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Abstract

In this paper, we propose a flexible interconnection network, called hierarchical dual-net
(HDN), with low node degree and short diameter for constructing a large scale of super-
computer. The HDN is constructed based on a symmetric product graph (base network).

A k-level hierarchical dual-net, HDN(B,k, S), contains (2N0)
2

k

/(2 ×
∏

k

i=1
si) nodes, where

S = {G′

1, G
′

2, . . . , G
′

k}, G′

i is a super-node and si = |G′

i| is the number of nodes in the super-
node at the level i for 1 ≤ i ≤ k, and N0 is the number of nodes in the base network B. The node
degree of HDN(B,k, S) is d0 + k, where d0 is the node degree of the base network. The HDN
structure is better than existing networks such as hypercube and 2D/3D torus with respect to
the degree and diameter. Another benefit of the HDN is that we can select suitable super-nodes
to control the growing speed of the number of nodes for constructing a supercomputer of the
desired scale. We investigate the topological properties of the HDN and compare them to that
of other networks and give efficient routing and broadcasting algorithms for the hierarchical
dual-net.
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1 Introduction

Recently, because of the advances in computer and networking technologies, supercomputers con-
taining hundreds of thousands of nodes have been built [10]. It was predicted that the parallel
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systems of the next decade will contain 10 to 100 millions of nodes [2]. The interconnection net-
work plays an important role for achieving high-performance in such ultra-scale parallel systems.
The performance of an ultra-scale parallel computers depends largely on the time complexities of
communication schemes, and in turn depends on the diameter of the network.

An interconnection network consists of switches with multiple communication ports and cables
connecting ports by following certain topologies. For an ultra-scale parallel computer, the traditional
interconnection networks may no longer satisfy the requirements for the high-performance computa-
tions or efficient communications. For such an ultra-scale parallel computer, the node degree and the
diameter will be the critical measures for the effectiveness of the interconnection networks. The node
degree is limited by the hardware technologies and the diameter affects all kinds of communication
schemes directly. The number of communication ports (node degree) in the network-on-chip (NoC)
is typically 4 to 8 in current implementations. The off-chip interconnect switches can have tens of
ports, but the cost becomes expensive as the number of ports increases. Other important measures
for the effectiveness of the interconnection networks include symmetricity, scalability, and efficient
routing algorithms.

The following two categories of interconnection networks have attracted a great research attention
and been used in many supercomputers’ implementations. One is the hypercube-like family that has
the advantage of short diameters for high-performance computing and efficient communications [9].
The other is the 2D/3D mesh or torus family that has the advantage of small and fixed node degrees
and easy implementations [1]. Traditionally, most supercomputers including those built by CRAY,
IBM, SGI, and Intel use 3D tori or hypercubes.

However, the node degree of the hypercube increases logarithmically as the number of nodes
in the systems increases; the diameter of the 2D/3D torus becomes large in an ultra-scale parallel
system. To solve these problems, the hierarchical (cluster-based) architectures are proposed in
literature [3, 5, 6, 8]. The supercomputers built by IBM recently, Roadrunner, adopt a new approach
for the interconnection network [4]. It is a cluster-based architecture: the connection among clusters
is fully connected, and the fat-tree is used for the connection inside a cluster.

In this paper, we propose a flexible interconnection network, called Hierarchical Dual-Net (HDN).
The HDN is symmetric and can connect a large number of nodes with a small node degree, meanwhile
keeping the diameter short. The HDN was motivated by recursive dual-net (RDN) [7]. The RDN
can be viewed as a special case of HDN. The RDN has merits of low node degree and short diameter.
The problem of the RDN is that it grows too fast in size, and there is no mechanism to control the
rate of its growth. Different from the RDN, the scale of the HDN can be controlled by setting a set
of suitable parameters while generating an expanded network through dual-construction. The HDN
also adapts the cluster-based architecture. Compared to the Roadrunner, the HDN is symmetric,
uses small number of links, and meanwhile keeps the diameter short. The HDN structure is also
better than other popular existing networks such as hypercube and 2D/3D torus with respect to the
degree and diameter. We investigate the topological properties of the HDN and show some examples
of HDNs with simple base networks of small size. Then we compare them to other networks such as
three-dimensional torus used in IBM Blue Gene/L [1], and hypercube [9]. We also establish routing
and broadcasting algorithms for the hierarchical dual-net.

The rest of this paper is organized as follows. Section 2 describes the hierarchical dual-net in
details. Section 3 discusses the topological properties of the hierarchical dual-net. Section 4 gives
the routing algorithm. Section 5 gives the broadcasting algorithm. Section 6 concludes the paper
and presents some future research directions.

2 The Hierarchical Dual-Net

We begin with a brief introduction to the recursive dual-net (RDN). The RDN is constructed recur-
sively by a dual-construction. The dual-construction is a way to expand a given symmetric graph
G of size n to a new symmetric graph G∗ of size 2n2. It generates 2n copies of G as subgraphs
(denoted as clusters) of G∗. Half of them, n clusters, are of class 0 and the others are of class 1.
The connection method is described below. Referring to Figure 1, we assign a unique node number
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i (0 ≤ i < n) to each node in G and assign a unique cluster number j (0 ≤ j < n) to each cluster of
class 0 and class 1, respectively. Then, a new link connects the node i in cluster j of class 0 to the
node j in cluster i of class 1, for 0 ≤ i, j < n.

G G∗

Class

0

Class

1

0 1 n − 1

0 1 n − 1

0 1 n−1

0 1 n−1

0 1 n−1

0 1 n−1

0 1 n−1

0 1 n−1

Cluster

Figure 1: Dual-construction from G to G∗

If G is symmetric then the expanded graph G∗ is unique and symmetric. Therefore, the dual-
construction can be applied recursively from a symmetric network (the base network). RDN(m, k)
denotes an RDN generated from a base network of size m by applying dual-construction k times.

The problem about an RDN is that its growth rate is super-exponential ((2m)2
k

). There is very
little space for selection of the size of an RDN. For example, let the base network be a 3-cube,
then the sizes of RDN(8, k) will be 27, 215, and 231 for k = 1, 2, and 3, respectively. In HDN, we
provide a mechanism to control the growth rate through its expansion from a base network. This
new interconnection network has a very flexible way for adjusting its size.

The hierarchical dual-net, HDN(B, k, S), contains three sets of parameters: B is a symmetric
product graph, we call it base network; k is an integer that indicates the level of the HDN (the number
of dual-constructions applied); and S = {G′

1, G
′

2, . . . , G
′

k}, where G′

i is a sub-graph of HDN(B, k −
1, S) and si = |G′

i| is the number of nodes in a super-node at the level i for 1 ≤ i ≤ k. All these
terminologies will be defined in the following paragraphs.

Given r graphs Gi = (Vi, Ei), 1 ≤ i ≤ r, their product graph G = G1 × G2 × . . . × Gr is
defined as the graph G = (V, E), where V = {(v1, v2, . . . , vr)|vi ∈ Vi, 1 ≤ i ≤ r} and E =
{[(u1, u2, . . . , ur), (v1, v2, . . . , vr)]| for some j, (uj , vj) ∈ Ej and for i 6= j, ui = vi}.

In other words, the nodes of the product graph G are labeled with r-tuples, where the ith element
of the r-tuples is chosen from the node set of the ith component graph. The edges of the product
graph connect pairs of nodes whose labels are identical in all but the jth element, and the two nodes
corresponding to the jth elements in the jth component graph are connected by an edge. Three
product graph examples are shown in Figure 2.

Meshes/tori or hypercubes are typical examples of product graphs. See Figure 2(b), the 2D p× q
torus is Cp×Cq, where Cp and Cq are rings with p and q nodes, respectively. Any node in the torus
can be represented by an ordered pair (u, v), where u ∈ Cp and v ∈ Cq. Note that the product
graph G = G1 ×G2 can be viewed as being constructed from |V1| copies of G2 or |V2| copies of G1.
Similarly, as shown in Figure 2(c), an r-cube is a product of r numbers of K2 (complete graph of two
nodes represented by 0 and 1). So nodes in r-cube can be represented by an r-bit binary number
which is an r-tuple of 0 and 1, and two nodes are connected iff they differ in exactly 1 bit.

Given a product graph G = G1 × G2 × . . . × Gr, we define a quotient graph Q as Q = G/G′

where G′ is a sub-product graph of G such that G = G′ × Q. A node in a product graph G =
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Figure 2: Product graphs

G1 × . . . × Gi × . . . × Gr can be represented by (a1, . . . , ai, . . . , ar) with 0 ≤ ai ≤ |Gi| − 1. We
define a sub-graph G′ as G′ = G

′′

1 × . . . × G
′′

j × . . . × G
′′

q with G
′′

j = Gi for 1 ≤ j ≤ q ≤ r and

1 ≤ i ≤ r, G
′′

j 6= G
′′

k if j 6= k for 1 ≤ j, k ≤ q. Then a node in the sub-graph G′ can be represented

by (b1, . . . , bi, . . . , bq) with 0 ≤ bi ≤ |G
′′

i | − 1. We can consider a quotient graph Q as a reduced
graph of G with G′ being mapped into a single node (a super-node).

A graph G is symmetric (node-symmetric) if all its nodes looks alike. A product graph is
symmetric if all its component graphs are symmetric. Both the graphs in Figures 2(b) and 2(c) are
symmetric product graphs but the graph in Figure 2(a) is not. We use the symmetric product graph
as the base network for generating a hierarchical dual-net through dual-constructions. We denote
the base network as B = B1×B2× . . .×Br where all the Bi, 1 ≤ i ≤ r, are symmetric. We define a
super-node of B, denoted as SN as a sub-product graph of B. That is, SN = Bi1 ×Bi2 × . . .×Biq

,
where ij , 1 ≤ j ≤ q, are distinct and q ≤ r.

Let |Bi| = bi be the number of nodes in Bi for 1 ≤ i ≤ r. The HDN(B, 0, S) = B is the base
network. For i > 0, the HDN(B, i, S) is generated from HDN(B, i − 1, S) by a construction to be
explained below. Note that S = {G′

1, G
′

2, . . . , G
′

k}, where G′

i is a sub-graph of HDN(B, k−1, S) and
si = |G′

i| is the number of nodes in a super-node at the level i for 1 ≤ i ≤ k. First, we define a
super-node of level i, denoted as SN i, to be a sub-product graph G′

i of size si in B. Then, we define
graph Qi as the quotient graph HDN(B, i − 1, S)/SN i. Suppose that there are Ni−1 nodes in the
HDN(B, i−1, S), then the number of nodes ni in Qi is Ni−1/si. The si can be 1 or

∏q

j=1
|Bij
|, where

1 ≤ ij ≤ r and q ≤ r. That is, si can be a product of any number of integers in {b1, b2. . . . , br}. For
example, if r = 3, b1 = 2, b2 = 3, and b3 = 5, the possible si can be 1, 2, 3, 5, 2× 3, 2× 5, 3× 5, or
2× 3× 5.

The construction of HDN(B, i, S), 1 ≤ i ≤ k, can be defined by a two-step process: First, we
perform a dual-construction on the quotient graph Qi−1 = HDN(B, i − 1, S)/SN i (HDN(B, 0, S)=
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B). Let the graph generated by the dual-construction be Qi, and the subgraph of two nodes that
is connected by a cross-edge of level i be K2. Second, to get the HDN(B, i, S), we replace every K2

in Qi by a product graph K2 × SN . We call HDN(B, i− 1, S) cluster of HDN(B, i, S).
Referring to Figure 3, an HDN(B, i, S) consists of 2ni clusters which are divided into two classes:

class 0 and class 1 with each class containing ni clusters. That is, the number of clusters in each
class is equal to the number of super-nodes in a cluster. At level i, each super-node in a cluster has
si new links to a super-node in a distinct cluster of the other class. Because there are si nodes in a
super-node, one node contributes a new link. The dual-construction of an RDN is a special case of
the construction of an HDN with si = 1 for 1 ≤ i ≤ k.

HDN(B, i − 1, S) HDN(B, i, S)

0 1 ni − 1

0 1 ni − 1

si links

Cluster

Class 0

Class 1

ni

super-nodes
ni

super-nodes
ni

super-nodes

ni

super-nodes
ni

super-nodes
ni

super-nodes

Figure 3: Build an HDN(B, i, S) from HDN(B, i− 1, S)

The indexes of the nodes in HDN(B, k, S) can be defined as follows. Let SNk
id be a super-node id

in a cluster of HDN(B, k, S) and Nk
id be a node id in a super-node, then a node in the HDN(B, k, S)

can be represented by (Ck, Uk
id, SNk

id, N
k
id) where Ck is the class id (0 or 1) and Uk

id is the cluster id.

A cross-edge at level k connects node (Ck, Uk
id, SNk

id, N
k
id) and node (Ck, SNk

id, U
k
id, N

k
id).

Three HDN examples are shown in Figures 4, 5, and 6, where the base network is a 2-cube.
Figure 4 shows an HDN(B, 1, S) with s1 = 2. There are 2 super-nodes (SN 0 and SN 1) in a cluster
and each contains 2 nodes: node 0 and node 1. Each class has 2 clusters (the number of clusters
in a class is equal to the number of super-nodes in a cluster). Figure 5 in the next page shows an
HDN(B, 2, S) with s2 = 2, based on HDN(B, 1, S). Figure 6 shows an HDN(B, 2, S) with s2 = 4,
also based on HDN(B, 1, S).

3 Topological Properties of HDN

If we use a 2 × 3 × 5 torus (Figure 7) as the base network, Table 1 lists the number of nodes in
HDN(B, 1, S) and HDN(B, 2, S) under the different configurations of S. The node degrees are 7 and
8 for HDN(B, 1, S) and HDN(B, 2, S), respectively, because the node degree of B is 6. From the
table, we can see that the HDN covers the nodes range from several hundreds to several millions.

Suppose that the node degree of the base network B is d0, the node degree of the HDN(B, k, S)
is d0 +k. Let Ni−1 be the number of nodes in the HDN(B, i−1, S). There are Ni = 2× (Ni−1/si)×
Ni−1 = 2N2

i−1/si nodes in the HDN(B, i, S) for 1 ≤ i ≤ k, where Ni−1/si is the number of clusters

in each class. That is, the number of nodes in the HDN(B, k, S) is (2N0)
2

k

/(2×
∏k

i=1
si), where N0
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Cluster 1

0 1 0 1
0 1

Class 1

Cluster 0

0 1 0 1
0 1

Cluster 1

0 1 0 1
0 1

Cluster 0
Class 0

0 1 0 1
0 1

SN

SN

SN

SN

SN

SN

SN

SN

Figure 4: An HDN(B, 1, S) with s1 = 2

. . .

0 1 2 7

0 1 2 7

. . .

Figure 5: An HDN(B, 2, S) with s1 = 2 and s2 = 2

is the number of nodes in the base network.

Let the diameter of the HDN(B, i − 1, S) be Di−1 and the diameter of the super-node (SN) be
D(SNi). Then, if we map a super-node into a single node, the diameter of the quotient graph Qi−1

is D(Qi−1) = Di−1 −D(SN i).

Referring to Figure 8, to route a node u in a cluster of class 0 (or 1) to a node v in a different
cluster of the same class, we can route u along with a direct link of level i to a node u′ in a cluster
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1
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0
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1

1

0

3

2

1

0

0 2

3

0 2

2

0 2

1

0 2

31 313131

Figure 6: An HDN(B, 2, S) with s1 = 2 and s2 = 4

Figure 7: A base network: 2× 3× 5 torus

of class 1 (or 0). This takes one step. Then, we route u′ inside the cluster to a node w′ that can
reach a node w in the same cluster of node v along with direct link of level i. The longest distance
between nodes u′ and w′ is D(Qi−1).

Similarly, we can route node w′ to a node w (by one step) and then to a node v′ which is in the
same super-node of v (by D(Qi−1) steps). Finally, we route v′ to node v, this takes D(SN i) steps.
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Table 1: Number of nodes in HDN(B, k, S) where B is a 2× 3× 5 torus

k = 1 s1 = 1 s1 = 2 s1 = 3 s1 = 5 s1 = 6 s1 = 10 s1 = 15 s1 = 30

1,800 900 600 360 300 180 120 60

k = 2 s2 = 1 s2 = 2 s2 = 3 s2 = 5 s2 = 6 s2 = 10 s2 = 15 s2 = 30

s1 = 1 6,480,000 3,240,000 2,160,000 1,296,000 1,080,000 648,000 432,000 216,000

s1 = 2 1,620,000 810,000 540,000 324,000 270,000 162,000 108,000 54,000

s1 = 3 720,000 360,000 240,000 144,000 120,000 72,000 48,000 24,000

s1 = 5 259,200 129,600 86,400 51,840 43,200 25,920 17,280 8,640

s1 = 6 180,000 90,000 60,000 36,000 30,000 18,000 12,000 6,000

s1 = 10 64,800 32,400 21,600 12,960 10,800 6,480 4,320 2,160

s1 = 15 28,800 14,400 9,600 5,760 4,800 2,880 1,920 960

s1 = 30 7,200 3,600 2,400 1,440 1,200 720 480 240

u

u′ w′

w v′

D(Qi−1)

D(Qi−1)

1 1

v

D(SN i)

Cluster
SN

SN

SN SN

Cluster

Figure 8: The diameter of HDN(B, i, S)

Therefore, we have the following recurrence:

Di = 2× (1 + D(Qi−1)) + D(SN i)

= 2Di−1 −D(SN i) + 2

Solving the above recurrence, we get the diameter Dk of HDN(B, k, S) as below:

Dk = 2kD(B) −
k−1∑

j=0

2jD(SNk−j) + 2k+1 − 2

where D(B) and D(SN i), 1 ≤ i ≤ k, are the diameters of the base network and the super-nodes,
respectively. The results of the analysis in this section are summarized in the following theorem.

The bisection width is defined as the minimum number of links that must be removed to partition
the network into two equal halves. From the definition of the dual-construction, we know that there
is no link between the clusters of level k that are of the same type. Referring to Figure 9, if we
divide the clusters of the same type into two parts: left-part and right-part, then half super-nodes
in the left-part of class 0 are connected to the super-nodes in the right-part of class 1 (the other
half super-nodes in the left-part of class 0 are connected to the super-nodes in the left-part of class
1). Similarly, half super-nodes in the right-part of class 0 are connected to the super-nodes in the
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left-part of class 1 (the other half super-nodes in the right-part of class 0 are connected to the super-
nodes in the right-part of class 1). Therefore, if the number of super-nodes in left-part is equal to
the number of super-nodes in right-part, the bisection width is N/2/2/2 + N/2/2/2 = N/4, where
N is the number of nodes in HDN(B, k, S). If the numbers are not equal, the expression of the
bisection width is little bit complex, we leave it as an open question.

0 1 2 3

0 1 2 3

Class 0

Left-part Right-part

Class 1

Super-node

Parallel-link

Figure 9: The bisection width of HDN(B, k, S)

Theorem 1 Assume that the base network B is a symmetric, product graph and SN i, 1 ≤ i ≤ k,
are sub-product graphs of B with |SN i| = si. Let the number of nodes, the node-degree, and the
diameter of B be N0, d0, and D0, respectively. Let the diameters of SN i, 1 ≤ i ≤ k, be D(SN i).
Let S = {G′

1, G
′

2, . . . , G
′

k}, where G′

i is a sub-graph of HDN(B, k − 1, S) and si = |G′

i| is the
number of nodes in a super-node at the level i for 1 ≤ i ≤ k. Then, the number of nodes of

HDN(B, k, S) is (2N0)
2

k

/(2
∏k

i=1
si), the node-degree is d0 +k, and the diameter is Dk = 2kD(B)−∑k−1

j=0
2jD(SNk−j) + 2k+1 − 2, where N is the number of nodes in HDN(B, k, S).

Table 2 lists the topological properties of the torus, n-cube, CCC [8], Dual-Cube [6], RDN, and
HDN. The CCC (cube-connected cycles) is obtained by replacing a node in an n-cube with an n-node
cycle. The Dual-Cube is a special case of RDN with k = 1 and a base network of an n-cube.

In [7], we introduced the CR (cost ratio) for measuring the combined effects of the hardware cost
(node degree) and the software efficiency (diameter) of an interconnection network. Instead of CR,
this paper uses a more general measure, namely weighted cost ratio CRw(G), for the evaluation.
The weighted cost ratio CRw(G) is defined as below. Let |(G)|, d(G), and D(G) be the number of
nodes, the node degree, and the diameter of G, respectively. We define CRw(G) as

CRw(G) =
w1 × d(G) + w2 ×D(G)

log2|(G)|

where w1 and w2 are weights for node degree and diameter, respectively. We have w1 + w2 = 100%.

The weighted cost ratio CRw of an n-cube is always 1 regardless of its size and weights. The
CRw for some HDN(B, k, S) is shown in Table 3 where B is a 2 × 3 × 5 torus and we assume
w1 = w2 = 50%. For simplicity, we use the number of nodes in super-nodes to represent S, instead
of sub-graphs. From the table, we can see that the HDNs are more effective than hypercubes and
tori measured by the weighted cost ratio although as the si increases, the CRw becomes larger.
The minimum CRw shown in the list is 0.69. Unfortunately, we do not know the theoretical or
experimental optimal value of CRw up to the date we wrote this paper and it can be an open
question for the future.
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Table 2: Comparison of topological properties

Network # of nodes Degree

3D Torus x ∗ y ∗ z 6

n-cube 2n n

CCC(n) n ∗ 2n 3

Dual-Cube(n) 22n−1 n

RDN(m, k) (2m)2
k

/2 d0 + k

HDN(B, k, S) (2|B|)2
k

/(2
∏k

i=1
si) d0 + k

Network Diameter

3D Torus (x + y + z)/2

n-cube n

CCC(n) 2n

Dual-Cube(n) 2n

RDN(m, k) 2k ∗D0 + 2k+1 − 2

HDN(B, k, S) 2k(D(B)−
∑k−1

j=0
2j(D(SNk−j)) + 2k+1 − 2

Table 3: CRw with w1 = w2 = 50% for some HDN(B, k, S)

Network n d D CR

10-cube 1,024 10 10 1.00

3D-Tori(10) 1,000 6 15 1.05

HDN(B, 1, (1)) 1,800 7 10 0.79

HDN(B, 1, (2)) 900 7 9 0.82

HDN(B, 1, (3)) 600 7 9 0.87

19-cube 524,288 19 19 1.00

3D-Tori(80) 512,000 6 120 3.32

HDN(B, 2, (2, 2)) 810,000 8 19 0.69

HDN(B, 2, (2, 5)) 324,000 8 18 0.71

HDN(B, 2, (5, 2)) 129,600 8 17 0.74

4 Routing on HDN

In this section, we describe a basic node-to-node routing on HDN. We first introduce some notations
needed in the proposed routing algorithm. In Section 2, we defined the product and quotient graphs.
Now, we define the difference graph as follows. Let SN1 and SN2 are two super-nodes in base network
B, the difference graph SN1 − SN2 is the sub-product graph of B such that Bi, 1 ≤ i ≤ r, is in
SN1−SN2 if and only if Bi ⊂ SN1 and Bi 6⊂ SN2. For example, if B = C2×C3×C5, SN1 = C2×C3,
and SN2 = C3 × C5 then SN1 − SN2 = C2.

We also need a re-indexing process of nodes in the cluster, which is an HDN(B, i − 1, S), for
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routing via cross-edges of level i since the indexes of nodes in HDN(B, i − 1, S) is based on SN i−1

and the cross-edge of level i is defined based on SN i. The index of a node in HDN(B, i − 1, S)
contains four parts (Ci−1, U i−1

id , SN i−1

id , N i−1

id ) as explained in the previous section.
At the construction of the ith level, HDN(B, i − 1, S) becomes a cluster containing only two

parts, SN i
id and N i

id, of the node index in HDN(B, i, S). The other two parts, Ci and U i
id, are

generated from the construction at the ith level. The re-indexing process that generates an 1-to-1
mapping between (Ci−1, U i−1

id , SN i−1

id , N i−1

id ) and (SN i
id, N

i
id) on an HDN(B, i − 1, S) is necessary

for the proposed routing algorithm.
Since the number of super-nodes SN i in HDN(B, i−1, S) equals to Ni−1/si, the range of SN i

id is
2×|U i−1/(SN i−SN i−1)|×|(SN i−1−SN i)|. If si−1 = si then the re-indexing is simple: 1-1 mapping
between SN i

id and the 3-tuple (Ci−1

id , U i−1

id , SN i−1

id ). However, when si−1 6= si, the re-indexing is a
little complicate and is explained below.

Let the q-tuple, (bi1 , . . . , biq
) be the index of a node in a super-node SN , where bi1 × . . .× biq

=

|SN |. Then the re-indexing from (Ci−1, U i−1

id , SN i−1

id , N i−1

id ) to (SN i
id, N

i
id) moves the indexes of

those Bj ⊂ SN i − SN i−1 into N i
id and the indexes of those Bj ⊂ SN i−1 − SN i into SN i

id. For
example, let B = C2 × C3 × C5, s1 = |C2| × |C3| = 6, and s2 = |C3| × |C5| = 15, then, the
nodes in HDN(B, 1, S) can be represented by (C1, U1

id, SN1
id, N

1
id), where C1 = 0 or 1, 0 ≤ U1

id < 5,
0 ≤ SN1

id < 5, and 0 ≤ N1
id < 6. For the indexes of the nodes in HDN(B, 2, S), we perform re-

indexing of nodes in HDN(B, 1, S), which is a cluster of HDN(B, 2, S), to get (SN2
id, N

2
id), where

0 ≤ SN2
id < 2 × 5 × 2 = 20, and 0 ≤ N2

id < 3 × 5 = 15, obtained by swapping |B1| and |B3|. That
is, |SN2| = |C1| × |U1| × |B1| = 2× 5× 2 = 20, and |N2| = |B2| × |B3| = 15.

Table 4 shows four examples of re-indexing in detail for a cluster in the HDN(B, 2, S) with
B = C2 × C3 × C5, s1 = 2 × 3 = 6, and s2 = 3 × 5 = 15. In the HDN(B, 1, S), the node
representation (C1, U1

id, SN1
id, N

1
id) can be converted to a serial number i by i = C1 × (|B|/s1)

2 ×
s1 + U1

id × (|B|/s1)
1 × s1 + SN1

id × s1 + N1
id = C1 × 150 + U1

id × 30 + SN1
id × 6 + N1

id. Similarly, the
(SN2

id, N
2
id) can be converted to a number SN2

id × s2 + N2
id = SN2

id × 15 + N2
id.

Table 4: Re-indexing examples

Index in HDN(B, 1, S) Index in HDN(B, 2, S)

(C1, U1
id, SN1

id, N
1
id) Serial number (SN2

id, N
2
id) Serial number

(0, 0, 0, 0) 0× 150 + 0× 30 + 0× 6 + 0 = 0 (0, 0) 0× 15 + 0 = 0

(1, 4, 2, 3) 1× 150 + 4× 30 + 2× 6 + 3 = 285 (19, 0) 19× 15 + 0 = 285

(0, 0, 2, 2) 0× 150 + 0× 30 + 2× 6 + 2 = 14 (0, 14) 0× 15 + 14 = 14

(1, 4, 4, 5) 1× 150 + 4× 30 + 4× 6 + 5 = 299 (19, 14) 19× 15 + 14 = 299

Assume that the point-to-point routing algorithm in the base network is available. The proposed
algorithm for routing node u to node v in HDN(B, k, S) works as follows. We first perform re-
indexing of u and v if k > 1. Then, there are three cases: the two nodes are in the same cluster
(Case 1), in the distinct clusters of the same class (Case 2), and in the distinct clusters of distinct
classes (Case 3). Case 1 is trivial. Case 3 can be reduced to Case 2 by routing u via a cross-edge
of level k. Therefore, we explain only the Case 2: The two nodes are in the distinct clusters with
the same class. We first identify the super-nodes, denoted as SNk

u′ and SNk
v′ , in the two Qk−1s

containing u and v, respectively, such that SNk
u′ and SNk

v′ are connected by a unique cross-edge of
level k in Qk from the dual-construction. Then, we route node u to node u′, and node v to node
v′ inside the clusters of level k, respectively. Notice that, u′ and v′ are not unique although SNk

u′

and SNk
v′ are unique. The algorithm finds the u′ and v′ that leave uk

3 and vk
3 unchanged if possible.

And then, the routing from u to v is done by routing u′ to u′′ ∈ SNk
v′ via a cross-edge of level k

in HDN(B, k, S) and routing from u′′ to v′ inside SNk
v′ . The algorithm is formally presented as

Algorithm 1. The correctness of the algorithm and its time complexity are given in Theorem 2.
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Algorithm 1: HDN routing(HDN(B, k, S), u, v)

input: HDN(B, k, S);

input: node u = (uk
0 , u

k
1 , uk

2 , u
k
3) (the node representation of level k);

input: node v = (vk
0 , vk

1 , vk
2 , vk

3 ) (the node representation of level k);

output: a path u⇒ v;

begin

if k = 0 then

Base routing(B, u, v);

else

if k > 1 then /* perform re-indexing */

(uk−1
0 , uk−1

1 , uk−1
2 , uk−1

3 )← (uk
2 , uk

3);

(vk−1

0 , vk−1

1 , vk−1

2 , vk−1

3 )← (vk
2 , vk

3 );

endif

Case 1: uk
0 = vk

0 and uk
1 = vk

1 /* u and v are in the same cluster */

if k > 1 then

HDN routing(HDN(B, k − 1, S), u, v);

else

Base routing(B, u, v);

endif

Case 2: uk
0 6= vk

0 /* u and v are in the clusters of distinct classes */

u′ ← (uk
0 , uk

1 , v
k
1 , uk

3);

v′ ← (vk
0 , vk

1 , uk
1 , v

k
3 );

if k > 1 then /* perform re-indexing */

((u′)k−1

0 , (u′)k−1

1 , (u′)k−1

2 , (u′)k−1

3 )← (vk
1 , uk

3);

((v′)k−1
0 , (v′)k−1

1 , (v′)k−1
2 , (v′)k−1

3 )← (uk
1 , v

k
3 );

HDN routing(HDN(B, k − 1, S), u, u′);

HDN routing(HDN(B, k − 1, S), v, v′);

else

Base routing(B, u, u′);

Base routing(B, v, v′);

endif

route u′ to u′′ via a cross-edge of level k; /* u′′ = (vk
0 , vk

1 , uk
1 , uk

3) */

Base route(B, u′′, v′); /* route from uk
3 to vk

3 inside the super-node */

Case 3: uk
0 = vk

0 and uk
1 6= vk

1 /* u and v are in the clusters of the same class */

route u to w via the cross-edge of level k;

route node w to node v as in Case 2;

endif

end

Theorem 2 Assume that the routing algorithms in the base network B is available. In HDN(B, k, S)

for k > 0, routing between any two nodes can be done in at most 2kR(B) −
∑k−1

j=0
2jR(SNk−j) +

2k+1 − 2 steps, where R(B) and R(SN i), 1 ≤ i ≤ k, are the time complexities of the routing in B
and SN i, respectively.

Proof: We show the correctness of Algorithm 1 by induction on k. Assume that the algorithm
is correct for k − 1 ≥ 0. From the algorithm, it is clear that we need to consider only Case 2.
In Case 2, nodes u′ and u are in the same cluster by the definition of u′. They can be connected
by the induction hypothesis. Similarly, nodes v′ and v can be connected. The node u′′ that is
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connected to u′ by a cross-edge of level k and node v′ are in the same super-node as can be seen
from their IDs. Therefore, they can be connected by Base routing algorithm. Next, we derive the
time complexity Rk of the algorithm. In Case 2, there are two recursive calls to connect u to u′ and
v to v′, respectively. Since the nodeIDs of u and u′ are the same (so are v and v′), a recursive call
takes only Rk−1−R(SNk) time. Since the SupernodeIDs of u′′ and v′ are the same, the last call to
Base route to connect u′′ to v′ takes only R(SNk) time. In Case 3, there is an additional routing step
via a cross-edge. Therefore, the time complexity Rk of HDN Routing(HDN(B, k, S), u, v) satisfies
the recurrence Rk = 2(Rk−1 −R(SNk)) + R(SNk) + 2 for k > 0. Solving this recurrence, we have

Rk = 2kR(B)−
k−1∑

j=0

2jR(SNk−j) + 2k+1 − 2

where R(B) and R(SN i), 1 ≤ i ≤ k, are the time complexities of the routing in B and SN i,
respectively.

Example: Routing u = (0, 0, 0, 0) to v = (1, 19, 19, 14) on HDN(B, 2, S), where B = C2 ×C3 ×C5,
a 2× 3× 5 torus as shown as in Figure 7, s1 = 2× 3 = 6, and s2 = 3× 5 = 15. Figure 10 shows an
HDN(B, 1, S) with |SN1| = s1 = 6, where super-node SN1 is a 2× 3 torus. A cycle in the figure is
a super-node. Because there are 5 super-nodes in the base network, the number of clusters in each
class is 5 (numbering from 0 to 4 in the figure). A line connecting two super-nodes of distinct classes
denotes 6 links, one link per node in the super-node. There are 2 × 5 × 5 × 6, or 300 nodes in the
HDN(B, 1, S).

0 1 2 3 4

0 1 2 3 4

Figure 10: The HDN(B, 1, S) with |SN1| = s1 = 6

Figure 11 shows an HDN(B, 2, S) with s1 = 6 and |SN2| = s2 = 15. A cluster in HDN(B, 2, S) is
an HDN(B, 1, S) as shown in Figure 10. Because s2 = 15, a 3× 5 torus is mapped into a super-node
SN2. There are 2 super-nodes in the base network, and each has 15 nodes. In a cluster, there are
300/15 = 20 super-nodes. Therefore, there are 20 clusters in each class, numbering from 0 to 19 in
the figure. The number of nodes in total is 2× 20 × 300 = 12,000. A small cycle in the figure is a
super-node which is a 3 × 5 torus and a big cycle is a cluster. The level 1 links inside the clusters
are not shown in the figure. The two super-nodes shown with solid cycles, x and y, contain u and
v, respectively. The thick line connects two super-nodes with plus mark (w0 and w1) in which u′

and v′ reside, respectively. Similarly, a line connecting two super-nodes of distinct classes denotes
15 links, one link per node in the super-node.

From the algorithm, we have u′ = (0, 0, 19, 0) and v′ = (1, 19, 0, 14). The two nodes u′ and v′

are nodes inside the super-nodes w0 and w1, respectively, as shown in Figure 11. For routings inside
HDN(B, 1, S), we should perform re-indexing from (SN2

id, N
2
id) to (C1

id, U1
id, SN1

is, N
1
id). As explained

in the re-indexing process, we have (0, 0)→ (0, 0, 0, 0); (19, 0)→ (1, 4, 2, 3); (0, 14)→ (0, 0, 2, 2); and
(19, 14)→ (1, 4, 4, 5).
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0 1 19

0 1 19

. . .

. . .w0

w1 y

x

HDN(B, 1, S)

shown in Figure 10

Figure 11: The HDN(B, 2, S) with |SN2| = s2 = 15

The full path from u = (0, 0, 0, 0) to v = (1, 19, 19, 14) is shown below, where “→” denotes a
direct link and “⇒” is a sub-path:

• Routing from u to u′ in the cluster with ID (C2
id, U2

id) = (0, 0): (0, 0) = (0, 0, 0, 0) (by re-
indexing) → (0, 0, 4, 0) → (1, 4, 0, 0) → (1, 4, 1, 0) → (1, 4, 2, 0) → (1, 4, 2, 1) → (1, 4, 2, 2)
→ (1, 4, 2, 3) = (19, 0) (by re-indexing);

• Routing from v to v′ in the cluster with ID (C2
id, U

2
id) = (1, 19): (19, 14) = (1, 4, 4, 5) (by

re-indexing) → (1, 4, 0, 5) → (0, 0, 4, 5) → (0, 0, 3, 5) → (0, 0, 2, 5) → (0, 0, 2, 0) → (0, 0, 2, 1)
→ (0, 0, 2, 2) = (0, 14)) (by re-indexing);

• Routing from u′ to v′ in HDN(B, 2, S): u′ = (0, 0, 19, 0)→ (1, 19, 0, 0) = u′′ ⇒ (1, 19, 0, 14) =
v′.

The sub-path u′′ ⇒ v′ is the routing path of length 2 inside the SN2, a 3 × 5 torus: (0, 0) →
(2, 0)→ (2, 4). Therefore, the length of the path u→ v is 7 + 7 + 1 + 2 = 17.

5 Broadcasting on HDN

We assume the 1-port communication model in which a node can not send (receive) the message si-
multaneously to (from) more than one of its neighbors. Assume also that the broadcasting algorithm
in each component Bi, 1 ≤ i ≤ r, of the base network B is available.

First, we describe a subroutine for broadcasting in a super-node SN . Without loss of generality,
assume that SN = B1× . . .×Bq, q ≤ r. Let the source node u = (u1, . . . , ur) ∈ SN . The broadcast
from u to all nodes (∗, . . . , ∗, uq+1, . . . , ur) inside SN can be done easily as follows. We first broadcast
message to nodes (∗, u2, . . . , ur) by broadcasting algorithm for B1. Then, we broadcast message to
nodes (∗, ∗, u3, . . . , ur) by broadcasting algorithm for B2 using nodes (∗, u2, . . . , ur) as source nodes.
We continue until all nodes (∗. . . . , ∗, uq+1, . . . , ur) in the super-node where u belongs to have the
message. It is easy to see from the above description that the time for broadcasting in SN is
T (B1)× . . .×T (Bq), where T (Bi), 1 ≤ i ≤ q, is the time to broadcast in Bi. We call this subroutine
broadcast(SN).

The proposed broadcasting algorithm in HDN(B, k, S) for k ≥ 1 is a recursive algorithm, where
the source SN of broadcasting is a set of nodes that hold message. The recursive algorithm, formally
specified in Algorithm 2, has two inputs: an HDN of level k > 0 and the source SNk. The algorithm
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works as follows. First, we perform broadcasting in a SNk−1 with the source SNk−1 ∩ SNk 6= ∅ if
k > 1. Second, we have the first recursive call for k−1 to broadcast message in the cluster C of level
k with the source SNk−1. Third, we spread the message from C to all clusters of distinct class with
the class of C via cross-edges of level k. Forth, we have the second recursive calls on those clusters
in which there exists a super-node SNk just receiving message. Fifth, the nodes in the broadcasted
clusters except the cluster C pass the message over the cross-edges of level k again. After the five
steps above, the broadcasting is done.

The algorithm for broadcasting from a source node s in HDN(B, k, S) with k > 0 containing two
phases. First, call broadcast(SNk), and then call HDN broadcast(HDN(B, k, S), SNk). The results
for broadcasting in HDN are shown in Theorem 3.

Algorithm 2: HDN broadcast(HDN(B, k, S), SNk)
input: HDN(B, k, S);
input: a super-node SNk that holds a message;
output: broadcast the message;

begin

if k = 1 then

C ← broadcast(B/SN1);
else

broadcast(SNk−1/(SNk ∩ SNk−1));
C ← HDN broadcast(HDN(B, k − 1, S − {sk}),SNk−1);

endif

for each u in C do

send message to u′ via the cross-edge of level k;
endfor

if k = 1 then

for each SN1 containing u′ do

broadcast(B/SN1);
endfor

else

for each SNk−1 containing u′ do

HDN broadcast(HDN(B, k − 1), S − {sk}),SNk−1);
endfor

endif

for each v in the clusters of level k that are fully broadcasted except cluster C do

send message to v′ via the cross-edge of level k;
endfor

end

Theorem 3 Assume the one-port communication model. Assume also that the broadcasting algo-
rithms in each component Bi, 1 ≤ i ≤ r, of the base network B is available. In HDN(B, k, S) for

k > 0, broadcasting from any source node can be done in 2kT (B) −
∑k−1

i=0
2iT (SNk−i) + 2k+1 − 2

steps, where T (B) and T (SN i), 1 ≤ i ≤ k, are the time complexities of broadcasting in B and SN i,
respectively.

Proof: The correctness of the recursive algorithm can be derived easily from the induction and
the five steps description of Algorithm 2.

Let the time complexity of algorithm HDN broadcast(HDN(B, k, S),SNk) be Tk. Then, Tk

satisfies the following recurrence equation for k > 1:

Tk ≤ T (SNk−1) + 2Tk−1 + 2
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and for k = 1:
T1 = 2(T (B)− T (SN1)) + 2

Solving the recurrence, we get the time complexity for broadcasting in HDN(B, k, S) from a source
node as below:

T (SNk) + Tk ≤ 2kT (B)−
k−1∑

i=0

2iT (SNk−i) + 2k+1 − 2

where T (B) is the time complexity of the broadcasting in B, and T (SN i), 1 ≤ i ≤ k, is the time
complexity of the broadcasting in SN i.

6 Concluding Remarks

In this paper, we proposed a family of flexible high-performance interconnection network, called
HDN, that is practical and suitable for a wide range of large-scale parallel computers. The HDN is
practical in many aspects. First, it uses a product graph such as a torus as a base network. The
torus is a very practical network for parallel computers. However, for the supercomputers of next
generations that might contain millions of nodes, the torus networks can not fulfill the task as high
performance networks. Second, the hierarchical, cluster-based architecture is becoming popular.
We think that the reason the IBM new supercomputer, Roadrunner, changed its architecture from
traditional 3D torus to the cluster-based, fat-tree network is a symptom of such trend. The new
architecture of Roadrunner bears some similarity with the HDN. From the current speed of advancing
technology, we can expect that the hierarchical cluster-based network that uses torus network as its
base network such as the proposed HDN will become practical and promising in the near future.

In order to show that the proposed HDN can be a good candidate of interconnection networks for
the large scale supercomputers, there are some important research issues that should be addressed
in the future. We list some of these issues below.

1. Efficient embedded schemes: For example, is the HDN Hamiltonian? If yes, what is the scheme
for constructing Hamiltonian cycle?

2. Fault-tolerance capacity: For example, are there efficient fault-tolerant routing algorithms
handling node failures?

3. Efficient collective communication: For example, flexible and efficient algorithms for multicast,
all-to-all broadcast, total exchange, etc.

4. Efficient algorithms for basic computations in computer science.

Other important issues include the questions of determining the proper base network. That is,
how do we decide the base network of HDN in order to achieve high performance? Furthermore,
how do we select the sizes of super-nodes at each dual-construction? These problem should be
investigated and evaluated from the practical view point.
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