
International Journal of Networking and Computing – www.ijnc.org
ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 2, Number 1, pages 131–145, January 2012

Acceleration of AES encryption on CUDA GPU

Keisuke Iwai
Department of Computer Science, National Defense Academy

1-10-20 Hashirimizu Yokosuka Kanagawa 239-8686, Japan

Naoki Nishikawa
Technical Research and Development Institute, Ministry of Defense

2-2-1 Nakameguro Meguroku Tokyo 153-8630, Japan

Takakazu Kurokawa
Department of Computer Science, National Defense Academy

1-10-20 Hashirimizu Yokosuka Kanagawa 239-8686, Japan

Received: January 31, 2011
Revised: May 20, 2011
Revised: July 4, 2011

Accepted: September 21, 2011
Communicated by Yasuaki Ito

Abstract

GPU exhibits the capability for applications with a high level of parallelism despite its low
cost. The support of integer and logical instructions by the latest generation of GPUs enables
us to implement cipher algorithms more easily. However, decisions such as parallel processing
granularity and memory allocation impose a heavy burden on programmers. Therefore, this
paper presents results of several experiments that were conducted to elucidate the relation be-
tween memory allocation styles of variables of AES and granularity as the parallelism exploited
from AES encoding processes using CUDA with an NVIDIA GeForce GTX285 (Nvidia Corp.).
Results of these experiments showed that the 16 bytes/thread granularity had the highest perfor-
mance. It achieved approximately 35 Gbps throughput. It also exhibited differences of memory
allocation and granularity effects around 2%–30% for performance in standard implementation.
It shows that the decision of granularity and memory allocation is the most important factor
for effective processing in AES encryption on GPU. Moreover, implementation with overlapping
between processing and data transfer yielded 22.5 Gbps throughput including the data transfer
time.

Keywords: GPGPU, AES, Accelerator

1 Introduction

The Graphics Processing Unit (GPU) is hardware that is specialized in 3D graphics processing. At
the generation of DirectX9 (Microsoft Corp.), 16–bit floating point as a surface format was contrived
as the dynamic range to record enormous amounts of data, just as in the real world. Subsequently,

131

Acceleration of AES encryption on CUDA GPU

GPUs advanced by adopting powerful 16–bit floating point architecture. Research undertaken to
apply this powerful GPU computational ability with general purpose computing, called GPGPU,
has become popular since 2004. However, only fluid calculations or Newtonian N-body problems
benefited from use of the GPU. It has remained very difficult to implement other applications on a
GPU.

In response to these circumstances, Nvidia Corp., a GPU vendor, developed and released “Com-
pute Unified Device Architecture ” (CUDA) [9]. The integer and logical instructions have been newly
supported for GPGPU. It has become easier to implement applications using these operations[2].
In addition, C-like programming language has become available, so programmers have been able to
use GPU’s computing power with ease[11]. In this way, GPGPU has continued to advance a good
cost-performance environment and has attracted attention from various research fields[10].

The fact that CUDA had began to contrive integer and logical operations provided a new field
for logical application such as cipher algorithms. We are also interested in accelerating cipher
algorithms as non-numerical applications by CUDA. The Advanced Encryption Standard (AES) [6]
is used widely as the standard cipher algorithm today. In fact, AES can be parallelized with ease
in cases of ECB or CTR mode. The effectiveness for performance has not been good, although
some research toward accelerating cipher processing with GPU was reported before CUDA was
released. After CUDA was released, programmers were able to implement code and thereby obtain
more accelerating performance. Nevertheless, programmers must still consider numerous factors
to exploit power, including cipher applications. Particularly, problems such as optimizing the way
of using memory of CUDA of various kind and considering computation granularity trouble many
programmers.

To tackle these problems, this paper presents many types of implementation of AES, changing
memory allocation and computation granularity with CUDA to determine the best programming
style. The rest of this paper is organized as follows. Section 2 introduces the CUDA architecture
briefly. Section 3 overviews optimized software AES implementation and its algorithm. Related
works are explained in Section 4. Section 5 presents the proposed AES implementation patterns. In
Section 6, throughput results of implementation and discussions of effectiveness of each implemen-
tation are presented. Finally, Section 7 describes our conclusions.

2 CUDA

CUDA is a GPU development environment, as is GPGPU released by Nvidia Corp. Programmers
write a threaded program. They must then specify the number of threads and thread blocks arbi-
trarily. From the point of view of hardware, numerous processors and on-chip memory have been
assembled. Thread parallelism eliminates idling of the processors.

2.1 Hardware model

Figure 1 portrays the CUDA architecture. The GPU chip has N × multiprocessors (MP), and each
MP has M × scalar processors (SP), 16 KB shared memory, several 32–bit registers and a shared
instruction cache. Overall, the chip constitutes a hierarchical SIMD architecture. Cutting control
units such as conditional branch components from an instruction unit increases the computing unit
density.

2.2 Memory organization

Global memory The GPU has a global memory called video RAM, which constitutes the largest
memory area in the GPU. Global memory is used to communicate between the CPU and GPU
because it can be accessed by both the CPU and all SPs. Although each SP is able to access directly
any data loaded on the global memory, data will be transported on shared memory and registers at
the beginning of processing in many cases because the latency of global memory is much higher.

132

International Journal of Networking and Computing

Shared memory Shared memory is used on each MP. SPs located on the same MP are able to
access the same shared memory. Shared memory provides as much fast memory access as registers
do.

Registers The register is the fastest memory storage of GPU. The register can be accessed by
fixed SPs such as registers for classical general purpose processors.

Constant memory Constant memory is the fixed cacheable area of global memory. Each MP
equips the constant cache, which caches the data of constant memory. Contents of constant memory
cannot be written/modified by the GPU. Constant memory is stored as read-only data and is shared
with all SPs. Although the cache functions well, the access latency of constant memory will be as
fast as the registers.

As described in this paper, we used an NVIDIA GeForce GTX285 (Nvidia Corp.) equipped with
30 MPs, 8 SPs per MP, 16384 registers per MP, and 1 GB global memory.

Figure 1: CUDA Architecture.

2.3 Software model

In response to the hardware model, the thread is also composed of hierarchical SIMD architecture.
The mass of a thread is called the thread block and programmers normally specify several thread
blocks when a job is issued from CPU to GPU. Each thread is carried out on an SP, then one more
thread block is assigned to an MP. The MP resources such as shared memory and registers are evenly
divided by the number of thread blocks. Each thread is conducted on an SP. Local variables in the
thread program are assigned to registers in MP.

In addition, thread assignments in MP are always executed by 32 threads, which are executed
simultaneously. This unique definition is called “Warp” in CUDA, as shown in Figure 2. A warp
is, so to speak, a common destiny. Threads will dispatch SPs automatically, but it is important to
consider the thread unit as 32 for efficient implementation. Both the number of blocks and threads
will be defined as larger than the number of SPs sufficient for general CUDA programming because
the overhead of the scheduler is very small.

2.4 Memory access system for high memory bandwidth

Although the calculation unit is 32 threads, the memory access unit is 16 threads in CUDA[11].

133

Acceleration of AES encryption on CUDA GPU

Figure 2: Warp execution in CUDA.

2.4.1 Coalesced access of global memory

The memory access cycle to global memory takes 400–600 cycles. This latency is fairly low for the
access speed in GPU. However, the interface between the global memory and SP is much broader
than that with a CPU. To exploit this characteristic, memory access of global memory is hidden by
issuing coalesced memory access instruction if the thread would access data with fundamentally no
stride access. The CUDA compiler is in charge of whether global memory access becomes coalesced.

2.4.2 Shared memory interleave and the avoidance of bank conflict

Memory access to shared memory has latency as low as that of the registers. Shared memory is
divided into 16 banks (4 bytes per bank). In the case of access to different bank by each thread,
threads can load or store data in parallel. However, if each thread accesses the same bank, then the
memory access will induced serially. At that time, the latency will be 16 times different at maximum
depending on how data are allocated to shared memory.

2.5 Techniques for optimization

2.5.1 Pipeline latency hiding

The memory access speed is generally lower than the processing speed because of the read-after-write
dependency. According to an experiment by Volcov et al., the SP pipeline latency of one operation
between registers takes approximately 24 cycles[13]. In contrast, one warp latency is four cycles.
Therefore, the SP pipeline is kept filled by executing at least six warps per MP. Consequently, the
latency can be hidden.

2.5.2 Out-of-order execution

With a warp encountering memory stall, another warp will be executed out-of-order to hide this
memory stall cycle. Therefore, securing the number of threads to the greatest extent possible hides
the latency, thereby improving the overall performance. As shown in section 2.1, we selected an
NVIDIA Geforce GTX 285 (Nvidia Corp.) as the GPU, on which up to 32 threads per thread block
can be specified.

134

International Journal of Networking and Computing

2.5.3 Cut down of conditional branch

As shown in section 2.1, SPs have no conditional branch unit. Therefore, conditional branch instruc-
tions are executed using a pseudo-divergence order generated by the CUDA compiler, not similar
to the predication of an Itanium processor (Intel Corp.), but unique in CUDA. First, predication
registers are allocated depending on the number of conditional branches to store the result of condi-
tional branch instructions such as an if-or switch. Then, all conditional paths are executed serially,
irrespective of whether they are true or false. They are finally decided in relation to the value of the
predication registers.

In this way, conditional branching is a main factor of deteriorating processing speed. Therefore
reconstruction of the algorithm is necessary to constrain the number of branches.

3 AES

AES, a symmetric block cipher introduced in 2001 by NIST[6], encrypts and decrypts plaintext and
ciphertext blocks using a 128-bit, 192-bit, or 256-bit key size. Its calculation unit is 1 byte. This
cipher executes the iteration of the same round, for which the number of iterations depends on the
key size. For this study, we selected 128-bit key length AES, which consists of 10 rounds. Each round
consists of four transformations: SubBytes, ShiftRows, MixColumns, and AddRoundKey. The final
round differs slightly from the other rounds: it does not include MixColumns.

As described in this paper, AES is implemented based on optimized ANSI C source code provided
as a part of OpenSSL, the open source toolkit for SSL/TLS[12].

Its algorithm defines round processes combined into a transformation simply using a lookup table
called “T-box” and exclusive-or operation. Letting a be the round input, which is divided into each
32 bits, the round output e is represented as

ej = T0[a0,j] ⊕ T1[a1,j+1] ⊕ T2[a2,j+2] ⊕ T3[a3,j+3] ⊕ kj ,

where T0, T1, T2, and T3 are lookup tables and kj is the j-th column of a roundkey. This algorithm
includes only four lookup table transformations and four exclusive-or operations.

Furthermore, AES has some modes such as Electric Code Book (ECB) and Cipher Block Chaining
(CBC). We select ECB mode because this can exploit the GPU’s powerful parallel processing power
easily.

4 Related work

Cook et al. achieved AES encryption at 1.53 Mbps throughput using OpenGL on an NVIDIA
Geforce3 Ti200 (Nvidia Corp.)[3]. However, its performance potential is only 2.3% of the CPU
(Pentium IV 1.8 GHz; Intel Corp.) performance because the earlier GPU architecture had an insuf-
ficient instruction set for general purpose computing. Harrison et al. achieved AES encryption at
870.8 Mbps throughput on a GeForce 7900GT (Nvidia Corp.) using Direct X9 (Microsoft Corp.)[4].

Manavski implemented CUDA-AES achieved an astounding 8.28 Gbps throughput rate with an
input size of 8 MB using an NVIDIA GeForce 8800GTX (Nvidia Corp.) [5]. Manavski reports
that the thread block size engenders the fastest implementation in CUDA-AES. Its performance
improvement can be observed as the number of thread blocks increases. Furthermore, some effort
to reduce the usage of the shared memory is reportedly necessary for better performance in CUDA-
AES because the shared memory is divided into equally sized memory modules at the time of
AES encryption. However, if bank conflict occurs the access must be serialized, which causes slow
performance. Nevertheless, no argument has been presented about the concrete allocation of shared
memory.

Di Biagio et al. also implemented counter mode AES (AES-CTR) with CUDA using an NVIDIA
GeForce 8800GT (Nvidia Corp.) [1]. They achieved a 12.5 Gbps throughput rate with input size of
128 MB considering processing granularity. They defined as fine-grained design a solution exposing
the internal parallelism of each AES round. They proposed that four 32–bit word blocks were

135

Acceleration of AES encryption on CUDA GPU

dispatched to four SPs, with each thread as a fine-grain processing. Moreover, the coarse-grained
design was defined as exploiting higher-level parallelism, which exists between independent plaintext
blocks. In this granularity, each thread processes each 128-bit plaintext block.

Nishikawa et al. also discussed granularity [8]. They defined 16 bytes/thread when one thread
processes one plaintext block (which contains 16 bytes), as was true also for coarse-grained processing
suggested by Di Biagio et al. [1]. Other granularities such as 4 bytes/thread and 1 byte/thread were
defined in the same manner as 16 bytes/thread. They implemented AES-ECB encoding according to
standard AES algorithm without T-box, which achieved 6.25 Gbps with a GeForce GTX285 (Nvidia
Corp.). Furthermore, they proposed DES implementation on a GTX285 (Nvidia Corp.), which was
intended as a brute force attack[7].

Table 1 shows the respective peak performances and implementation environments of these pre-
vious works. This paper presents a discussion of a more detailed implementation of AES referred
from these respective previous works, with an attempt to elicit better AES performance using a
GTX285 (Nvidia Corp.).

Table 1: Performance of previous methods.
Reference Device Language Throughput

Cook et al.[3] GeForce3 Ti200 OpenGL 1.53 Mbps
Harrison et al.[4] GeForce7900GT DirectX9 870.8 Mbps

Manavski [5] GeForce8800GTX CUDA 8.28 Gbps
Di Biagio et al.[1] GeForce8800GT CUDA 12.5 Gbps
Nishikawa et al.[8] GeForce GTX285 CUDA 6.25 Gbps

5 AES encryption implementation on CUDA GPU

This section presents discussion of the granularity of parallel processing and memory allocation
to design parallelized AES on a CUDA GPU. Granularity signifies a task size to dispatch to a
processor. Granularity is an effect of the parallel AES algorithm design which represents how to
parallelize the AES algorithm. The memory allocation strategy of CUDA is important because
CUDA has some different types of memory systems, as described earlier. Characteristics of each
memory system mutually differ to quite a degree. The difference of memory allocation strategy will
provide measurable effects for performance.

5.1 Granularity of parallel processing

Granularities of four types are defined to parallel AES algorithm, as described below.

5.1.1 16 bytes/thread

Using the parallelizing method of 16 bytes/thread means that each thread processes each plaintext
block consisting of 16 bytes independently. This implementation presents advantages of lower over-
head than other granularities requiring no synchronization and no shared data between threads.
This granularity uses a parallelism exploited between plaintext blocks only. Figure 3 shows that
threads process plaintext blocks independently.

5.1.2 8 bytes/thread and 4 bytes/thread

Granularity at 8 bytes/thread processes one plaintext block with two threads. Figure 4 presents a
plaintext block divided into two threads and two plaintext blocks processed by four processors simul-
taneously. This method exploits parallelism between plaintext blocks and inner plaintext processing

136

International Journal of Networking and Computing

Figure 3: Granularity at 16 bytes/thread.

concurrently. This method requires shared memory to share intermediate data by two threads and
synchronization.

Granularity at 4 bytes/thread processes one plaintext block with four threads. Figure 5 portrays
this granularity. This method differs from that of 8 bytes/thread in its number of threads for a
plaintext block sharing. Shared memory and synchronization are necessary for the same reason as
8 bytes/thread. These granularities exploit more parallelism than 16 bytes/thread, although they
require synchronization and shared memory.

Figure 4: Granularity at 8 bytes/thread.

Figure 5: Granularity at 4 bytes/thread.

5.1.3 1byte/thread

It is absolutely better to process AES encoding with at least a 32-bit operating unit because the
AES encoding algorithm used in these studies is optimized for 32–bit processing. However, it is able
to process 1 byte data by a thread. 1 byte/thread means that 16 threads process a plaintext block
in a coordinated manner. This granularity is designed to compare earlier studies and also other
granularities, although this granularity will bring unsatisfactory performance for a GPU-equipped
32-bit operation unit.

5.2 Memory allocation

5.2.1 Overview of memory access of parallelized AES with CUDA GPU

AES contains data structures of three kinds as shown as below.

1. Plaintext, ciphertext, and intermediate data. Intermediate data are put in temporary data
storage during processing encoding (decoding) of AES.

137

Acceleration of AES encryption on CUDA GPU

2. T-box

3. Round key (The round key is calculated from the secret key.)

When encryption is initiated, all data are stored in the main memory of the host computer. At
the beginning of AES processing using CUDA GPU, the plaintext, round key, and T-box tables
are transferred to global memory and constant memory of GPU. To hasten processing, data are
transferred to other higher speed memory such as shared memory and GPU registers. In various
memory systems, these data will be transferred. It is necessary to consider the characteristics of
these memory systems to store data in their correct place.

To simplify problem modeling, the round key is calculated using the CPU in this paper, although
it can be calculated using either a GPU or a CPU. In any case, the calculation cost of the round
key is negligibly small when the plaintext is large.

5.2.2 Round key and T-box

T-box and round key are read-only data shared among all threads.
According to such characteristics, these variables match to allocate on constant memory. Con-

stant memory provides very low latency when the cache system works well. With respect to T-box,
it requires random access, so the possibility exists that they can not provide low access latency.

Even if a round key is allocated on shared memory, AES will exhibit good performance because
shared memory provides low access latency. However, two problems exist. One is a bank conflict,
which occurs when threads access the same memory located at the same bank. The other is that
allocating round key on shared memory wastes its capacity. Many copied T-boxes will appear
because shared memory can be shared between limited threads belonging in the same thread blocks.

5.2.3 Plaintext

The plaintext is stored on the global memory at the beginning of processing. When AES encoding
starts, the plaintext will be transferred to shared memory sequentially to share intermediate data
between stream processors. For granularity at 16 bytes/thread, intermediate variables calculated
from plaintext will be stored on registers directly because this granularity does not share any in-
termediate variables. Naturally, granularity at 16 bytes/thread can also be used as shared memory
instead of registers.

Using shared memory, as shown in Figure 6 and Figure 7, a choice of two options exists about
how to allocate data in memory: Array of Structure (AoS) and Structure of Array (SoA). A structure
means a plaintext block structure. The AoS deals with plaintext by its nature. The SoA allocates
each element of plaintext into one array. They provide a difference of appearance of bank conflict.
To reduce bank conflict occurrences, we select a better allocation pattern for each implementation.
Figure 6 and Figure 7 also portray examples of the thread access pattern to shared memory for
granularity at 8 bytes/thread.

Finally, Table 2 portrays a summary of memory allocation candidates of each datum.

Table 2: Variables of AES and their allocation.
Variables Constant Memory Shared Memory Registers

T-box ◦ ◦ ×
Round Key ◦ ◦ ×
Plaintext × ◦ ◦(in case of 16 bytes/thread)

138

International Journal of Networking and Computing

Figure 6: Array of Structure, an allocation of the plaintext.

Figure 7: Structure of Array, an allocation of the plaintext.

5.3 Other optimizations

5.3.1 T-box architecture

T-box implementations of several different kinds are evaluated based on well optimized OpenSSL
AES implementation. Three different implementations of T-boxes are described here.

1. One 32-bit array T-box and rotate operation. (saving memory area)

2. One 64-bit array precomputed T-box with byte order memory access.

3. Precomputed 32-bit array T-box×4

Actually, these T-boxes are made from same one T-box with rotate and shift operations. In addition,
the shift operation can replace byte order memory access. The first one just achieves realization of
four T-box operations by one T-box with rotate operations. The byte order access was accepted
and provided with high bandwidth. Then the second one would bring in high performance such as
x86 architecture. In this paper, implementation of this method is not shown because CUDA GPU
is currently not able to operate memory access with byte order.

The last one is optimized implementation in a natural way. Four precomputed 32-bit array
T-boxes were implemented.

139

Acceleration of AES encryption on CUDA GPU

5.3.2 Cut down of thread block switching

Usually CUDA applications, massively parallel processing data are mapped respectively to each
thread. For example in 3D rendering, each pixel or vertex is mapped to each thread. In fluid
computation, each particle is mapped to each thread. Similarly in AES, we can map each plaintext
to each thread as in the applications above, but the time of one encryption by threads is slightly
different. Therefore, the overhead of the switching thread block in AES tends to be larger and not
negligible, different from the other applications.

For this reason, after threads are finished encrypting plaintext in charge, their threads return to
the starting point and continue to encrypt other plaintext again. If doing so, only the low number of
threads can encrypt quite a few plaintexts. Thereby, we can avoid the overhead of switching thread
blocks in AES.

5.3.3 Overlapping GPU processing and memory copy

It is necessary to consider overhead attributable to the data transfer between CPU and GPU to
exploit effective performance. To hide this overhead, CUDA provides overlapping data transfer
(memory copy) and processing. We implemented the AES encoding process with overlapping trans-
ferring plaintext to (and ciphertext from) global memory of GPU and GPU’s AES process. Figure
8 portrays a diagram of this overlapping in case of data divided into two blocks. Before processing
AES on GPU, the transfer of plaintext block one of two to the GPU is begun. When the transfer
is finished, AES encoding will be started on GPU and transferring of second plaintext block will be
started simultaneously. When the encoding process of the first plaintext block is finished, the en-
coding process of the second plaintext block will be started because transfer of the second plaintext
block to GPU would be finished and the write back process of the first plaintext block to CPU will
be started simultaneously. Finally, the write back process of the second plaintext block will be done.
It is necessary to synchronize times at which each plaintext block changes its process.

This overlapping process is well known as pipeline processing between data transfer and process-
ing. To optimize this pipeline, a tradeoff exists between block size, which is dividing the size of the
plaintext as pipeline stage, and the pipelined overhead. This pipeline optimization will achieve good
performance when the data transfer time and processing time are balanced.

Figure 8: Overlapping data transfer and processing.

6 Implementation results

6.1 Environment

Table 3 shows the specifications of the computer systems used for this experiment.
The implemented AES for this experiment was a 128–bit AES encoding algorithm (ECB mode).

The round key was calculated once by the CPU and transferred to GPU’s global or constant memory
before starting AES processing. Plaintext was generated by CPU with a random value too. The
plaintext size was 256 MB fixed size to evaluate around peak performance in each implementation.
The number of thread blocks was 60. The number of threads was 512 fixed in all executions.

The number of threads is also an important parameter to optimize programs using CUDA. In
this result, the number of threads was fixed at 512 to attain the highest throughput because it was

140

International Journal of Networking and Computing

Table 3: Computer specifications.
CPU Corei7 Quadi7-920 (2.66 GHz)

Memory 6GB
OS CentOS5.3

(kernel ver2.6.18)
Compiler gcc ver4.1.2 (option -O3)

GPU Accelerator NVIDIA Geforce GTX 285
GPU Memory 1 GB

CUDA Compiler nvcc ver. 2.3

shown that the difference of the number of threads over 128 produced a limited effect in [1] in case
of sufficiently large plaintext size. The number of thread blocks was fixed for the same reason.

6.2 Implementation parameters

According to previous section, AES is implemented with many implementation parameters. Table
4 shows implementation parameters used for this evaluation.

Table 4: Implementation parameters
Granularity 16 B/thread, 8 B/thread, 4 B/thread, 1 B/thread

T-box allocation Constant Memory, Shared Memory
T-box architecture Four T-boxes (32 bit), One T-box (64 bit)

Round Key allocation Constant Memory, Shared Memory
Plaintext allocation Shared Memory (AoS or SoA), Registers

6.3 Throughput

Tables 5 and 6 show the throughput of each implementation.

Table 5: Throughput, 16 B/thread.
Implementation type I II III IV V VI

T-box allocation constant shared shared shared shared shared
Round key constant constant shared shared shared shared
Plaintext register register register register shared shared

Plaintext Allocation - - - - SoA AoS
T-box architecture 4 4 4 1 4 4
Throughput [Gbps] 5.0 34.4 35.2 21.54 29.9 21.7

6.3.1 Throughput with computation granularity

Figure 9 shows the best throughput of each computation granularity. Results show that one out of 16
bytes/thread implementation achieved the highest throughput at 35.2 Gbps. In fact, 16 bytes/thread
has constituted an advantage compared with other implementations. They required neither shared
memory for processing AES encoding nor synchronization. Requiring no shared memory means
bringing in not only high-speed register access but also no memory bank conflict.

141

Acceleration of AES encryption on CUDA GPU

Table 6: Throughput, 8B/thread, 4B/thread, and 1B/thread.
Granularity 8 B/th 8 B/th 8 B/th 4 B/th 4 B/th 4 B/th 1 B/th

T-box allocation shared
Round key constant shared constant constant shared constant shared
Plaintext shared

Plaintext Allocation AoS AoS SoA AoS AoS SoA AoS
T-box architecture 4

Throughput 26.9 23.9 23.4 25.3 25.0 17.1 2.9

Figure 9: Throughput at each granularity.

Let us next discuss 8 bytes/thread and 4 bytes/thread. The highest throughput was 26.9 Gbps,
but they had almost identical throughput. Their throughputs were almost 30% lower than the 16
bytes/thread implementation. The 8 and 4 bytes/threads required shared memory to share plaintexts
and intermediate values. But shared memory access brought about bank conflicts. Synchronizations
and bank conflicts of shared memory were the major causes of this decline in performance.

Actually, 1 byte/thread achieved very low throughput, but no surprise existed because the im-
plemented algorithm was designed using 8-bit operation made from an algorithm optimized to 32-bit
operation divided into four operations.

Finally, the best throughput achieved 29 times higher speed than that of a Core i7-920 2.66 GHz
CPU-based implementation, which achieved 1.2 Gbps using OpenSSL optimized source code for the
Intel architecture with a single core.

6.3.2 T-box allocation

The difference of performance between constant memory and shared memory must be discussed.
Implementation types I and II in Table 5 show throughput in the same cases of T-box architecture,
plaintext allocation, and round key allocation except T-box allocation. For implementation type I,
it indicated an extremely low throughput at 5.0 Gbps as a result of T-box allocating on constant
memory. By contrast, type II implementation achieved a high throughput at 34.4 Gbps as a result
of T-box allocating on shared memory. In fact, both constant memory and shared memory have
almost equal ability of access latency, but their mechanisms differ. Constant memory achieved low
latency by a cache system in this result. It provided very low latency when the regular memory
access pattern was required because the cache system works well in such cases. T-box required a
random access pattern because it provided nonlinear transformation. As a result, the gap separating
implementation types I and II showed a difference of performance of constant memory for random
access and regular access. This result revealed that T-box must be implemented on shared memory
for AES. It is better for saving a shared memory area to allocate T-box on constant memory, but
the shared memory provided sufficient area for T-box in this AES implementation.

142

International Journal of Networking and Computing

Now, T-box architecture is discussed. Implementation type III showed the throughput of four
T-box architecture. Type IV showed the throughput of one T-box architecture. Implementation
type IV achieved about 40% lower performance than implementation type III. This fact shows that
the computation cost of rotation of T-box processing gives an impact for performance. Although
four T-box architecture requires memory space, it shows no effect on performance. The difference
of T-box architecture produced the same performance gap for all implementation granularities.

Consequently, it is absolutely better to use four T-box architecture. Then the T-box must be
allocated shared memory.

6.3.3 Plaintext allocation

Regarding plaintext allocation, except for the 1 byte/thread, both AoS and SoA implementations
were evaluated. As described in the preceding subsection, this subsection specifically examines the
implementation results which limit the T-box allocation to shared memory and T-box architecture
to four.

For computation granularity at 16 bytes/thread, shared memory for plaintext was unnecessary
because registers were replaceable by shared memory. In addition, plaintext was able to be stored in
the shared memory, but the throughput was 15%–35% lower than the implementation which stored
plaintext on registers. Allocating plaintext at registers achieved higher performance than allocating
plaintext at shared memory because it elicited no memory access conflict and no memory address
computation.

Comparison of the throughput of AoS and SoA implementations reveals that SoA implementation
achieved better performance than AoS implementation. According to statistical analyses of bank
conflict, SoA implementation at granularity of 16 bytes/thread occurs less than AoS implementation
because each plaintext block is placed in each bank.

Granularity at 8 and 4 bytes/thread, plaintext must be stored on shared memory. The difference
of performance from AoS and SoA is important. The AoS implementation provided about 50%
better performance than SoA implementation at 4 bytes/thread granularity and also 12% better
at 8 bytes/thread. Bank conflicts in these granularities are alike according to statistical analysis.
Although some cases prospected that SoA implementation encountered less bank conflict than AoS
implementation, all results showed that throughputs of AoS implementation were better. It might
be affected by the fact that SoA requires more difficult address calculation. This result explains
that, in some cases, it is too difficult to analyze bank conflict statistically.

6.3.4 Round key allocation

With respect to allocating the place of the round key, a slight difference was found in performance.
Implementation allocating the round key on shared memory was about 2% faster than allocating
it on constant memory implementation at granularity 16 bytes/thread. Because round key access
necessitates coherent memory access, a cache system must work well. For that reason, they had
almost identical throughput.

For Granularity at 4 and 8 bytes/thread, allocating the round key on constant memory led
to better performance than allocating shared memory, which result was contrary to that of 16
bytes/thread result. The reason for this difference was bank conflicts, which increased when 4 and 8
bytes/thread used shared memory to store plaintext and intermediate data. Allocation of the round
key on constant memory led to lower bank conflicts than those elicited when using shared memory
for the round key.

6.3.5 Comparison with previous work

The AES implementation for GPU with consideration of granularity and T-box memory allocation
is reported in [1]. They achieved about 12.5 Gbps throughput AES CTR encoding processing for
128 MB size plaintext using an NVIDIA 8800GT (Nvidia Corp.), which has 112 stream processors
and a processor clock of 1.5 GHz. The NVIDIA GeForce GTX285 (Nvidia Corp.) used in these
experiments has 240 stream processors; its processor clock is about 1.5 GHz. Comparing them,

143

Acceleration of AES encryption on CUDA GPU

two times or even greater performance gaps exist not only because of the number of processors,
but also the architecture of the processor and CUDA runtime libraries differ. Actually, they were
three times faster at the maximum throughput, as explained in this paper than [1]. The highest
throughput in [1] was achieved with four T-box architecture, T-box allocated on shared memory
and 16 bytes/thread granularity. These implementation circumstances are the same as the highest
throughput achievement setting presented in this paper. This paper also presented new factors such
as more granularity and varied memory allocation patterns. Some contributed to better performance.

6.4 Overlapping data transfer

The performance described so far in this paper has excepted data transfer time for discussion of
the effectiveness about difference of granularity, memory allocation and others. To evaluate the real
effectiveness for performance provided by GPU, data transfer overheads between the CPU and GPU
must be considered.

Implementation results were evaluated with AES plaintext size at 256 MB. As inferred from
measurements of data transfer times, there is about 0.08 ms overhead, which includes both copies to
and from global memory from and to the CPU. Throughput including these data transfer times at 16
bytes/thread (four T-boxes and round key allocated on shared memory) achieved only 13.4 Gbps. We
implemented another AES encoding program, which is applied to overlapping data transfer and AES
processing to exploit better performance. Results show that implementation applied overlapping to
16 bytes/thread (four T-boxes and round key allocated on shared memory) achieves 22.5 Gbps,
meaning that overlapping can hide 65% of the data transfer time.

This implementation divided plaintext data into four plaintext blocks. Also, AES encoding
programs worked four times independently. Based on this experience, although dividing plaintext
into four blocks achieves the best performance, more investigations must be made to elucidate
overlapping data transfer and processing.

7 Conclusion

This paper presented an analysis of the effectiveness for AES implementation from various conditions
such as parallel processing granularity and various memory allocations. Greater than 10 times
difference of performance and the best AES implementation were achieved: 35.2 Gbps throughput
using GPU.

Results showed that such implementation granularity at 16 bytes/thread tends to be effective.
Moreover, the common data table T-box and round key allocated on shared memory achieved the
best performance, but round key, which requires coherent access, will be able to allocate constant
memory. Results show that AES must implement granularity at 16 bytes/thread, with four T-
box architecture and allocation of T-box on shared memory for efficient processing with the GPU.
However, round key allocation place is ineffective for performance whether a round key is allocated
on shared memory or constant memory.

The best result achieved in this study was 35.2 Gbps AES encoding throughput, which strongly
suggests the great potential of the CUDA GPU for use as a cryptographic accelerator. Regarding
high-end applications, the possibility exists for application of a code breaker for example, but we also
expect a small accelerator for a block cipher accelerator because most computers such as notebook
PCs are also equipped with a GPU.

Moreover, these analyses revealed an overlap between data transfer and GPU processing, which
supported later versions of CUDA, achieving 22.5 Gbps throughput including data transfer overhead.
This throughput implies 68% faster processing compared to that without overlapping. Moreover,
overlapping hid 65% of the data transfer time, which showed that the GPU becomes a real accelerator
for AES encoding with data transfer overlapping.

We are developing an automatic parallelization technique for cipher algorithms including AES on
GPU. These results are the first step toward automatic decision for memory allocation and compu-
tation granularity. However, a long road of development separates us from our goal. Consequently,

144

International Journal of Networking and Computing

using results described in this paper, we are implementing other block cipher algorithms such as
MISTY for GPUs.

References

[1] Andrea Di Biagio, Alessandro Barenghi, Giovanni Agosta, and Gerardo Pelosi. Design of a
parallel AES for graphics hardware using the CUDA framework. Parallel and Distributed Pro-
cessing Symposium, International, pages 1–8, 2009.

[2] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, and Kevin
Skadron. A performance study of general-purpose applications on graphics processors using
CUDA. J. Parallel Distrib. Comput., 68(10):1370–1380, 2008.

[3] Debra L. Cook, John Ioannidis, Angelos D. Keromytis, and Jake Luck. Cryptographics: Secret
key cryptography using graphics cards. In In RSA Conference, Cryptographerfs Track (CT-
RSA), pages 334–350, 2005.

[4] Owen Harrison and John Waldron. AES encryption implementation and analysis on commodity
graphics processing units. In 9th Workshop on Cryptographic Hardware and Embedded Systems
(CHES), pages 209–226, 2007.

[5] Svetlin A. Manavski. CUDA compatible gpu as an efficient hardware accelerator for AES
cryptography. In IEEE International Conference on Signal Processing and Communication,
ICSPC, pages 65–66, 2007.

[6] National Institute of Standards and Technology (NIST). FIPS-197 Advanced Encryption Stan-
dard (AES), 2001.

[7] Naoki Nishikawa, Keisuke Iwai, and Takakazu Kurokawa. Acceleration of the key crack against
cipher algorithm using CUDA (in Japanese). In IEICE technical report. Computer systems 109
(168), pages 49–54, Sendai, Japan, July 2009.

[8] Naoki Nishikawa, Keisuke Iwai, and Takakazu Kurokawa. Granularity optimization method
for AES encryption implementation on CUDA (in Japanese). In IEICE technical report. VLSI
Design Technologies (VLD2009-69), pages 107–112, Kanagawa, Japan, January 2010.

[9] NVIDIA CUDA. http://developer.nvidia.com/object/cuda.html, 2009.

[10] NVIDIA CUDAZONE. http://www.nvidia.com/object/cuda home.html, 2009.

[11] NVIDIA Corp. NVIDIA CUDA Programming Guide 2.3, 2009.

[12] The OpenSSL Project. OpenSSL: The Open Source toolkit for SSL/TLS.
http://www.openssl.org, 2007.

[13] Vasily Volkov and James W. Demmel. Benchmarking GPUs to tune dense linear algebra.
In SC ’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, pages 1–11,
Piscataway, NJ, USA, 2008. IEEE Press.

145

