byte is assigned to a thread as temporary variables. To keep the SP
pipeline filled, more than 192 threads per MP are required, as shown in section 2. Consequently,
the experimentally obtained result is probably acceptable.

4.4 Analysis for encryption performance increase on GPU

Liu et al. implemented AES on an Nvidia Geforce 9800 GTX to investigate the performance increase
factors on GPUs[11]. They insisted on four points: (1) The number of threads can affect the overall
performance. (2) Larger shared memory capacity is necessary to hold the lookup tables. (3) Data
stored in global memory are organized to generate burst access to global memory. (4) DMA transfer
function is helpful to hide the overhead derived from the communication between CPU and GPU.

5 Implementation

5.1 Outline

Based on knowledge from the previous section, we implemented 128-bit block ciphers AES, Camellia,
CIPHERUNICORN-A, Hierocrypt-3, and SC2000 on CUDA. For implementation, AES and Camellia
are based on well optimized OpenSSL code[16].All of CIPHERUNICORN-A, Hierocrypt-3, and
SC2000 are based on the evaluative documents by CRYPTREC. For their optimization, we consulted
their specifications[12][2][18][14][17] and [3].

Additionally, we generated an extended key on CPU; then sent it to GPU along with substitution
tables and plaintexts.

5.2 Granularity

We adopted 16 Bytes/Thread as granularity for the reasons presented in section 4.2. For the 16
Bytess/Thread granularity, threads process plaintext blocks independently, as shown in Figure 6.
Moreover, we did not adopt bitslice implementation because it was obvious for the performance of
128-bit block cipher to become lower than the plain implementation using table substitution, as
shown in section 4.3.

Plaintext 0

Thread 0

Plaintext 1

Thread 1

Plaintext 2
16Bytes 16Bytes 16Bytes

Thread 2

Figure 6: 16 Bytes/Thread granularity.
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5.3 Memory allocation

An earlier study[10] revealed that the AES implementation on CUDA can produce higher throughput
when the extended key and the substitution tables are stored in the shared memory compared with
a case in which these data are stored in constant memory. Therefore, for our implementation, we
also stored substitution tables in shared memory. In general CUDA applications, data cannot be
sent from the CPU directly to the shared memory. The global memory is so-called storage for data
copy from CPU to the shared memory in GPU. For that reason, the access to global memory came
about necessarily at the time of the data copy. For faster access to the substitution tables and the
extended key, we decided to allocate them in the constant memory first; then to copy them to the
shared memory. In 16 Bytes/Thread granularity, all threads load the same extended key and the
same substitution tables from the constant memory. Therefore, this access method benefits from a
cache effect.

Moreover, as shown in section 4.4, the processing result is expected to be held in registers for the
highest performance in AES. Unlike the extended key and substitution table, plaintexts are usually
random numbers. No cache effect of holding them in the constant memory exists. For this reason,
we first sent plaintexts to global memory. Then we loaded them to registers. The code corresponding
to memory allocations of AES on CUDA is shown in Figure 7.

/* s_Te0, s_Te1, s_Te2, and s_Te3 are T-Box on shared memory. */

/* c_Te0, c_Te1, c_Te2, and c_Te3 are T-Box on constant memory. */

/* s_key is round key on shared memory. */

/* c_key is round key on constant memory. */

/* s0, s1, s2, and s3 are registers for plaintext. */

s_Te0[tidx]=c_Te0[tidx]; s_Te1[tidx]=c_Te1[tidx];

s_Te2[tidx]=c_Te2[tidx]; s_Te3[tidx]=c_Te3[tidx];

s_key[tidx]=c_key[tidx];

/* start AES encryption */

typedef unsigned int u32;

*(u32*)s0=GETU32(in+ tid*16)^s_key[0];

*(u32*)s1=GETU32(in+ 4+tid*16)^s_key[1];

*(u32*)s2=GETU32(in+ 8+tid*16)^s_key[2];

*(u32*)s3=GETU32(in+12+tid*16)^s_key[3];

t[0]=s_Te0[s0[0]]^s_Te0[s1[0]]^s_Te0[s2[0]]^s_Te3[s3[0]]^s_key[4];

t[1]=s_Te0[s1[1]]^s_Te0[s2[1]]^s_Te1[s3[1]]^s_Te0[s0[1]]^s_key[5];

t[2]=s_Te0[s2[2]]^s_Te0[s3[2]]^s_Te2[s0[2]]^s_Te1[s1[2]]^s_key[6];

t[3] s_Te0[s3[3]]^s_Te0[s0[3]]^s_Te3[s1[3]]^s_Te2[s2[3]]^s_key[7];

Figure 7: Code corresponding to memory allocations of AES on CUDA.

5.4 Other optimization techniques

5.4.1 Cut down of thread block switching

Usually in CUDA applications, massively parallel processing data are mapped to respective threads.
In implementation on cryptographic modules, we were able to map each plaintext to each thread.
However, the processing time of one encryption procedure by a thread was so slight that the overhead
of the switching thread blocks tended to be larger and were not negligible. For this reason, after
threads are finished encrypting the plaintext, these threads return to the starting point and continue
to encrypt other plaintext again. This method requires only a small number of threads to encrypt
quite a few plaintexts. Thereby, we were able to avoid the overhead of switching thread blocks
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in encryption procedures. Consequently, we set the optimum number of thread blocks between
2–4 times number of MPs. Moreover, as for the number of threads, 32 threads is a processing
unit in CUDA. For that reason, we set the number of threads in multiples of 32 to extract better
performance. In addition, more than 192 threads are guaranteed for our implementations to keep
the SP pipeline filled, as presented in section 2.

5.4.2 Overlapping GPU processing and memory copy

Generally in GPGPU, the data transfer overhead is substantial. However, in implementation of
cipher algorithms on GPU, transfer of such data as plaintext and ciphertext between CPU and
GPU is unavoidable. Therefore, to exploit the effective performance, it is necessary to consider
the overhead caused by data transfer between CPU and GPU. Generally, to hide this overhead,
Nvidia GPUs provide the function of overlapping data transfer (memory copy) and processing. We
implemented the encoding process of each cipher algorithm with overlapping transferring plaintext
to (and ciphertext from) the off-chip memory of GPU and the GPU’s encoding process. Figure 8
presents a diagram of this overlapping in the case of data division into two plaintext blocks. Figure 9
is the code corresponding to the diagram presented in Figure 8. This overlapping process is known as
pipeline processing between data transfer and processing. To optimize this pipeline, a tradeoff exists
between block size, which is the dividing size of plaintext as the pipeline stage, and the pipelined
overhead. This pipeline optimization will achieve good performance when the data transfer time
and processing time are balanced.

Send Plaintext 1

Encoding 1

Read Ciphertext 1Send Plaintext 2

Encoding 2

Read Ciphertext 2

Processing time

CPU

GPU

Figure 8: Overlapping data transfer and encryption processing.

/* offset is the pointer of plaintext in each stream */

cudaMemcpyAsync(d_plaintext+offset*0, plaintext+offset*0, FILESIZE/2,

cudaMemcpyDeviceToHost, stream[0]);

cudaMemcpyAsync(d_plaintext+offset*1, plaintext+offset*1, FILESIZE/2,

cudaMemcpyDeviceToHost, stream[1]);

AES_encrypt<<< grid, block, 0, stream[0]>>>(

d_plaintext+offset*0, d_ciphertext*offset*0, LOOP/STNUM);

cudaMemcpyAsync(ciphertext+offset*0, d_ciphertext+offset*0,

FILESIZE/2, cudaMemcpyDeviceToHost, stream[0]);

AES_encrypt<<< grid, block, 0, stream[1]>>>(

d_plaintext+offset*1, d_ciphertext*offset*1, LOOP/STNUM);

cudaMemcpyAsync(ciphertext+offset*1, d_ciphertext+offset*1,

FILESIZE/2, cudaMemcpyDeviceToHost, stream[1]);

Figure 9: Code corresponding to the diagram presented in Figure 8.
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6 Evaluation

6.1 Evaluation environments

Evaluation environments are presented in Table 1. To accurately evaluate the performance increase
of the throughputs on CUDA, it is essential to compare them with the throughput on multiple cores
in a CPU. Therefore, we adopted Intel Core i7-920 2.66 GHz as a multicore CPU, which has 4 cores.
Moreover, we can take advantage of 8 threads attributed to Intel Hyper-Threading Technology[6]
embedded in this CPU. Hyper-Threading Technology improves the usability of resources in a CPU
as well as hides memory access latency by a thread. Furthermore, we adopted OpenMP API for
multicore programming on a CPU in this paper.

A GPU is connected to a PC through the PCI Express bus. At present, Fermi architecture,
whose computing power is enhanced from conventional GT200, has been released. To evaluate the
performance of these two generations of GPU, we chose Tesla C2050 with Fermi architecture and
Geforce GT285 with GT200 architecture.

Table 1: Specification of environments.
Multicore CPU GPU 1 GPU 2

CPU Core i7-2600K 3.40 GHz (4 core and 8 threads available)
Motherboard ASUS P8Z68-V

Memory 32 GB
OS CentOS 6.0 (Kernel ver2.6.32-71)

Compiler gcc ver4.4.4 (option -O3)
GPU Accelerator – Nvidia Tesla C2050 Nvidia Geforce GTX 285

GPU Memory – 3 GB 1 GB
CUDA Compiler – nvcc ver4.0

6.2 Evaluation result

6.2.1 Throuthput on a multicore CPU

Evaluation results of AES, Camellia, CIPHERUNICORN-A, Hierocrypt-3, and SC2000 on the mul-
ticore CPU are shown in Figure 10. Using 4 threads on 4 cores, the performance increase achieved to
nearly multiple of the number of cores. In the case of 8 threads on 4 cores, the throughput increased
by about 7 to 34 % compared to the throughput of 4 threads on 4 cores due to the Hyper-Threading
technology.

6.2.2 Throughput on GPUs

Evaluation results of AES, Camellia, CIPHERUNICORN-A, Hierocrypt-3, and SC2000 on each GPU
are shown respectively in Figures 11 to 15. In each figure, the horizontal and vertical axes respectively
show the input size of plaintexts and the throughput. The maximum throughput abstracted from
these figures is shown in Figure 16.

Using Tesla C2050, extremely high throughput of SC2000 was achieved 73.4 Gbps without data
transfer. In addition, using Geforce GTX 285, 47.0 Gbps throughput of SC2000 was achieved. The
reason of the great throughput improvement was that different substitution tables were utilized in
accordance with shared memory size in respective GPUs . For the implementation on Tesla C2050
and Geforce GTX 285, we respectively adopted a (11-bit, 10-bit, 11-bit) combination with 20 KB of
table size and a (6-bit, 10-bit, 10-bit, 6-bit) combination with 8.5 KB of table size.

As shown in Figure 16, CIPHERUNICORN-A and Hierocrypt-3 can not obtain so much per-
formance gain as other encryption modules. This reason is that the throughput depends on the
computational complexity. For example, their throughputs on the CPU were inferior to the other
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Figure 10: The throughput on Intel Core i7-2600K 3.40 GHz.

modules’ on the CPU, as shown in Figure 10. Therefore, the throughput tendency on the two GPUs
showed the same result as that on the CPU because our implementations on both CPU and GPU
were baed on the evaluative documents, as presented in section 5.1. Herein, to compare the through-
put of CIPHERUNICORN-A with that of Hierocrypt-3, the former was one third of the latter in
the implementation on the CPU. In contrast, when it comes to on the two GPU, the former became
almost the same result as the latter. This reason is that the number of non-memory instruction of
CIPHERUNICORN-A is far larger than that of Hierocrypt-3, as is obvious from Figure 3. More
specifically integer and logical operations in the randomization procedure of CIPHRUNICORN-A
are subject to be hidden under the background of memory access: this encryption module has larger
allowance for performance elongation on GPU.

Moreover, as shown in Figure 16 these performance deteriorations including the data transfer
show that the data transfer rate holds a dominant position in GPGPU throughput, even if the
processing speed of GPU in the environment is extremely fast. For example, although the throughput
results without the data transfer of AES, Camellia, and SC2000 show differences in performance, the
throughput including data transfer deteriorated to an equal degree. The reasons are the much lower
transfer speed of the PCI Express bus than that of inner connection within GPU. Nevertheless, the
effective throughput with data transfer produces approximately 4.7 times increase in speed compared
with 7.1 Gbps throughput of 8 threads on 4 cores of the Intel Core i7-2600K 3.40 GHz CPU in Figure
10, as in the case of SC2000.

Furthermore, as shown in Figures 11 to 15, irrespective of the cipher algorithms, performance
with data transfer and overlapping on Geforce GTX 285 tended to deteriorate for files smaller than 4
MB. In other words, a large file size was required, aimed at a performance increase in Geforce GTX
285. By contrast, the Tesla C2050 achieved nearly maximum throughput, even for files as small as
4 MB. These results indicate that the new generation of Tesla C2050 is more suitable for practical
use than Geforce GTX 285 in terms of GPGPU implementation of cryptographic modules.

Incidentally, when the file size was at a point near 2 MB, the performance results obtained with
data transfer and overlapping became inverse compared with those obtained with data transfer and
non-overlapping; when the file size became greater than 2 MB, the performance was increased by
overlapping. The performance deterioration that occurred by overlapping is the overhead of a series
of procedure to boot up DMA transfers. Therefore, these results indicate that the use of overlapping
is not as simple as in Liu’s arguments[11]. In other words, it is necessary to decide whether to use
overlapping technique or not, according to the file size.

262



International Journal of Networking and Computing

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1  2  4  8  16  32  64  128  256

T
hr

ou
gh

pu
t [

G
bp

s]

Input Size [MB]

Tesla C2050 (without transfer)
Tesla C2050 (with transfer and overlapping)

Tesla C2050 (with transfer and non-overlapping)

(a) Tesla C2050

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1  2  4  8  16  32  64  128  256

T
hr

ou
gh

pu
t [

G
bp

s]

Input Size [MB]

Geforce GTX 285 (without transfer)
Geforce GTX 285 (with transfer and overlapping)

Geforce GTX 285 (with transfer and non-overlapping)

(b) Geforce GTX 285

Figure 11: AES throughput on GPUs.
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Figure 12: Camellia throughput on GPUs.
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Figure 13: CIPHERUNICORN-A throughput on GPUs.
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Figure 14: Hierocrypt-3 throughput on GPUs.
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Figure 15: SC2000 throughput on GPUs.

6.2.3 Performance factors

The information such as the number of threads and thread blocks and occupancy, obtained from
CUDA profiler[13], are presented in Table 2. For our implementation of all ciphers on CUDA,
the optimum number of threads and thread blocks were found in a manual optimization style.
Generally, occupancy is essential for optimizing the performance in CUDA programming and then
the programs are designed with a goal of making it higher. But in our implementation of block
ciphers on CUDA, the occupancies in Table 2 did not necessarily show high values at the maximum
throughputs; occupancy levels were not tied to the thoughts directly. In short, implementation
techniques presented in section 5, for example granularity and memory allocation, are expected to
be more essential than occupancy in order to extract higher throughput of block ciphers on CUDA.

6.2.4 Comparison with the throughput using Intel AES-NI instruction set

For the specification of the evaluation environment presented in Table 1, Intel AES-NI instruction
set is available. Here, as the reference to evaluate the AES throughput on CUDA, its comparison
with AES-NI is discussed. For the implementation of AES-NI instruction set, we took advantage of
OpenSSL code. Comparison between the throughputs of AES-NI and Nvidia Tesla C2050 at 140
MB fixed size is presented in Figure 17. The throughput of AES-NI using 4 threads on 4 cores
was surprisingly high 44.2 Gbps, which was approximately 1.4 times higher than that on Tesla
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Figure 16: Comparison of the best throughputs of five block ciphers.

Table 2: Summary of performance factors information
(a) GPU 1 (Tesla C2050)

AES Camellia UNICORN Hiero SC2000
Thread blocks 28 28 56 28 28

Threads per thread block 512 512 256 512 512
Registers per thread 63 63 30 49 63

Shared memory per thread block 4.25 KB 4.27 KB 1.28 KB 15.28 KB 20.25 KB
Occupancy 0.33 0.33 0.67 0.33 0.33

(b) GPU 2 (Geforce GTX 285)

AES Camellia UNICORN Hiero SC2000
Thread blocks 60 60 60 60 60

Threads per thread block 256 256 256 256 256
Registers per thread 15 15 16 30 15

Shared memory per thread block 4.30 KB 4.30 KB 1.33 KB 15.36 KB 8.79 KB
Occupancy 0.75 0.75 1.00 0.25 0.25
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C2050 with data transfer and overlapping. Therefore, it is concluded that AES-NI is an extremely
valuable option of AES encoding if machine fulfills prescribed requirement to use its instruction set.
Nevertheless, encryption processing using GPGPU is an excellent option because it is adaptive to
multiple block cipher algorithms and requires no special hardwares.
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Figure 17: Comparison between throughputs of AES-NI and Nvidia Tesla C2050 GPU.

7 Conclusion

We implemented AES, Camellia, CIPHERUNICORN-A, Hierocrypt-3, and SC2000 from several
symmetric block ciphers in an e–government recommended ciphers list by CRYPTREC in Japan. We
evaluated these respective performances on an Nvidia Tesla C2050 and Nvidia Geforce GTX 285. The
throughput of SC2000 on Tesla C2050 was 73.4 Gbps without data transfer. However, the throughput
of SC2000 with data transfer and overlapping was 33.4 Gbps. Considering throughput with data
transfer as the effective throughput, the difference between the types of cipher algorithms were
absorbed. Nevertheless, the implementation on CUDA achieved several times higher performance
than that obtained on 8 threads on 4 cores of Intel Core i7-2600K 3.40 GHz. For implementation
of the symmetric block cipher on GPU, data encryption on GPU might suggest some alternative
to multicore CPUs. Furthermore, the evaluation results presented in this paper clarified that the
upper limit of encryption speed on GPU becomes the transfer rate of the PCI Express bus. For this
reason, the diffusion of the next generation of PCI Express bus is anticipated.

Moreover, the throughput of AES-NI was approximately 1.4 times higher than that on Tesla
C2050 with data transfer and overlapping. Nevertheless, encryption processing using GPGPU is an
excellent option because it is adaptive to multiple block cipher algorithms and require no special
hardwares.

Finally, many cipher algorithms exist in the real world in addition to the algorithms implemented
in this paper. Future research might include more detailed investigation of what GPU function
contribute most to the surprising performance increase, thereby supporting the constitution of a
performance predication model for use with symmetric block ciphers.
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