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Abstract

The past two decades have witnessed a revolution in the use of electronic devices in our
daily activities. Increasingly, such activities involve the exchange of personal and sensitive
data by means of portable and light weight devices. This implied the use of security applica-
tions in devices with tight processing capability and low power budget. Current architectures
for processors that run security applications are optimized for either high-performance or low
energy consumption. We propose an implementation for an architecture that not only pro-
vides high performance and low energy consumption but also mitigates security attacks on the
cryptographic algorithms which are running on it. The proposed architecture of the Globally-
Asynchronous Locally-Synchronous-based Low Power Security Processor (GALS-based LPSP)
inherits the scheduling freedom and high performance from the dataflow architectures and the
low energy consumption and flexibility from the GALS systems. In this paper, a prototype of
the GALS-based LPSP is implemented as a soft core on the Virtex-5 (xc5-vlx155t) FPGA. The
architectural features that allow the processor to mitigate Side-Channel attacks are explained
in detail and tested on the current encryption standard, the AES. The performance analysis
reveals that the GALS-based LPSP achieves two times higher throughput with one and a half
times less energy consumption than the currently used embedded processors.

Keywords: Security Processor, Globally-Asynchronous Locally-Synchronous (GALS), High Per-
formance Processor, Low Power Processor, DPA Countermeasure
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1 Introduction

Cryptographic algorithms can be regarded as a series of transform functions that acquire an input
data block and produce an output data block that have been operated on by some function. As a
result, dataflow graphs lend themselves to the description of such transforms. Hence it is expected
that dataflow architectures would better serve the performance of cryptographic algorithms than
control-oriented architectures.

Transport-Triggered Architecture (TTA) is one of the dataflow architectural paradigms that are
a mirrored paradigm of the von Neumann model [4]. Instead of an operation-triggered architecture,
the TTA proposes a transport-triggered architecture in which the operation occurs as a side effect
of data transfer. This paradigm decreases the complexity of the control circuits in the processor
and can therefore allow for shorter cycle times [5]. This prospect of higher performance is proven
in the work done by Hamalainen et al. [13], although it is unfortunate that energy consumption is
not studied in that work. The energy consumption of the TTA is studied in [16] where some of the
internal function units have been implemented in asynchronous fashion. The asynchrony in [16] has
been used just for power reduction and not to mitigate side channel attacks. An example for the
use of Globally Asynchronous Locally Synchronous in a cryptographic circuit as side channel attack
countermeasure is given by [12]. However, the circuit in [12] is not for a programmable processor
but for the implementation of the Advanced Encryption Standard (AES) [6] algorithm only.

We have combined all the advantageous features of the above-discussed work into the GALS-based
LPSP. An emulator for this processor has been developed in [10] to verify and test its performance.
However, in this paper, a hardware implementation on an FPGA is discussed and additional ar-
chitectural features are added to secure the processor against Side-Channel attacks; particularly
the Differential Power Analysis (DPA) attack. Section 2 provides a description of the architecture
and the additional features that make it secure. Section 3 explains how the additional features in
the novel architecture countermeasures the DPA attack and simulated DPA attack on the proces-
sor while running the AES is performed and explained. Section 4 analyzes the performance of the
processor while executing the AES, RC6, TwoFish, RSA, and ECC algorithms. This section also
shows the concurrency between the function units’ execution and explains the relation between the
asynchrony and power dissipation. An excerpt of the implementation report and a floorplan view of
the processor on the Virtex-5 (xc5-vlx155t) FPGA is given in Section 5. The processor is compared
to other soft cores in Section 6. Finally a summary and our conclusions come into view in Section
7.

2 GALS-based LPSP Architecture

The GALS-based LPSP is composed of six regions as shown in Figure 1. Each of these regions
is governed by a different clock source and therefore a different clock frequency. The six regions
communicate therefore internally in a synchronous fashion but communicate among themselves in
an asynchronous fashion. Region 2, 3, 4, and 5 combine the Function Units (FUs) that are customized
to serve cryptographic algorithms. These regions are called the execution regions. The execution
regions receive instructions from Region 1 in the form of commands. The format of the command is
shown in Figure 2. These commands are called move-commands. The move-command specifies the
function unit at which the operation should be performed (Source Information) and the function
units to which the result should be directed (Destination Information). The destination function
unit upon receiving the required number of operands and also the corresponding move-command
is triggered to perform its operation and in turn sends its result to the next destination function
units. A single command can specify up to two destination function units. The move-command,
not only specifies the destination function units, but also the tag of the result. The tag is used by
the function unit to match the move-commands arriving from Region 1 and corresponding operands
arriving from other function units. The tags allow for a fully distributed control and freedom in the
order of arrival of the commands and operands. Each function unit owns a buffer in which data
and commands are stored and matched according to their tags. The size of each of these buffers
is critical to a deadlock-free operation and therefore prior to the architecture implementation an
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Figure 1: Block diagram of the proposed architecture.

emulator has been developed in [10] to determine the number of these buffers and the size of the tag
fields.

In [10] and [9] the architecture of the GALS-based LPSP is given in details. However, for the
completeness of this paper, we summarize the function units encompassed in the GALS-based LPSP.

2.1 GALS-based LPSP Function Units

We have decided on the set of FUs shown in Table 1 by studying the AES candidates, Rijndael,
Serpent, Twofish, RC6, and MARS, and some older algorithms, the IDEA, and DES, and the SHA-
1 as a hash algorithm, and the RSA and ECC representing asymmetric algorithms, to extract the
common operations required.

The GALS-based LPSP command set can be logically grouped into seven groups of operations
as shown in Table 1.

1. The arithmetic group includes the integer addition (ADD) and integer subtraction (SUB), and
integer multiplication (MUL). All of these operations can be performed on 4-bit, 8-bit, 16-bit
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Figure 2: Move-command format of GALS-based LPSP.

Table 1: GALS-based LPSP Command Set
Arithmetic

ADD SUB MUL

Finite-Field Arithmetic

ADDMOD MULINV GFMUL WRITEPPOLY

Logic

XOR2 XOR3 NAND OR

Shift and Rotation

ROR ROL SHR SHL

Permutation

EXTRACT COMBINE

Forwarding

MUX REPLICATE PUSHIMM

Reading and Writing

READREG WRITEREG READSBOX

and 32-bit operands except for the MUL that can manipulate up to 16-bits operands. The
most-significant bit of the operand is reserved for the carry or borrow bit. The most-significant
bit of a 4-bit operand is the fourth bit and for an 8-bit operand it is the eighth bit and so on.
The most-significant bit changes its location according to the operand size since the operand
size deactivates the unused parts of the bus to reduce the consumed power.

2. The second group includes the operations on the finite field. Abstractly a finite field or Galois
field, named in honor of Evariste Galois, consists of a finite set of objects called field elements
together with the description of two operations - addition and multiplication - that can be
performed on pairs of field elements [17]. Each finite field is based on a primitive or irreducible
polynomial p(x) of degree n that exists in Fq. Dividing the field Fq by this irreducible polyno-
mial produces a finite field of size q, where q = pn. The primitive polynomial is incorporated
in every operation over the finite field (Galois field).

- The ADDMOD is an addition modulo x. This type of addition can be used over the
prime finite fields with x being the odd prime finite field generator.

- The MULINV-FU performs the multiplicative inverse over the characteristic 2 finite fields.

- The GFMUL performs a multiplication over the characteristic 2 finite fields. The primitive
polynomial used for these operations is located in an internal register in the same region
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as the FUs, namely Region 4.

- The register, which holds the primitive polynomial, is loaded during configuration time
and can be overwritten using the WRITEPPOLY move-command. The hardware design
of this group is adopted from [3], [23], [11].

3. The Logic group of move-commands includes operations that perform the basic logic opera-
tions.

- The XOR2 performs a logical exclusive-OR between two operands.

- The XOR3 performs the same operation but between three operands instead of two.

- The NAND denotes an inverted-AND, which is a universal gate from which all other logic
functions can be created.

- The OR is included to simplify the multiple-precision algorithms [20].

4. The Shift and Rotation group includes the ROR, ROL, SHR and SHL commands.

- The ROR denotes a rotation to the right.

- The ROL denotes a rotation to the left.

- The SHR denotes a logical shift to the right.

- The SHL denotes a logical shift to the left.

The shifting and rotation operations are performed in a single cycle using barrel shifters.
Simple permutations can be done using the shift and rotation commands, however, there are
other commands that perform more complex permutations and therefore are grouped into the
Permutation group.

5. The Permutation group includes the EXTRACT and COMBINE FUs.

- The EXTRACT FU extracts a part, 4 bits, 8 bits, or 16 bits, of the incoming data and
sends it to the destination FUs. The location of the part being extracted is indicated by
the second operand of this operation.

- The COMBINE FU performs the opposite by combining data-parts, 4 bits, 8 bits, or 16
bits, and sending the result to the destination FUs.

These EXTRACT and COMBINE move-commands together with the shift and rotate com-
mands are used to perform complex permutations.

6. The MUX, REPLICATE and PUSHIMM commands are grouped into the Forwarding group
since they do not change the input value but they connect function units together.

- PUSHIMM allows the programmer to pass an up to 32-bit constant (immediate) value
with the move-command to the destination-FU. This command is important since the
immediate part in any other move-command is limited to five bits. Therefore, in the case
that the programmer needs to pass a constant value to a certain function unit that is
greater than five bits then the PUSHIMM command should be issued.

- REPLICATE FU moves the incoming data to the intended destination. A single move-
command can indicate up to two movements from the same source FU as shown in
Figure 2. The REPLICATE unit is useful in the case that a value is required to be
routed to more than two destinations. Instead of repeating the operation, data is moved
to the REPLICATE FU and there it can be routed to two different FUs including the
REPLICATE itself. This self-reference and the possibility to route to two destinations
make it possible to route data to any number of destinations.
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- The MUX FU is the only function unit with which conditional branching can be per-
formed. A destination FU is reached by either one of the two input operands of the
MUX FU based on the value of the third operand to the MUX FU. If the third operand
is all zeros then the first operand is routed to the destination FU; otherwise the second
operand is the one routed to the destination FU. The MUX is not needed to implement
any of the AES candidates but it is necessary for the implementation of multiple-precision
algorithms for the asymmetric cryptographic algorithms [20].
If-conditions are program sections that pose security vulnerabilities with respect to side-
channel attacks on control-oriented processors [1]. The vulnerability is in the fact that the
execution time of each of the if-condition branches is not equal, therefore the execution
time can reveal the value of the condition. In the GALS-based LPSP, the MUX FU
performs the if-conditions in a constant execution time regardless of the value of the
condition to countermeasure this security timing attack.

7. The last group of operations includes the reading and writing operations. Every cryptographic
algorithm has some parameters that should be saved in a certain store unit. The Block
Memory in Region 3 serves this purpose. This unit can be utilized to store the input data
block that is required to be encrypted/decrypted and also sub-keys and any other parameters.
The cryptographic algorithm uses this Block Memory to save the encrypted/decrypted block
at the end of execution. The reading from the Block Memory is performed by the READREG
command and the writing is performed by the WRITEREG command.

An additional store unit is added to the processor to store S-Boxes, which are the substitu-
tion boxes. These values are required by certain cryptographic algorithms and are sometimes
addressed in nibbles, like in the Serpent cryptographic algorithm. The reading from this store
unit is performed using the READSBOX command. The memory for the S-boxes is sepa-
rated from the Block Memory for two reasons; first because it can be addressed in nibbles
and the Block Memory is never addressed in nibbles and second because it is optional and
not all algorithm utilize it. This is one of the design parameters taken into consideration
for future implementation of dynamic reconfiguration at runtime. The dynamic reconfigura-
tion can reconfigure the FPGA area to include only those processor blocks required for the
implementation of a certain algorithm.

2.2 GALS Wrappers

The six regions inside the GALS-based LPSP communicate asynchronously using GALS-wrappers
utilizing a four-phase handshaking protocol. The design of these wrappers on an FPGA is not a
straight-forward solution since timing constraints on particular paths should be taken into consid-
eration for the correctness and stability of the circuit operation. The details of the design of the
wrappers are discussed in [8].

3 Secure Execution of the AES on the GALS-based LPSP

The AES [6] has been chosen as a case study in this paper since it is the current encryption standard
and since the Differential Power Analysis (DPA) attack forms a serious threat on its execution. In
the DPA attack, a theoretical model of the circuit of the processor executing the AES algorithm or
any other cryptographic algorithm is created. The power consumption of the theoretical model is
then estimated for all possible values of a part of the private key. This part of the private key can
be the eight most significant bits (MSB) as will be shown in the following subsections. On the other
hand, the power dissipated from the circuit or the processor under attack is measured in realtime
while it is performing the encryption algorithm. This measured power dissipation profile is affected
by the whole private key and not just part of it. Finally, a correlation between the measured power
dissipation and the estimated power dissipation is supposed to result in a single global peak at the
value of the part of the key that matches the same part of the key that was used in the realtime
encryption.
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Figure 3: Part of the power dissipated during the execution of the AES on the (synchronous) version
of the GALS-based LPSP.

In order to mitigate the DPA attack, it is required to reduce or eliminate the correlation between
the measured power dissipation and the estimated power dissipation. Therefore, we have equipped
the processor with two main features that increase its resistance to the DPA attacks. The first feature
is the employment of the GALS systems and the second is the unpredictable operation reordering
at the software and hardware layer.

3.1 GALS as a Countermeasure

In GALS systems, the decoupled regions operate at different clocks and therefore remove the global
power dissipation peaks of ordinary synchronous systems. The GALS-based LPSP is implemented
using a global clock source to imitate a synchronous architecture. This implementation has been
created in order to show the regular clock peaks in the synchronous version which do not appear in
the GALS version. Part of the power consumption of the synchronous version of the GALS-based
LPSP is shown in Figure 3. The power consumption for the same period of time but from the
GALS-based LPSP in GALS standard mode is measured and shown in Figure 4. It is clear how the
(synchronous) version shows periodical power dissipation peaks and that these peaks do not appear
in the (standard) version.

These clock peaks are usually used by DPA attackers to synchronize their theoretical model to
the real device under attack and thereby enhancing the correlation outcome. Therefore removing
these clock peaks complicate the DPA attack [18].

3.2 Randomization as a Countermeasure

In regard to the second feature that increases the processor’s resistance to DPA attack, we have
mentioned above that the tags and the buffers at each function unit give freedom to the order of
arrival of operands and move-commands. Therefore, a different order of arrival does not affect the
program semantic but affects the order of execution only. This feature is exploited to obscure the
power dissipated from the GALS-based LPSP. The reordering of the move-commands can be done
at the software layer by shuffling parts of the program and can be done at the hardware layer by
sending the results and the move-commands in different order.

On the hardware layer, results are sent to each function unit through interconnection networks.
There are two types of interconnection networks, one connecting the regions and is therefore called
the Global Interconnection Network (GIN), and another one connecting the function units inside a
single region and is therefore called the Local Interconnection Network (LIN). The GIN is shown
in Figure 1 in Region 6 and the LIN is shown in Region 2, 3, 4, and 5 as the lines connecting to
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Figure 4: Part of the power dissipated during the execution of the AES on the (standard) GALS-
based LPSP.

Region 6. These networks are not fully connected networks and therefore there is an arbiter inside
each interconnection network that arbitrates between contending requests. Each arbiter contains a
register, called Priority Register, with number of bits equal to the maximum possible requests.

The Priority Register holds a single logic-1 at a random location. The random location is decided
upon at the beginning of the algorithm execution, using the random number generator as in [15].
The location of the logic-1 denotes the request with the highest priority. The contents of this priority
register is rotated after each decision in order to allow for equal chances for the contending requests.
As a result, with every new execution, the priority registers are changed randomly and therefore the
arbitration results changes and consequently the order of execution changes.
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Figure 5: An excerpt of the AES dataflow graph with the request by EXT10 given a higher priority
than the request by RS5.

In Figure 5 an excerpt of the AES algorithm dataflow graph is shown. Each bubble carries the
name of the FU and a number signifying its tag. Connected to each bubble there is a box with the
start time of the operation in the bubble in nanoseconds. The timing data in this dataflow graph
is extracted from the Post-Place and Route simulation on the Xilinx hardware designing tool. The
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Figure 6: An excerpt of the AES dataflow graph with the request by RS5 given a higher priority
than the request by EXT10.

EXT stands for the EXTRACT unit, the RS stands for the READSBOX unit, the REP stands for
the REPLICATE unit and the GF stands for the GFMUL unit. The number following the FU’s
name stands for the tag value. The EXT10 and the RS5 start execution at the same time and since
they are located in the same region, they are expected to finish execution and request their results
to be routed at the same time. Their results are routed to function units inside the same region
and their requests will contend at the local interconnection network of this region. In Figure 5 the
request has been granted to EXT10, however in Figure 6 the request has been granted to RS5. The
different granting of requests results in different execution sequence and therefore results in different
power dissipation although the input data and the private key have not changed.

The AES algorithm constitutes of four major macro-operations, the AddRoundKey, the Sub-
Bytes, the ShiftRows and the MixColumns. The first macro-operation poses the highest vulnerabil-
ity to the execution of the AES against DPA attacks. In this operation the private key is Ex-Ored
with the input data that is required to be encrypted. Therefore, any power dissipated during this
operation can carry traces from the private key.

We have conducted the DPA attack on the GALS-based LPSP two times in two different modes.
The first time, the Priority Register is loaded each time an encryption is performed with the same
value and the program is never shuffled at the software layer. We call this mode, the GALS-based
LPSP with No Randomization. The second time, the Priority Register is loaded each time an
encryption is performed with a value that includes a single logic-1 but that is located randomly each
time in the Priority Register. This mode is called the GALS-based LPSP with Randomization.

We have performed the encryption for 10, 000 different plaintexts with the same private key and
acquired the power dissipation readings from the Xilinx XPower tool. We have averaged the acquired
power dissipation over the period of time when the AddRoundKey is executing and for each of the
plaintexts to acquire a Global Prediction Vector (GPV) with 10, 000 values.

The hardware model for the GALS-based LPSP has been used to calculate the number of transi-
tions in the eight MSBs of all registers inside the processor during the period of the AddRoundKey
process. In these calculations, we have controlled the eight MSBs of the private key by changing them
from 0 to 255. Hence, we have performed the 10, 000 encryptions with the same 10, 000 plaintexts
previously mentioned but 256 times for all possible eight MSB of the private key. These calculations
resulted in Selected Prediction Matrix (SPM) with 10, 000 rows and 256 columns.

The last step in the DPA attack is to correlate each of the columns in the SPM with the GPV.
This correlation results in 256 correlation coefficients. We have conducted this DPA attack twice,
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Figure 7: The 256 correlation coefficients for the 256 possible eight MSBs of the private key for the
128-bit AES encryption on the GALS-based LPSP in No Randomization mode.

as has been mentioned above. Figure 7 shows the Pearson correlation coefficients for the different
256 values of the eight MSBs of the private key while the processor is running in No Randomization
mode. There is a single peak at the value 43, which is pointed out in the graph in Figure 7. The
value 43 is the correct value of the eight MSBs of the private key that has been used in the encryption
that resulted in the first GPV. Therefore, the attack was successful and eight bits of the private key
have been recovered by the DPA attack. However, the GALS-based LPSP has been running in No
Randomization mode.

Figure 8, on the other hand, shows the Pearson correlation coefficients for the different 256 values
of the eight MSBs of the private key while the processor is running in Randomization mode. There
is no single peak and the correct part of the key, which is 43, has a low correlation coefficient as
pointed out in Figure 8.

The power dissipation changes during each encryption even if the plaintext and key have not
changed and this is due to the randomization introduced by every Priority Register in every Inter-
connection Network inside the processor. Figure 9 shows four different power dissipation profiles for
the same plaintext and key. It is for this reason that there is no correlation between the GPV and
SPM.

4 GALS-based LPSP Performance Analysis

The GALS-based LPSP shows great resistance to DPA attacks. Despite the fact that this is an
essential feature it cannot compensate for low performance. Therefore, in the following paragraphs
we show how we take high performance as the other important design dimension in our architectural
design. The three performance metrics considered in this paper are the throughput, the energy
consumption and the performance density.

The function units in the GALS-based LPSP are grouped into the execution regions according to
their execution latency as shown in Figure 10. Hence, the clock frequency of each regions is almost
close to the performance of every function units inside the region. This decision has been taken
to reduce the amount of idle time per each instruction and increase the concurrency between the
function units. Moreover, if a certain algorithm does not utilize a certain region then this region is
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Figure 8: The 256 correlation coefficients for the 256 possible eight MSBs of the private key for the
128-bit AES encryption on the GALS-based LPSP in Randomization mode.

shut down to reduce the total consumed power. The dataflow architectural model of the GALS-based
LPSP allows shutting down regions without affecting the operation of the processor.

There is couple of FUs that are grouped into regions that do not match their latency, such as
the EXTRACT FU. This decision has been taken because the EXTRACT FU communicates often
with the COMBINE, REG, and REPLICATE FUs. As a result, if these FUs were not combined in
the same regions then the Interconnection Network in Region 6 would have been greatly overloaded.
Consequently, the intercommunication between function units has been also partly considered in the
decision of grouping these FUs into regions.

In order to view the effect of the function unit grouping over the performance of the cryptographic
algorithms, we illustrate the interaction between the function units during the execution of five
cryptographic algorithms in Figure 11, 12, 13, 14, and 15.

Function units can communicate in an asynchronous fashion if they are located in two different
regions. Such interactions are denoted by dashed lines in Figure 11 through Figure 15.The dashed
lines implicitly mean the interaction of the Region 6 to move results from one region to another.

In the case that a function unit acts as a source of results to another function unit but never
receives results from the other function unit, then a blue arrow is drawn from the first to the second
function unit. However, if the first function unit receives also results from the second function unit,
then a black bidirectional arrow is drawn in between them.

Hence, figures from 11 to 15 show the opened channels (unidirectional and bidirectional) between
function units and the active function units for each algorithm execution. Executions that require
less number of FUs consume less power and execution that do not require all regions also save power
since the clock source to the idle region is disabled. Consequently, these figures give a rough idea
about the expected relative power consumption. However, they do not show which function units
operate in parallel and how many function units operate in parallel during the execution of the
cryptographic algorithm.

Figures 16 to 20 show the amount of FUs that operate in parallel every nanosecond. The more
function units operating in parallel, the more power is consumed at this unit time but the faster the
algorithm is executed. In Figure 16, for instance, there are five function units operating in parallel
several times during the AES execution unlike the RC6 execution (shown in Figure 17). However,
the RC6 execution has four function units operating in parallel for more percentage of the time than
in the AES execution. These differences can be inspected visually from the Figures 16-20, but in
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Figure 9: Power dissipated during the first 800 nanoseconds for four runs with the same algorithm,
same key, and same input data-block.

order to compare the parallel executions numerically, the average parallelism is calculated.

Avg.Parallelism =
∑EndofExecution

t=0 ParallelFU(t)
Total Execution Time

(1)

The average parallelism has been calculated using Equation 1 to summarize the information
given in the graphs showing the amount of parallelism exploited by each algorithm.

The average parallelism, execution time and the consumed dynamic power are given for each
algorithm in Table 2. According to the average parallelism factor, the TwoFish algorithm is the
algorithm that most exploits the current layout of the architecture. The RC6 is the algorithm that
consumes more power than any of the other illustrated algorithms, although it requires less FUs to
be executing in parallel than the Twofish. However, comparing the amount of used asynchronous
communication in Figure 12 and Figure 13, it can be seen that the RC6 algorithm requires more
asynchronous communications than the Twofish. The asynchronous communication is denoted by
the dashed lines and the bidirectional arrows are counted twice.

The amount of asynchronous communication between the function units affects the dissipated
power since it activates the Global Interconnection Network in Region 6 accordingly. The Ellip-
tic Curve Cryptography (ECC) is the other algorithm that is affected greatly by the amount of
asynchronous communications. The ECC has an average parallelism less than the three symmetric
encryption algorithms and even though it requires more power than two of them. This is due to
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Figure 10: Distribution of FUs over the execution regions.

the fact that the ECC has the largest amount of asynchronous communication among all these al-
gorithms. Again, the amount of asynchronous communication can be reduced by grouping the most
communicating function units into a single region although this will affect the execution time since
they would have to follow the same clock frequency.

Dissipated power can be reduced even more by allowing dynamic reconfiguration according to
the algorithm resource requirements. However, this feature is not employed in this implementation.
Nonetheless, it is worth noting that the architecture is flexible enough to allow the implementation
of such features.

5 Implementation Results

The Xilinx Integrated Software Environment is used to design the GALS-based LPSP starting from
the design entry using the hardware description language (VHDL) through to the device program-
ming using iMPACT tool. The entire implementation process has been performed on a 2.66 GHz
Intel CoreTM2 Quad Q6700 processor with 8 MB L2 Cache and 4 GB RAM.

The GALS-based LPSP occupies almost 70% of the Xilinx Virtex5 chip [24] (XC5VLX155T) area
as shown in Figure 21. Region 1 and Region 6 occupy the least areas while Region 3 and Region
4 occupy the greatest part of the area. Region 3 and Region 4 include the permutation and Galois
field operations which are complex and require a great amount of FPGA slices. The following report
states the area utilized by the processor and the equivalent gate count.

6 Comparisons

The predominant soft cores that have been adopted as a co-processor for security applications or
their internal architecture has been modified to accommodate new instructions for cryptographic
algorithms are the LEON2[22], LEON3[11,12], Xtensa LX2[21], Xtensa T1040[19], and CoreMP7[7].

In Table 4 the throughput of the AES encryption on 128-bit block with 128-bit key is given in
Mbps and normalized to 50MHz clock frequency. Results on soft cores that are flexible enough to be
programmed for any other cryptographic algorithm are taken. Results for optimized soft cores with
a special circuit that performs the whole AES algorithm or a whole round in the AES algorithm
are not taken since they do not reflect the performance of the soft core in the execution of any
cryptographic algorithm other than the AES.

The GALS-based LPSP performs at 10.13 Mbps and the next best throughput is 5.21 Mbps by
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Table 2: Performance of different algorithms.
AES RC6 Twofish RSA ECC

128-bit 128-bit 128-bit 1024-bit 163-bit
Encryption Encryption Encryption Signature Encryption

Generation

Execution Time [µsec] 12.64 3.01 14.66 774,000 413,560
Avg. Dynamic Power [mW ] 17.2 36.01 19.33 9.37 29.25
Avg. Parallelism 1.68 1.75 1.91 1.06 1.47

Table 3: Design Summary.
Slice Logic Utilization:

Number of Slice Registers: 30,544 out of 97,280 31%
Number used as Flip Flops: 30,532
Number used as Latches: 12
Number of Slice LUTs: 41,986 out of 97,280 43%

Slice Logic Distribution:

Number of occupied Slices: 17,273 out of 24,320 71%
Number of LUT Flip Flop pairs used: 57,068
Number of fully used LUT-FF pairs: 15,462 out of 57,068 27%
Total equivalent gate count for design: 1,530,820

Table 4: Throughput Comparison for the AES Encryption.
Cycles Throughput

[MB/s]

GALS-based LPSP 632 10.13
Baseline LEON2[22] 1673 3.83
Baseline LEON3[2] 40358 0.14
LEON3 with SPx[2] 30430 0.21
LEON3 with HWAccel[14] 1228 5.21
Baseline Xtensa LX2[21] 283000 0.02
Baseline Xtensa T1040[19] 24419 0.26
Xtensa with SPx[21] 2800 2.29
Xtensa ASIP[19] 1400 4.57
Baseline CoreMP7[7] 8400 0.76
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Figure 11: Interaction between function units during the AES execution.

the LEON3 soft-core with a hardware accelerator for the AES special functions. The effect of the
resonance between the AES cryptographic algorithm and the dataflow nature of the GALS-based
LPSP is evident by the high throughput.

Table 5: Energy Consumption Comparison for the AES Encryption.
Energy
[µJoule]

GALS-based LPSP 5.3
Baseline LEON3[2] 504.9
LEON3 with SPx[2] 184.5
LEON3 with HWAccel[14] 15.8
Baseline Xtensa LX2[21] 1681
Xtensa with SPx[21] 18.9
Baseline CoreMP7[7] 8.4

The GALS-based LPSP does not have a single clock generator and therefore a weighted average
of the execution frequency in each region is taken. The execution time of the AES encryption is then
multiplied by the power dissipated to calculate the energy in micro-Joule. The energy consumption
comparisons are given in Table 5. The GALS-based LPSP requires 5.3 µJoule and the next lowest
energy consumption is by the CoreMP7 which is 60% more.

Finally, the area occupied by each of the soft core processor is given in Table 6. The GALS-based
LPSP occupies 43,627 slices of the Virtex-5 chip which is equivalent to 1530 kilo-Gates as reported
by the Xilinx Mapper and shown in Section 5.

Performance Density =
Throughput(Mbps)

Area(kGates)
(2)
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Figure 12: Interaction between function units during the RC6 execution.
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Figure 13: Interaction between function units during the TwoFish execution.
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Figure 14: Interaction between function units during the RSA execution.
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Figure 15: Interaction between function units during the ECC execution.

72



International Journal of Networking and Computing

Figure 16: The amount of function units operating in parallel during the AES execution.

Figure 17: The amount of function units operating in parallel during the RC6 execution.

Figure 18: The amount of function units operating in parallel during the TwoFish execution.
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Figure 19: The amount of function units operating in parallel during the RSA execution.

Figure 20: The amount of function units operating in parallel during the ECC execution.

Table 6: Area and Performance Density Comparison for the AES Encryption.
Area Perf. Density

[kGates] [Bps/Gate]

GALS-based LPSP 1530 6.6
Baseline LEON3[2] 437 0.32
LEON3 with SPx[2] 531 1.14
Baseline CoreMP7[7] 423 1.80
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Figure 21: The Floorplan view of the placement on Xilinx Virtex5 (XC5VLX155T).
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The GALS-based LPSP occupies a large area due to the large number of buffers attached to each
function unit. However, this large area is effectively used and this is revealed by the performance
density. The performance density denotes the amount of throughput achieved by a certain area and
is given by Equation 2.

7 Conclusions and Future Work

In the presented work, it has been already demonstrated the possibility of implementing a new
architecture, the GALS-based LPSP, that enjoys the following outstanding advantages and features:

1. Lower energy consumption when compared with other soft cores that implement the same
cryptographic algorithms and this is shown in Table 5. The lower energy is achieved by the
implementation of the Globally-Asynchronous Locally-Synchronous interactions that allow the
decoupling of the execution regions and thereby disabling the clock sources to the idle regions.

2. Higher throughput when compared with other soft cores implementing cryptographic algo-
rithms. This is shown in Table 4. The high throughput is achieved by the architecture of the
GALS-based LPSP that allows any amount of function units to operate in parallel as required
by the algorithm. Moreover, the multiple clock sources let the function units operate at their
own pace and better utilize their clock period.

3. Immunity to Differential Power Analysis (DPA) attacks due to the implementation of the
GALS systems in the internal structure of the processor and the possibility of unpredictable
reordering of instructions without affecting the program semantic. The reordering does not
only happen on the level of instructions in the program but also on the level of the bypassed
results between the function units.

Moreover, the flexibility of the developed architecture allows the implementation of dynamic
reconfiguration. The dynamic reconfiguration can be used to rearrange or allocate and deallocate
function units either to reduce the energy consumption or to achieve higher throughputs while
keeping its immunity to DPA attacks. Realization and performance evaluation of the GALS-based
LPSP when using dynamic reconfiguration constitute a very interesting problem for future work.
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