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Abstract

The group signature with designated traceability (GSdT) is a kind of group signatures (GS)
which aim to restrict the opening authority of the group manager; by setting an access structure
over openers’ attributes at the signing, a signer is able to control openers who can open the
signature. A generic construction of GSdT was given when the notion was introduced, then
a pairing-based construction and a symmetric-key-based one were presented. Nonetheless, it
remains open whether a post-quantum GSdT with full anonymity can be truly constructed.

In this paper, we give a lattice-based GSdT scheme that has full anonymity for the first
time. In our construction, the lattice-based ciphertext-policy attribute-based encryption (CP-
ABE) by Tsabary and the lattice-based group signatures (GS) by Libert et al. are employed.
The CP-ABE is based on the Regev public-key encryption, while the GS uses a non-interactive
zero-knowledge proof to prove the correctness of the encryption in the signing process. Based
on the compatibility, we combine and modify them to build up a GSdT scheme.

Keywords: group signature, openers, attributes, lattices

1 Introduction

1.1 Background

The notion of group signature (GS) was proposed by Chaum and van Heyst [14]. The GS enables
group members to sign a message on behalf of the group. There are two representative properties on
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GS, called the anonymity and the traceability. The anonymity guarantees hide the signer’s identity;
that is, a signature does not reveal the actual signer in the group. The traceability allows an entity
called an opener, by using a trapdoor key, to identify the actual signer from the signature.

In a GS scheme, the opener can open all signatures and know each actual signer. This means
that the opener has excessive authority in the system. To resolve or mitigate this problem, several
approaches have been taken to restrict the opening ability appropriately. The group signature with
message-dependent opening [28] partially separates the opening functionality, which used to belong
to only the opener, into a new entity called an admitter. In the opening process, the admitter issues
a message-specific token that allows the opener to open a signature of the designated message. Then,
the opener opens the signature corresponding to the message to identify the actual signer by using
his secret opening key and the message-specific token. The notion of accountable tracing [25],[19]
aims to divide the group into two kinds of users: the one consists of users who can be traced and
the other consists of users who cannot be traced. Which one a user will be is determined at the
time that a user joins the group. However, the signers themselves cannot control the right to the
tracing. The bifurcated anonymous signatures [24] enable signers to choose whether a signature is
traceable or not at the signing. On the other hand, the opener no longer has the right to trace when
the signer generates an untraceable signature.

As one of the directions, we pay attention to the accountable ring signature that was initiated by
Xu and Yung [30]. The accountable ring signature allows the signer (in an ad hoc ring of signers) to
choose and determine an opener who can trace the signer. In other words, accountable ring signatures
are fully anonymous for all undesignated openers, whereas only the designated opener can know who
is the actual signer. Therefore, these signatures aim to guarantee the compatibility of the rights
between the anonymity and the traceability by involving the signer in the tracing functionality.
However, there is a risk that the opener will be revoked, and the designating signatures cannot be
opened.

To realize a flexible option of signers over openers, the group signature with designated traceabil-
ity (GSdT) was recently introduced [2, 3]. In GSdT, a signer can control a set of openers who can
open the signature by setting an access structure over openers’ attributes at the signing. GSdT has
an advantage over the accountable ring signature in the sense that a signer can designate multiple
openers via the access structure. Besides, the tracing functionality is maintained even when all the
openers are revoked because new openers with satisfying attributes can be added. In [2], [3], the
notion of GSdT is proposed and the generic construction is given from a ciphertext-policy attribute-
based encryption (CP-ABE), a digital signature and a non-interactive zero-knowledge proof (NIZK).
For specific constructions, a pairing-based construction [4] was given, and a symmetric-key-based
one [5] was proposed. Due to the symmetric-key primitives, the latter scheme is expected to be
secure against the computational power of quantum computers. However, the anonymity achieved
in [5] is weaker than the original definition of the anonymity of the GSdT [3]. In this sense, there
exists no GSdT yet that achieves both quantum-resistance and full anonymity.

1.2 Contributions

In this paper, we introduce the first lattice-based GSdT scheme that has full anonymity. Although
there exists a generic construction of GSdT from [2, 3], we take a different approach on the con-
struction. The generic construction of [2, 3] is in the sign-then-encrypt-then-prove paradigm like the
construction of the ordinary group signature [9]. We find that some lattice-based group signatures
such as [12, 20, 25, 10] are in the encrypt-then-prove paradigm, which are simpler constructions
than the generic construction of group signature. These constructions in the latter paradigm take
advantage of the compatibility of building blocks used. Thus, it is natural to explore constructions
in the latter paradigm.

We employ the lattice-based CP-ABE by Tsabary [29] and the lattice-based GS by [22] (LLMNW
GS) in our construction. These two schemes have a good feature in common when they are combined.
That is, they use the Regev public-key encryption (Regev PKE) [26]. Tsabary’s CP-ABE extends
the Regev PKE [26] into the CP-ABE case. On the other hand, the LLMNW GS uses the NIZK
proof which proves the correctness of the encryption by the Regev PKE. We can capture this feature
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in our GSdT construction as in the construction of group signatures in the encrypt-then-prove
paradigm. Our result is not only the first lattice-based GSdT scheme but also gives a new technique
for constructing a GSdT scheme. Since our construction is specific to the building blocks used, it
remains open whether or not we can generalize our construction for other cases.

We also compare the asymptotic efficiency of our proposed scheme with the lattice-based con-
struction, which is yielded by applying the generic construction [3] to the Tsabary CP-ABE and
the pair of the signature and the NIZK which is the same as LLMNW GS, and the GSdT from
symmetric-key primitives [5]. As a result, we can find that the sizes of a group public key, an open-
ing key, a group secret key and a group signature of ours are significantly shorter than those of [3].
Moreover, the computational times of joining, signing, opening and judging are asymptotically more
efficient than theirs. On the other hand, ours realizes a post-quantum construction in the (partially)
dynamic model [9] as the original syntax by [3] for the class of access structures richer than [5].
Moreover, the sizes of keys for ours are independent of the size of the attribute universe.

We finally note one limitation of our construction. Access structures supported in our GSdT are
only conjunctive normal forms whose clauses have t bits of input (t-CNF). Constructing lattice-based
GSdT with richer access structures is another interesting open question.

1.3 Difference from Our Conference Proceeding [6]

We give full proofs for all the security requirements of our proposed GSdT. We also give all syntax and
security definitions of sub-algorithms. Note that we slightly revise the definition of the anonymity
from [6] so that we eliminate an opener who can open the target group signature. This modification
seems natural since such an opener trivially breaks the anonymity. Finally, we revise the asymptotic
evaluation of our proposed GSdT. In the proceeding version, we have evaluated the efficiency by
using all the parameters displayed in Table 1. On the other hand, we reevaluate them based solely
on the security parameter λ and the parameters independent of λ such as the number of group
members, the lengths of attributes and access structures. We also add the comparison with the
GSdT from symmetric-key primitives [5].

2 Preliminaries

Let N, Z and R be the sets of all natural numbers, integers and real numbers, respectively. For any
integers a ≤ b, [a, b] ⊆ Z stands for the set of all integers x satisfying a ≤ x ≤ b. For any natural
number a, [±a] denotes the set [−a, a]. For any a ∈ Z and any positive odd number N , a mod ±N
means that x = a mod N such that its representation is in the range [±(N − 1)/2].

Let b ∈ Zn be a vector with n dimensions. Suppose that b ∈ Zn is a row vector. We write ∥b∥2
and ∥b∥ to denote the Euclidean norm and the infinite norm of b, respectively. bT is the transpose of

b. bin(b) stands for the binary representation of b. For any a ∈ N, an means
[
a a · · · a

]T ∈ Zn.
Any string s ∈ {0, 1}n can be decomposed into s[1], . . . , s[n], where s[i] is the i-th bit of s.

For any vectors a, b ∈ Zn, we denote by [a|b] ∈ Zn×2 the concatenation of the columns of a

and b.

[
a
b

]
∈ Z2n means the concatenation of the rows of a and b. The similar notations are also

used for matrices. For any full column-rank matrix B ∈ Rn×m, B̃ stands for the Gram-Schmidt
orthogonalization.

For any distribution D over a set X, we write x←$ D to denote that x ∈ X is sampled according
to D. In particular, we simply represent x ←$ X when D is the uniform distribution over a finite
set X. For any real number ϵ ≥ 0, and any parameterized ensembles (D1,λ)λ∈N and (D2,λ)λ∈N of
distributions over sets Xλ, we say that (D1,λ)λ∈N is ϵ-close to (D2,λ)λ∈N if the statistical distance
(1/2)

∑
x∈Xλ

|D1,λ(x)−D2,λ(x)| = ϵ(λ) for sufficiently large λ. A function ϵ is said to be negligible
in λ if for any polynomial p, there exists λ0 ∈ N such that ϵ(λ) < 1/p(λ) for any λ ≥ λ0. When
(D1,λ)λ∈N is ϵ-close to (D2,λ)λ∈N for some negligible function ϵ, (D1,λ)λ∈N is statistically close to
(D2,λ)λ∈N. “probabilistic polynomial time” and “deterministic polynomial time” are abbreviated to
PPT and DPT, respectively.
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2.1 Lattices

Let m ≥ n ≥ 1, and let q be a prime. A lattice L in Rn with basis b1, . . . , bm ∈ Zn is defined by
all integer linear combinations of the m basis b1, . . . , bm. For any matrix A ∈ Zn×mq and any vector
u ∈ Znq , we set the following:

Λq(A) =
{
e ∈ Zm | ∃s ∈ Znq s.t. ATs = e mod q

}
,

Λ⊥q (A) = {e ∈ Zm | Ae = 0 mod q}, and
Λu
q (A) = {e ∈ Zm | Ae = u mod q}.

Let L ⊆ Rm be a lattice, let c ∈ Rn and let σ > 0 be a real number. We set ρσ,c(x) =

exp(−π∥x− c∥2/σ2). Then, the discrete Gaussian distribution DL,σ,c of support L, standard devi-
ation σ and center c is ρσ,c(y)/ρσ,c(L) for any y ∈ L. We simply represent DL,σ when c = 0n. It
is known that the probability that the infinite norm of x←$DL,σ is less than σ

√
m is greater than

1− 2Ω(m) [7].
We use the following algorithms in our proposed scheme.

� TrapGen(1n, 1m, q) [1]: Given 1n, 1m and q > 2 with m ≥ Ω(n log q), it generates a matrix
A ∈ Zn×mq and a basis TA of Λ⊥q (A) such that the distribution of A is 2−Ω(n)-close to the

uniform distribution over Zn×mq and
∥∥∥T̃A

∥∥∥ ≤ O(
√
n log q).

� ExtBasis(A,TA) [13]: Given A ∈ Zn×m of the form A = [A|A′] and a basis TA of Λ⊥q (A), it

returns a basis TA of Λ⊥q (A) with
∥∥TA

∥∥ ≤ ∥TA∥.

� SamplePre(A,TA,u, σ) [16]: Given A ∈ Zn×mq , a basis TA of Λ⊥q (A), σ ≥
∥∥∥T̃A

∥∥∥ · ω(√logm)

and u ∈ Zn, it returns e←$DZm,σ conditioned on Ae = u mod q.

For convenience of expression, a matrix U = [u1 | · · · | um] ∈ Zn×mq can be given to
SamplePre instead of a vector u ∈ Zn. In this case, SamplePre generates a vector ej ←$

SamplePre(A,TA,uj , σ) for any j ∈ [1,m], and then returns the matrix E = [e1 | · · · | em].

We employ the following cryptographic assumptions.

� Short Integer Solution (SISn,m,q,β) Assumption: Let n, m, q and β be functions in λ ∈ N. The
SISn,m,q,β assumption states that any PPT adversary A can find a non-zero vector x ∈ Λ⊥q (A)
with ∥x∥ ≤ β with at most negligible probability in λ given a randomly chosen matrix A ←$

Zn×mq .

� Decisional Learning with Errors (LWEn,q,χ) Assumption: Let n and q be functions in λ, and
let χ be a distribution over Z. The LWEn,q,χ assumption states that any adversary A can
distinguish whether given vectors (A, t) are generated by the following two distributions:

– A←$ Zn×mq ; t←$ Zmq
– A←$ Zn×mq ; s←$ Znq ; e←$ χm; t← ATs+ e.

We designate a B-bounded distribution as χ, namely χ samples a vector whose infinite norm is
less than B, and a B′-bounded distribution as χ′ for B ≥

√
nω(log n) and B′(λ) = B(λ) · λω(1).

Concrete distributions were introduced in [29].

2.2 Group Signatures with Designated Traceability

We recap the notion of group signature with designated traceability (GSdT) [3]. Designating the
openers is realized by specifying an access policy on attributes. Let U be an attribute universe. We
write Y (X) = 1 to denote that an attribute X satisfies an access policy Y .
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2.2.1 Syntax

Entities of GSdT are an issuer I, an opening master OM, openers OPj and users Ui. GSdT GSdT
consists of the following algorithms and a protocol:

� GKG(1λ,U): This is a PPT key generator. Given a security parameter 1λ and an attribute
universe U, it returns a group public key gpk, an issuing key ik and an opening master key
omk. Then, ik and omk are owned by I and OM, respectively. Suppose that the registration
table reg for the group is initialized.

� OKG(gpk, omk, j,X): This is a PPT opener key generator run by OM. Given a group public
key gpk, an opening master key omk, an index j of OPj and OPj ’s attribute X, it returns an
opening key okj of OPj with respect to the attribute X.

� UKG(1λ): This is a PPT user key generator for Ui which is used to generate a key pair (upk, usk)
that is required to join a group. Given a security parameter 1λ, it returns a user public key
upk and its user secret key usk. Suppose that upk is publicly certified e.g. in the PKI.

� Joining Protocol: When a user Ui of index i owning a key pair (upki, uski) wants to join a
group, the interactive joining protocol must be run between a user Ui and the issuer I. Since
the joining protocols of many dynamic group signatures [9, 3] have only 2 moves, we only
consider 2 moves joining protocol like Fig. 1. The interfaces of the three algorithms used
in the joining protocol are specified as Join1(gpk, i, upki, uski), Iss(gpk, ik, i, upki, reg,M1) and
Join2(st,M2).

Given a group public key gpk, Ui’s index i and Ui’s key pair (upki, uski), Join1 returns a state
st and a first message M1 sent to I. Given a group public key gpk, an issuer key ik, Ui’s index
i, the user public key upki, the registration table reg and the first message M1, Iss returns
an updated registration table reg and a second message M2 if the input tuple is appropriate.
Given the state st and the second message M2, Join2 returns a group secret key gski for Ui. Ui
stores his/her group secret key gski and I stores the updated registration table reg.

� GSig(gpk, gski, Y, µ): This is a PPT group signing algorithm run by a joined user Ui of index i
with secret key gski. Given a group public key gpk, the group secret key gski, an access policy
Y and a message µ, it returns a signature Σ = (Y,Σ0) of µ under gpk. The signer of Σ can be
traced only by openers owning the attribute that satisfies Y .

� GVf(gpk, µ, (Y,Σ0)): This is a DPT verifying algorithm. Given a group public key gpk, a
message µ and a signature Σ = (Y,Σ0), it returns 1 if and only if Σ is a valid signature of µ
under gpk.

� Open(gpk, okj , reg, µ, (Y,Σ0)): This is a PPT opening algorithm run by OPj and opening key
okj . Given a group public key gpk, the opening key okj with respect to the attribute X, a
registration table reg, a message µ and a signature (Y,Σ0), it returns an index i of the traced
signer and a proof τ proving that the opening process is indeed honest.

� Judge(gpk, i, upki, µ, (Y,Σ0), τ): This is a DPT judging algorithm in the sense that it judges
the honesty of an opening process. Given a group public key gpk, an index i of a traced user,
user’s public key upki, a message µ, a signature (Y,Σ0) and a proof τ , it returns 1 if and only
if τ is a valid with respect to the signature (Y,Σ0) and the opening result (i, upki).

2.2.2 Security

The following four security notions were defined in [3]. Before that, we recap the oracles used in the
definitions of these security notions.
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Ui(gpk, i, upki, uski) I(gpk, ik, i, upki, reg)

(st,M1)←$ Join1(gpk, i, upki, uski)
M1 (reg,M2)←$ Iss(gpk, ik, i, upki, reg,M1)

gski ←$ Join2(st,M2) M2 update reg

Figure 1: Joining Protocol

Oracles The stateful oracles used in the security notion are listed in the following way. The
states are the honest openers set HO, the honest users set HU , the corrupted openers set CO, the
corrupted users set CU , the user public key table upk, the user secret key table usk, the group
secret key table gsk, the opener key table ok, the registration table reg, the challenged message and
signature set MS, the state list stJoin for (Join1, Join2) and the state list stIss for Iss, respectively.

� Add-opener oracle AddOO(j,X): It registers a new opener OPj of index j with the attribute
X in a way that the honest openers set HO is updated to HO ∪ {j} and its opener key is
generated as ok[j]← OKG(gpk, omk, j,X) if for any (m, (Y,Σ0)) ∈MS, Y (X) ̸= 1.

� Add-user oracle AddUO(i): It registers a new user Ui of index i /∈ HU∪CU . Namely, it updates
the honest users set HU as HU ← HU ∪ {i}, generates user’s key pair (upk[i],usk[i]) ←$

UKG(1λ) and then runs the joining protocol by sequentially executing the followings:

(st,M1)←$ Join1(gpk, i,upk[i],usk[i])

(reg,M2)←$ Iss(gpk, ik, i,upk[i], reg,M1)

gsk[i]←$ Join2(st,M2)

Then, stJoin[i] ← (gpk, i,upk[i],usk[i]) as the initialization of StoUO on i which will be ex-
plained soon later. Finally, AddUO returns upk[i].

� Send to user oracle StoUO(i,Min): If i /∈ HU , then it initializes the user Ui of index i
in a sense that it sets HU ← HU ∪ {i}, (upk[i],usk[i]) ←$ UKG(1λ), and stJoin[i] ←
(gpk, i,upk[i],usk[i]). When Min = ϵ, StoUO executes the followings:

(st,Mout)←$ Join1(gpk, i,upk[i],usk[i])

stJoin[i]← st

Contrary, it executes the followings:

Mout ←$ Join2(stJoin[i],Min)

gsk[i]←Mout

stJoin[i]← (gpk, i,upk[i],usk[i])

Either way, it returns Mout.

� Send to issuer oracle StoIO(i,Min): StoIO is executed only for a corrupted user, i.e. i ∈ CU .
It executes (reg,Mout)←$ Iss(gpk, ik, i,upk[i], reg,Min), and then returns Mout.

� Corrupt opener oracle CrptOO(j): It returns the opener key ok[j] of the opener OPj of index
j if j ∈ HO and for any (m, (Y,Σ0)) ∈ MS, Y (X) ̸= 1 for (X, ok0) ← ok[j]. Then, CO is
updated to CO ∪ {j}.

� Corrupt user oracle CrptUO(i, upk): CrptUO corrupts a user Ui of index i /∈ HU ∪ CU by
setting CU ← CU ∪ {i}, upk[i]← upk and stIss[i]← (gpk, ik, i, upk).

� User secret key oracle USKO(i): It returns the secret keys (usk[i],gsk[i]) of Ui.
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� Group signing oracle GSignO(i, Y, µ): It returns a group signature (Y,Σ0) of a given message µ
under a given access policy Y by a group secret key gsk[i] of a given index i ∈ HU of an honest
user which has been already generated by using either AddUO or StoUO. More specifically,
(Y,Σ0)←$ GSig(gpk,gsk[i], Y, µ).

� Opening signature oracle OpenO(j, µ, (Y,Σ0)): It returns the opening result from the opener
OPj of the given index j by Open(gpk, ok[j], µ, (Y,Σ0)) only when the given pair (µ, (Y,Σ0))
does not belong to the set MS.

� Read registration table oracle RRegO(i): It returns reg[i].

� Write registration table oracle WRegO(i, ρ): WRegO sets reg[i]← ρ.

� Challenge for b ∈ {0, 1} oracle ChaOb(i0, i1, µ, Y ): For user’s indices i0, i1 ∈ HU satisfying
that gsk[i0] ̸= ϵ and gsk[i1] ̸= ϵ, and an access policy Y such that Y (X) ̸= 1 for any
j ∈ HO ∪ CO and (X, ok0) ← ok[j], ChaOb returns Σ ←$ GSig(gpk,gsk[ib], µ) with updating
MS ←MS ∪ {(µ,Σ)}.

Correctness GSdT is ν-correct [3] if for any PPT adversary A,

Pr
[
ExpcorrGSdT,A,U(λ) = 1

]
≥ 1− ν(λ),

where ExpcorrGSdT,A,U is depicted as follows:

ExpcorrGSdT,A,U

(gpk, ik, omk)←$ GKG(1λ,U); HO ← ∅; HU ← ∅; CO ← ∅
upk← ∅; usk← ∅; gsk← ∅; ok← ∅; reg← ∅; stJoin ← ∅; stIss ← ∅
(i, µ, Y )←$AAddOO,AddUO,RRegO(gpk)

return 0 if i /∈ HU ∨ gsk[i] = ϵ

Σ←$ GSig(gpk,gsk[i], Y, µ)

return 1 if GVf(gpk, µ,Σ) ̸= 1

OSY ← {j ∈ HO | Y (X) = 1 for (X, ok)← ok[j]}
for j ∈ OSY :

(i′, τ)←$ Open(gpk,ok[j], reg, µ,Σ)

return 1 if i ̸= i′ ∨ Judge(gpk, i,upk[i], µ,Σ, µ) ̸= 1

return 0

Anonymity GSdT is (Tanom, ϵanom)-anonymous [3] if for any adversary A running in time Tanom,
we have ∣∣Pr[Expanom-0

GSdT,A,U(λ) = 1
]
− Pr

[
Expanom-1

GSdT,A,U(λ) = 1
]∣∣ ≤ ϵanom(λ),

where Expanom-b
GSdT,A,U for b ∈ {0, 1} is depicted as follows:

Expanom-b
GSdT,A,U

(gpk, ik, omk)←$ GKG(1λ,U); HO ← ∅; HU ← ∅; CO ← ∅; CU ← ∅
upk← ∅; usk← ∅; gsk← ∅; ok← ∅; reg← ∅; MS ← ∅; stJoin ← ∅; stIss ← ∅
d←$AChaOb,AddOO,OpenO,StoUO,WRegO,USKO,CrptOO,CrptUO(gpk, ik)

return d
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Traceability GSdT is (Ttrac, ϵtrac)-traceable [3] if for any adversary A running in time Ttrac, we
have

Pr
[
ExptracGSdT,A,U(λ) = 1

]
≤ ϵtrac(λ),

where ExptracGSdT,A,U is depicted as follows:

ExptracGSdT,A,U

(gpk, ik, omk)←$ GKG(1λ,U); HO ← ∅; HU ← ∅; CO ← ∅
upk← ∅; usk← ∅; gsk← ∅; ok← ∅; reg← ∅; stJoin ← ∅; stIss ← ∅
(µ, (Y,Σ0))←$AStoIO,AddUO,RRegO,USKO,CrptUO(gpk, omk)

return 0 if GVf(gpk, µ, (Y,Σ0)) ̸= 1

find X s.t. Y (X) = 1; ok←$ OKG(gpk, omk, 0, X)

(i, τ)← Open(gpk, ok, reg, µ, (Y,Σ0))

return 1 if i = 0 ∨ Judge(gpk, i,upk[i], µ, (Y,Σ0), τ) ̸= 1

else return 0

Non-frameability GSdT is (Tnf , ϵnf)-non-frameable [3] if for any adversary A running in time Tnf ,
we have

Pr
[
ExpnfGSdT,A,U(λ) = 1

]
≤ ϵnf(λ),

where ExpnfGSdT,A,U is depicted as follows:

ExpnfGSdT,A,U

(gpk, ik, omk)←$ GKG(1λ,U); HO ← ∅; HU ← ∅; CO ← ∅
upk← ∅; usk← ∅; gsk← ∅; ok← ∅; reg← ∅; stJoin ← ∅; stIss ← ∅
(µ, (Y,Σ0), i, τ)←$AStoUO,WRegO,GSignO,USKO,CrptUO(gpk, ik, omk)

return 1 if i ∈ HU ∧ gsk[i] ̸= ϵ ∧ Judge(gpk, i,upk[i], µ, (Y,Σ0), τ) = 1

∧ i is not queried to USKO ∧ (i, µ) is not queried to GSignO

else return 0

3 Building Blocks

Before introducing our proposed GSdT, we prepare several sub-algorithms of the proposed lattice-
based GSdT. The sub-algorithms contain the lattice-based signature scheme DS by [11], the Stern-like
non-interactive zero-knowledge argument (NIZKAoK) NIZK by [22], and the lattice-based ciphertext-
policy attribute-based encryption (CP-ABE) ABE by [29].

3.1 Digital Signature Part DS

3.1.1 Definition of Digital Signature

A digital signature DS consists of the following three algorithms.

� SKGen(1λ): This is a PPT key generator. Given a security parameter 1λ, it returns a public
key pk and a corresponding secret key sk.

� Sign(sk, µ): This is a PPT signing algorithm. Given a secret key sk and a message µ, it returns
a signature Σ.
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SKGen(1λ)

(A,TA)←$ TrapGen(1n, 1m, q)

for t ∈ [1, ℓ] : At ←$ Zn×mq

u←$ Znq
D ←$ Zn×mq ; D0,D1 ←$ Z2n×2m

q

pk← (A, {At}t∈[1,ℓ],D,D0,D1,u)

sk← TA

return (pk, sk)

Sign(sk, µ)

τ = (τ [1], τ [2], . . . , τ [ℓ])←$ {0, 1}ℓ

Aτ ← [ A A0 +
∑ℓ
t=1 τ [t]At ]

Tτ ←$ ExtBasis(Aτ ,TA)

s←$DZ2m,σ′ ; c←D0s+D1µ

γ ← bin(c); uµ ← u+D · γ
d←$ SamplePre(Aτ ,Tτ ,uµ, σ)

return Σ← (τ,d, s)

Vf(pk, µ,Σ)

uµ ← u+D · bin(D0s+D1µ)

return 1 if ∥d∥ < σ
√
2m ∧ ∥s∥ < σ′

√
2m ∧Aτd = uµ mod q

Figure 2: Digital Signature Part DS (The message space is {0, 1}2m)

� Vf(pk, µ,Σ): This is a DPT verification algorithm. Given a public key pk, a message µ and a
signature Σ, it returns 1 if and only if Σ is valid under (pk, µ).

DS = (SKGen,Sign,Vf) has the following properties.

Correctness: For any (pk, sk) ←$ SKGen(1λ), any message µ, and any signature Σ ←$ Sign(sk, µ),
it always holds that Vf(pk, µ,Σ) = 1.

EUF-CMA: We say that DS is (TDS, ϵDS)-EUF-CMA if for any adversary A running in time TDS,
we have

Pr
[
ExpEUF-CMA

DS,A (λ) = 1
]
≤ ϵDS(λ),

where ExpEUF-CMA
DS,A is formalized as follows:

ExpEUF-CMA
DS,A

M ← ∅; (sk, pk)←$ SKGen(1λ)

(µ∗,Σ∗)←$AOsig(pk)

return 1 if µ∗ /∈M ∧ Vf(pk, µ∗,Σ∗) = 1

Osig(µ)

M ←M ∪ {µ}
return Σ←$ Sign(sk, µ)

3.1.2 BHJKS DS

Our underlying signature DS = (SKGen,Sign,Vf) is given in Fig. 2 with the parameters in Tab. 1.

Lemma 1 ([11]). DS is correct, and it is (T, ϵ)-EUF-CMA under the SISn,m,q,β assumption, where
T = poly(λ) and ϵ = negl(λ).

3.2 NIZKAoK Part NIZK

3.2.1 Definition of NIZK

Let RNIZK ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation. Suppose that the membership of RNIZK can
be verified in polynomial-time on the length of a pair (it,wt). In this paper, we only consider a
non-interactive zero-knowledge proof of knowledge (NIZK) in the random oracle model. A labeled
NIZK NIZK = (P, V ) for RNIZK consists of the following two algorithms:
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� P (it,wt, lbl): It is a PPT prover algorithm. Given an instance it, its witness wt such that
(it,wt) ∈ RNIZK and a label string lbl ∈ {0, 1}∗, it returns a proof π.

� V (it, π, lbl): It is a DPT verifier algorithm. Given an instance it, a proof π and a label string
lbl, it returns 1 if and only if π is valid.

NIZK = (P, V ) has the following properties [15], where LRNIZK
= {it | ∃wt s.t. (it,wt) ∈ RNIZK}:

Perfect Completeness For any (it,wt) ∈ RNIZK, any label string lbl ∈ {0, 1}∗, and any π ←$

P (it,wt, lbl) we have V (it, π, lbl) = 1.

(Ts, ϵs)-Soundness For any it /∈ LRNIZK
, any adversary P̃ running in time Ts, any label string lbl,

and any cheating proof π ←$ P̃ (it, lbl), we have V (it, π, lbl) = 1 with probability at most ϵs.

(Tzk, ϵzk)-Zero-Knowledge in Random Oracle Model There exist a PPT simulation algorithm
Sim = (SimH,SimP ) such that for any PPT adversary A running in time Tzk, it holds that∣∣∣Pr[AH,PH

(1λ) = 1
]
− Pr

[
ASimH ,SimP (1λ) = 1

]∣∣∣ ≤ ϵzk(λ),
where H denotes the random oracle, and PH(it, lbl) returns π ←$ P (it,wt, lbl) for the witness
wt corresponding to the given instance it.

(Tss, ϵss)-Simulation-Soundness with respect to Simulator (SimH,SimP ) For any adversaryA
running in time Tss, it holds that

Pr
[
ExpssNIZK,A(λ) = 1

]
≤ ϵss(λ),

where ExpssNIZK,A is depicted as follows:

ExpssNIZK,A

(it, lbl, π)←$ASimH,OP(1λ)

return 1 if it /∈ LRNIZK ∧ (it, lbl, π) /∈ T ∧ V SimH(it, lbl, π) = 1

OP(it, lbl)

return π ←$ SimP (it, lbl)

T ← T ∪ {(it, lbl, π)}

(Text, νext)-Weak-Simulation-Extractability with respect to Simulator (SimH,SimP ) For any
adversary A running in time Text, there exist an extraction algorithm Ext = (Ext1,Ext2), a con-
stant d > 0 and a polynomial p such that

ext ≥ 1

p
(acc− νext)d,

where

acc = Prr←${0,1}ℓ(λ)

[
it ∈ LRNIZK

∧ V SimH(it, lbl, π) = 1 | (it, lbl, π)← ASimH,SimP (1λ; r)
]

ext = Prr←${0,1}ℓ(λ)

[
(it,wt) ∈ RNIZK ∧ V SimH(it, lbl, π) = 1 | (st, it, lbl, π)← ExtA

SimH,SimP

1 (1λ; r);
wt← Ext2(st, it, lbl, π, r)

]
.

ϵwi-statistical-Witness-Indistinguishability [17] For instance it ∈ LNIZK and any distinct wit-
ness wt1,wt2 of it any unbounded adversary A, we have∣∣∣AP (it,wt1)(1λ)−AP (it,wt2)(1λ)

∣∣∣ ≤ ϵwi(λ).
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P ((P ,v),x, lbl)

for j ∈ [1, κ] :

rj ←$ ZLq ; yj ← x+ rj ; πj ←$ S; ρj,1, ρj,2, ρj,3 ←$ {0, 1}η

cmtj =

Cj,1Cj,2
Cj,3

←
COM(πj ,Prj ; ρj,1)
COM(Tπj

(rj); ρj,2)
COM(Tπj

(yj); ρj,3)


{chaj}j∈[1,κ] ← H({cmtj}j∈[1,κ], (P ,v), lbl)

for j ∈ [1, κ] :

resj = (Rj , R
′
j , ρj , ρ

′
j)←


(Tπj

(x), Tπj
(rj), ρj,2, ρj,3) chaj = 1

(πj ,yj , ρj,1, ρj,3) chaj = 2

(πj , rj , ρj,1, ρj,2) chaj = 3

return π = {(cmtj , resj)}j∈[1,κ]

V ((P ,v), {(cmtj , resj)}j∈[1,κ], lbl)

{chaj}j∈[1,κ] ← H({cmtj}j∈[1,κ], (P ,v), lbl){
((Cj,1, Cj,2, Cj,3), (rj , r

′
j , ρj , ρ

′
j))

}
← {(cmtj , resj)}j∈[1,κ]

for j ∈ [1, κ] :

return 0 if


rj /∈W ∨ Cj,2 ̸= COM(r′j ; ρj) ∨ Cj,3 ̸= COM(rj + r′j ; ρ

′
j) chaj = 1

Cj,1 ̸= COM(Trj ,P r
′
j − v; ρj) ∧ Cj,3 ̸= COM(Trj (r

′
j); ρ

′
j) chaj = 2

Cj,1 ̸= COM(Trj ,P r
′
j ; ρj) ∧ Cj,2 ̸= COM(Trj (r

′
j); ρ

′
j) chaj = 3

return 1

Figure 3: (Labeled) NIZK part NIZK

3.2.2 Abstract Stern NIZK

Binary Relation Let Tπ be a permutation parameterized by π ∈ S in a sense that for any π ∈ S,
Tπ : {−1, 0, 1}L → {−1, 0, 1}L is a permutation. The relation for NIZK is

RNIZK =
{
((P ,v),x) ∈ ZD×Lq × ZDq ×W : Px = v mod q

}
,

where, W is a subset of {−1, 0, 1}L satisfying that

� for any π ∈ S, x ∈W if and only if Tπ(x) ∈W, and

� if x ∈W ∧ π ←$ S, then Tπ(x) is uniformly distributed over W.

Protocol of NIZK A NIZK NIZK = (P, V ) employed in our proposed GSdT is given in Fig. 3,
where COM is the SIS-based commitment scheme [18], H : {0, 1}∗ → {1, 2, 3} is a hash function, and
κ denotes the iteration time.

Lemma 2 ([11, 27]). NIZK = (P, V ) is perfectly complete, (Ts, ϵs)-sound, (Tzk, ϵzk)-zero-knowledge
in the random oracle model for the simulator (SimH,SimP ), (Tss, ϵss)-simulation-sound with re-
spect to (SimH,SimP ), and (Text, νext)-weakly-simulation-extractable with respect to (SimH,SimP ),
ϵwi-statistically-witness-indistinguishable, where Ts, Tzk, Tss and Text are polynomials, and ϵs, ϵzk,
ϵss, νext and ϵwi are negligible in λ.

Representation of Instances and Witnesses A witness x proven by NIZK should be in W.
On the other hand, we employ NIZK to prove the knowledge of elements in [±B] for some constant
B and bit strings. [22] proposed conversions for the following types:
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(Type 1) x ∈ [±B]m into W

(Type 2) x ∈ {0, 1}m into W

(Type 3)

d · b[1]...
d · b[n]

 ∈ [±β]mn for (d, b) ∈ [±β]m × {0, 1}n into W

We recap the conversion of such elements into the ones in W. For any m ∈ N, let Sm be the
symmetric group of order m. For any d ∈ [±β]m and any b ∈ {0, 1}n, we defined db asd · b[1]...

d · b[n]

 ∈ [±β]mn.

(Type 1) Conversion of x ∈ [±B]m into W Let δB = ⌊log2B⌋+1, and let B
(3)
mδB

be the set

of all vectors {0, 1}3mδB whose mδB elements are j for each j ∈ {−1, 0, 1}. There exists an algorithm

DecExtm,B that converts x = (x1, . . . , xm)T ∈ {0, 1}m into x̂ ∈ B(3)
mδB

[22].

(Type 2) Conversion of x ∈ {0, 1}m into W Let B
(2)
m be the set of all vectors in {0, 1}2m

such that m elements in each vector are 1, and the others are 0. Then, an algorithm Ext converts

x ∈ {0, 1}m into

[
x
x

]
∈ B(2)

m . We can see that x̂ ∈ B(2)
m if and only if ρ(x̂) ∈ B(2)

m for any permutation

ρ ∈ S2m. By defining the permutation Tρ(x̂) = ρ(x̂) for each ρ ∈ S2m, B
(2)
m with the set S2m satisfies

the conditions on W.
In a similar manner to the above case, we can observe that B

(3)
mδB

with the set ϕ ∈ S3δB satisfies
the conditions on W.

(Type 3) Conversion of db for (d, b) ∈ [±β]m×{0, 1}n An algorithm IDecExtn,m,β converts

(d, b) into d̂b̂ ∈ B(4)
n,m,β for d̂← DecExtm,δB (d) and b̂← Extm(b), where

B
(4)
n,m,β = {d̂b̂ | d ∈ [±β]m, b ∈ {0, 1}n, d̂← DecExtm,δB (d), b̂← Extm(b)}.

Then, for (ψ, ρ) ∈ S3mδB × S2n, we define the parameterized permutation T(ψ,ρ) by

T(ψ,ρ)


 d̂ · b̂[1]

...

d̂ · b̂[2n]


 =

 ψ(d̂) · b̂[ρ(1)]
...

ψ(d̂) · b̂[ρ(2n)]

 .
B

(4)
n,m,β with the parameterized permutation T(ψ,ρ) satisfies the conditions W.

3.3 CP-ABE part ABE

Suppose that for t ≤ ξ, any attribute X is represented by a ξ-bit string, and any access policy Y is
a conjunctive normal form whose clauses have t bits of input (t-CNF), respectively.

3.3.1 Definition of CP-ABE

A CP-ABE ABE consists of the following polynomial-time algorithms:

� APgen(1λ): This is a PPT parameter generator. Given a security parameter 1λ, it returns a
public key pk and a master secret key msk.
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� AKGen(msk,X): This is a key generator. Given a master secret key msk and an attribute X,
it returns a secret key skX over the attribute X.

� Enc(pk, Y, µ): This is a PPT encryption algorithm. Given a public key pk, an access policy Y
over decrypters’ attribute and a message µ, it returns a ciphertext cp of the message µ.

� Dec(skX , cp): This is a DPT decryption algorithm. Given a secret key skX and a ciphertext
cp, it returns either a decryption result µ′ or the failure symbol ⊥.

We will require that cp visibly contains Y , which is typical in the class of only-payload-hiding
CP-ABE schemes [21].

ABE = (APgen,AKGen,Enc,Dec) has the following properties:

Correctness: For any security parameter λ, any attribute X, any access policy Y , any message
µ, any pair (pk,msk) ←$ APgen(λ), any secret key skX ←$ AKGen(msk,X), any ciphertext
cp ←$ Enc(pk, Y, µ), and any decryption result µ′ ←$ Dec(skX , cp), it holds that µ′ = µ if
Y (X) = 1.

IND-CPA: We say that ABE is (TABE, ϵABE)-IND-CPA if for any adversary A running in time at
most TABE, it holds that∣∣∣Pr[ExpIND-CPA-0

ABE,A (λ) = 1
]
− Pr

[
ExpIND-CPA-1

ABE,A (λ) = 1
]∣∣∣ ≤ ϵABE(λ),

where ExpABE-dABE,A is formalized as follows:

ExpABE-dABE,A(λ)

K ← ∅

(msk, pk)←$ APgen(1λ)

return AOcorr,Och-d(pk)

Ocorr(X)

return ⊥ if R(X,Y ∗) = 1

K ← K ∪ {X}
return AKGen(msk,X)

Och-d(Y ∗, µ0, µ1)

return ⊥ if |µ0| ̸= |µ1|
return ⊥ if ∃X ∈ K s.t. Y (X) = 1

return Enc(pk, Y ∗, µd)

3.3.2 Conforming Constrained Pseudo-Random Function

To realize a lattice-based ABE for t-CNF, a special primitive called conforming constrained pseudo-
random function (ccPRF) is employed [29]. A ccPRF is intuitively an extended notion of the
constrained PRF which has not only the same properties as the ordinary PRFs, but also another
property that a key ekY constrained by the boolean function Y can be generated by using an ordinary
evaluation key mek of the PRF, and then ekY can be used to evaluate a value of the PRF on input X
only when Y (X) = 1. A ccPRF ccPRF formally consists of the following polynomial-time algorithms
with the parameters as in Tab. 1.

� Pgen(1λ) returns a public parameter pp and a master evaluation key mek ∈ {0, 1}λ.

� Eval(pp,mek, X) returns an evaluated value ρX ∈ {0, 1}λ for any string X ∈ {0, 1}ξ.

� Constrain(pp,mek, Y ) returns a constraining key ekY ∈ {0, 1}ι under a given boolean function
Y .

� CEval(pp, ekY , X) returns either an evaluated value ρ′X ∈ {0, 1}λ or the failure symbol ⊥.

� KSim(pp, Y ) returns a faked key ekY ∈ {0, 1}ι under Y .

ccPRF = (Pgen,Eval,Constrain,CEval) has the following properties:
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Correctness For any string X ∈ {0, 1}ξ and any boolean function Y : {0, 1}ξ → {0, 1}, any pair
(pp,mek)←$ Pgen(1λ) and any regular constraining key ekY ← Constrain(pp,mek, Y ), we have

CEval(pp, ekY , X) =

{
Eval(pp,mek, X) Y (X) = 1,

⊥ Y (X) = 0.

Gradual Evaluation Suppose that for any (pp,mek)←$ Pgen(1λ), any string X ∈ {0, 1}ξ and any
boolean function Y : {0, 1}ξ → {0, 1}, there exist circuits Uη→X , Uη→Y and UY→X such that

Uη→X(mek) = Eval(pp,mek, X),

Uη→Y (mek) = Constrain(pp,mek, Y ), and

UY→X(ekY ) = CEval(pp, ekY , X).

Then, the description of Uη→X is the concatenation of the description of UY→X and that of
Uη→Y .

The pseudo-randomness and the key simulation were also defined as the other properties. Please
refer [29] for the details. Eventually, ABE utilizes the following fact of ccPRF.

Lemma 3 ([29]). For any attribute X ∈ {0, 1}ξ, any access policy Y , any (mek, pp) ←$ Pgen(1λ),
and any “faked” key ekY ←$ KSim(pp, Y ), the probability that CEval(pp, ekY , X) ∈ {⊥,Eval(pp,mek, X)}
is negligible when Y (X) = 1.

A concrete ccPRF for a t-CNF Y is also given in [29].

3.3.3 Conversion of Evaluating Circuits into Lattices

[29] embedded ccPRF in ABE. In particular, ABE verifies whether or not the circuits Uη→X , Uη→Y
and UY→X are honestly evaluated. They also proposed a method to convert their evaluations
into lattice forms by introducing two DPT algorithms EvalF and EvalFx in the following way. Let
m̃ = n⌈log2 q⌉, let f : {0, 1}in → {0, 1}out and g : {0, 1}out → {0, 1}out′ be any boolean circuits
with depth d, let x ∈ {0, 1}in, and let C ∈ Zn×m̃·inq . Given a pair (f,C), EvalF returns a matrix

H ∈ Zm̃·in×m̃·outq , whereas given a tuple (f, x,C), EvalFx returns a matrix Ĥ ∈ Zm̃·in×m̃·outq . The

matrices H and Ĥ satisfy that

∥H∥,
∥∥∥Ĥ∥∥∥ ≤ (2m̃)d and[

C − x⊗G
]
Ĥ = CH − f(x)⊗G mod q,

whereG =
[
1 2 4 · · · 2⌈log q⌉−1

]
⊗In ∈ Zn×m̃q . WhenHf ← EvalF(f,C),Hg ← EvalF(g,CHf )

and Hg◦f ← EvalF(g ◦ f,C), it holds that HfHg = Hg◦f .

3.3.4 Construction of ABE

Fig. 4 is our CP-ABE part ABE = (APgen,AKGen,Enc,Dec) with an auxiliary algorithm dec and
Tab. 1 is the parameters.

We briefly explain the mechanism of the decryption. For any access policy Y : {0, 1}ξ → {0, 1},
any attribute X ∈ {0, 1}ξ such that Y (X) = 1, and any message µ ∈ {0, 1}l, we set

((TB, η), (B,C,U , pp))←$ APgen(1n, 1m̃, q,U),
(X, ρ,K)←$ AKGen((TB, η), X),

(Y, sY ,u0,u1,u2)←$ Enc((B,C,U , pp), Y, µ) and

µ̃← Dec((X, ρ,K), (Y, sY ,u0,u1,u2)).

Recall that ρ ← KSim(pp, Y ) is not identical to ρ′ ← UY→X(sY ) = CEval(pp, sY , X) except the
negligible error probability by Lemma 3, and hence we have Iρ(ρ

′) = 0 for the circuit Iρ generated
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APgen(1n, 1m̃, q,U)

(η, pp)←$ CPgen(1λ); (B,TB)←$ TrapGen(1n, 1m̃
′
, q)

C ←$ Zn×m̃·λ
q ; U ←$ Zn×l

q

msk ← (TB , η); pk← (B,C,U , pp)

return (msk, pk)

dec(u = (u[1], . . . ,u[l]))

µ[k]←
{
1 |u[k]| ≤ q/4

0 |u[k]| > q/4
for k ∈ [1, l]

return µ

AKGen(msk,X)

Hη→X ← EvalF(Uη→X ,C); CX ← CHη→X

ρ← Eval(pp, η,X)

Create a circuit Iρ : {0, 1}λ → {0, 1} s.t.

Iρ(ρ
′) 7→ 1 if and only if ρ = ρ′

Hρ ← EvalF(Iρ,CX); CX,ρ ← CXHρ

B ←
[
B | CX,ρ

]
TB ←$ ExtBasis(B,TB)

K ←$ SamplePre(B,TB ,U , s)

return skX ← (X, ρ,K)

Enc(pk, Y, µ ∈ {0, 1}l)

sY ←$ KSim(pp, Y )

t←$ χn; e0 ←$ χm̃′
; e1 ←$ (χ′)m̃·ι; e2 ←$ χl

Hη→Y ← EvalF(Uη→Y ,C); CY ← CHη→Y

u0 ← BT t+ e0; u1 ←
[
CY − sY ⊗G

]T
t+ e1

u2 ← UT t+ e2 + µ · ⌈q/2⌋
cp← (sY ,u0,u1,u2)

return (Y, cp)

Dec(skX , (Y, cp))

ρ′ ← UY →X(sY )

return ⊥ if if Y (X) ̸= 1 ∨ ρ = ρ′

Hη→Y ← EvalF(Uη→Y ,C); CY ← CHη→Y

Hη→X ← EvalF(Uη→X ,C); CX ← CHη→X

ĤsY →ρ′ ← EvalFx(UY →X , sY ,CY )

Ĥρ,ρ′ ← EvalFx(Iρ, ρ
′,CX)

ĤsY →≠ρ′ ← ĤsY →ρ′Ĥρ,ρ′ ; u1 ← ĤT
sY →≠ρ′u1

return dec

(
u2 −KT

[
u0

u1

])

Figure 4: CP-ABE Part ABE (The plaintext space is {0, 1}l)

in AKGen. Since the concatenation of UY→X and Uη→Y is identical to Uη→X due to the gradual
evaluation, we have Hη→YHY→X = Hη→X , where Hη→Y and Hη→X are as in AKGen and HY→X

is defined by EvalF(UY→X ,C). It follows from the matrices CX and CY generated in AKGen and
Enc that

CYHY→X = CHη→YHY→X = CHη→X = CX .

It holds that [
CY − sY ⊗G

]
ĤsY→ρ′ = CYHY→X − UY→X(sY )⊗G = CX − ρ′ ⊗G (1)[

CX − ρ′ ⊗G
]
Ĥρ,ρ′ = CXHρ − Iρ(ρ′)⊗G = CX,ρ (2)

Putting together Eqs. (1) and (2), we have[
CY − sY ⊗G

]
ĤsY↛=ρ′ =

[
CY − sY ⊗G

]
ĤsY→ρ′Ĥρ,ρ′ =

[
CX − ρ′ ⊗G

]
Ĥρ,ρ′ = CX,ρ.

By letting e1 = ĤT
sY→≠ρ′e1, the following is obtained.

u1 = ĤT
sY→≠ρ′u1 = CT

X,ρt+ e1. (3)

Observe from the algorithm AKGen that[
B | CX,ρ

]
K = U . (4)

Therefore, by setting r = e2 −KT

[
e0
e1

]
, we have

∥r∥ ≤ q/4 and u2 −KT

[
u0

u1

]
= µ⌈q/2⌋+ r. (5)

The detail can be seen in the proof of Lemma 4.1 in [29].
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Table 1: Parameters of the proposed GSdT GSdTlat

N # of group members
ξ length of attribute X poly(λ)
n row O(λ)
q modulus Õ(ℓn3)
m column for DS 2n⌈log2 q⌉
m̃ column of C for ABE n⌈log2 q⌉
m̃′ column of B for ABE (n+ 1)⌈log2 q⌉+ 2λ
ℓ length of τ of DS and length of N N = 2ℓ

σ s.d. of d Ω
(√
n log q log n

)
σ′ s.d. of s

√
(4
√
2σm3/2)2 + σ2

β infinite norm for DS σω(
√
m)

κ # of parallel of NIZK ω(log n)
η length of ρ in NIZK the length of the witness given to P
l plaintext length of ABE 2m
ϵ efficiency ratio 0 < ϵ < 1
d depth of the circuits poly(λ), (2n2)2d+4 ≤ 2n

ϵ

σ̃ s.d. for ABE max
{
O
(√
n log q log n

)
,O

(
λ, (2m̃)d+3

)}
B B-bounded distribution χ q/B > 2n

ϵ

B′ B′-bounded distribution χ′ (m̃+ m̃′)λB(2m̃)d

ι length of ekY poly(λ)
s.d.: standard deviation

Lemma 4 ([29]). ABE is correct, and is (T, ϵ)-IND-CPA under LWEn,q,χ assumption, where T =
poly(λ) and ϵ = negl(λ).

4 Proposed GSdT from Lattices

In this section, we propose a lattice-based GSdT GSdTlat. A group signature by the proposed GSdT
GSdTlat is intuitively issued by encrypting the signer’s identity vector ζi generated in the joining
protocol by using ABE, and then proving that the signer has been registered in the group and the
ciphertext (Y, cpζi

) of ζi is validly generated. This proof πE is generated by NIZK under an access
policy Y with the target message µ as set in the label part lbl. The resulting group signature consists
of Σ = (Y, cpζi

, πE). All the algorithms of the proposed GSdT GSdTlat are described in Fig. 5 and its
parameters in Tab. 1. Note that the witnesses considered in GSig and Open are actually converted
into the appropriate forms explained in Subsection 3.2.2. The details will be described below.

4.1 Construction

4.1.1 Joining Protocol

To join a group, a user Ui of index i generates his/her user key pair (uski, upki)←$ UKG(1λ), which
is a key pair of DS, in advance, runs the joining protocol with the issuer I who owns an issuer
key ik which is a secret key of DS. Namely, Ui generates the binary representation ζi ∈ {0, 1}2m
of his/her identity vector vi ← Fzi with a randomly chosen short vector zi, issues a signature
Σi ←$ Sign(uski, ζi), and then send (vi,Σi) to I. I issues a signature certi ←$ Sign(ik, ζi), and then
returns certi to Ui with appending Ui’s information (vi, certi, upki,Σi) into the registration table
reg. Ui stores (zi, certi) as a group secret key gski.

4.1.2 Group Signing and Verifying

To sign a message µ under an access policy Y by using gski, Ui generates a ciphertext (Y, cpζi
)←$

Enc(pkOM, Y, ζi), and then issues a proof π that certi = (τi,di, si) is indeed a signature of the
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GKG(1λ,U)

(ik, pkI) = (TA, (A, {At}t∈[0,ℓ],D,D0,D1,u))←$ SKGen(1λ)

(omk, pkOM) = ((TB, η), (B,C,U , pp))←$ APgen(1n, 1m̃, q,U)
F ←$ Z4n×4m

q

return (ik, omk, gpk = (pkI , pkOM,F ))

OKG(gpk, omk, j,X)

return okj ←$ AKGen(omk, X)

UKG(1λ)

return (uski, upki)←$ SKGen(1λ)

Joining Protocol

Ui(gpk, i, upki, uski) I(gpk, ik, i, upki, reg)

zi ←$DZ4m,σ; vi ← Fzi; ζi ← bin(vi)

Σi ←$ Sig(uski, ζi) (ζi,Σi) abort if Vf(upki, ζi,Σi) ̸= 1

abort if ∃(cert, i, upk, sig)
s.t. (ζi, cert, i, upk, sig) ∈ reg

certi = (τi,di, si)←$ Sig(ik, ζi)

abort if Vf(pkI , ζi, certi) ̸= 1 certi reg← reg ∪ {(ζi, certi, i, upki,Σi)}

return gski ← (zi, certi)

GSig(gpk, (zi, certi), Y, µ)

vi ← Fzi; ζi ← bin(vi); (τi,di, si)← certi;

[
di,1
di,2

]
← di

(Y, cpζi
)←$ Enc(pkOM, Y, ζi); (sY ,u0,u1,u2)← cpζi

itE ← (pkI ,B,CY ,F ,U , (Y, cpζi
))

wtE ← ((zi, ζi), certi, (t, e0, e1, e2))

πE ←$ P (itE ,wtE , (Y, cpζi
, µ))

return Σ = (Y, (cpζi
, πE))

GVf(gpk, µ, (Y, (cpζi
, πE)))

Hη→Y ← EvalF(Uη→Y ,C)

CY ← CHη→Y

return V (itE , πE , (Y, cpζi
, µ))

Open(gpk, okj , reg, µ, (Y, (cpζi
, πE)))

return (0,⊥) if GVf(gpk, µ, (Y, (cpζi
, πE))) ̸= 1

ζi ← Dec(okj , (Y, cpζi
))

find (cert, i, upk,Σ) s.t. (ζi, cert, i, upk,Σi) ∈ reg

return (0,⊥) if (ζi, cert, i, upk,Σi) /∈ reg

itD ← (B,CX ,CX,ρ,U , ρ
′, ĤsY↛=ρ′ ,u1, r, (Y, cpζi

, ζi))

wtD ← (K, Ĥρ,ρ′ ,Hρ); τD ← P (itD,wtD, (X, i))

τ ← (cert,Σi, ζi, τD,CX,ρ, ĤsY→≠ρ′ ,u1, r)

return (i, τ)

Judge(gpk, i, upki, µ, (Y, (cpζi
, πE)), τ)

return ¬GVf(gpk, µ, (Y, (cpζi
, πE))) if (i, τ) = (0,⊥)

ρ′ ← UY→X(sY )

Hη→X ← EvalF(Uη→X ,C)

Hη→Y ← EvalF(Uη→Y ,C)

CX ← CHη→X ; CY ← CHη→Y

ĤsY→ρ′ ← EvalFx(UY→X , sY ,CY )

return 0 if Eq. (1) or Eq. (3) does not hold

return 1 if V (itD, τD, (X, i)) = 1∧
Vf(upki, ζi,Σi) = 1 ∧ Vf(pkI , ζi, cert) = 1

Figure 5: Proposed GSdT GSdTlat
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Instance itE

� the matrix F ∈ Z4n×4m
q for the user’s identity vector

� the matrices A,A0, {At}ℓt=1 ∈ Zn×m
q , D ∈ Zn×n⌈log2 q⌉

q and D0 ∈ Z2n×2m
q ,D1 ∈ Z2n×l

q and the vector
u ∈ Zn

q for DS

� the matrices B ∈ Zn×m̃′
q , CY ∈ Zn×m̃·ι

q and U ∈ Zn×l
q for ABE

� the ciphertext (Y, cpζi ) with cpζi = (sY ,u0,u1,u2) ∈ {0, 1}ι × Zm̃′
q × Zm̃·ι

q × Zl
q of ζi

Witness wtE

� Ui’s identity secret zi ∈ [±β]4m for Ui’s identity vector vi

� the binary representation ζi ∈ {0, 1}2m of vi

� the signature certi = (τi,di,1,di,2, si) ∈ {0, 1}ℓ× [±β]m× [±β]m× [±β]l of ζi, where τi =
[
τi[1] · · · τi[ℓ]

]T
� the string γ ∈ {0, 1}2n⌈log2 q⌉ appeared during generating certi

� the components t ∈ [±B]n, e0 ∈ [±B]m̃
′
, e1 ∈ [±B′]m̃·ι and e2 ∈ [±B]l appeared during generating cpζi

These satisfy that

Fzi = J4n×2m · ζi mod q

D0s+D1 · ζi = J2n×2n⌈log2 q⌉ · γ mod q, A · d1 +A0 · d2 +

ℓ∑
t=1

At(τi[t] · d2)−D · γ = u mod q,

BT t+ e0 = u0 mod q,
[
CY − sY ⊗G

]T
t+ e1 = u1 mod q, and UT t+ e2 + (⌈q/2⌋ · Il)ζi = u2 mod q,

where JN×N⌈log q⌉ = IN ⊗
[
1 2 · · · 2⌈log q⌉−1

]
, and hence v = JN×N⌈log q⌉ · bin(v) for any vector v ∈ ZN

q .

Figure 6: Instance and Witness on Group Signing

binary representation ζi of the Ui’s identity vector vi = Fzi signed by I and (Y, cpζi
) is indeed an

encryption of ζi. More specifically, the instance and the witness are specified in Fig. 6. As mentioned
in Subsection 3.2.2, the witness should be converted into the appropriate form. zi ∈ [±β]4m,
s,d1,d2 ∈ [±β]m, t ∈ [±B]n, e0 ∈ [±B]m̃

′
, e1 ∈ [±B′]m̃·ι and e2 ∈ [±B]l are converted into (Type

1), γ ∈ {0, 1}m and ζi ∈ {0, 1}2m are done into (Type 2), and (d2, τi) ∈ [±β]2m×{0, 1}ℓ is done into
(Type 3). Then, the parameterized permutation corresponding to the converted witness is defined
in the concatenation way.

4.1.3 Opening and Judging

The opener OPj with the attribute X can trace a signer of a signature (Y, (cpζi
, πE)) if his/her

attribute X satisfies the access policy Y . Namely, when Y (X) = 1, OPj decrypts the ciphertext
(Y, cpζi

) with cpζi
= (sY ,u0,u1,u2) using Dec, and then finds the user index i for the decrypted

result ζi from the registration table reg. To guarantee the non-frameability, OPj also generates
a proof τD that ζi is correctly decrypted. The correct decryption implies that Eqs. (1)–(5) hold.
Observe that whether or not Eq. (1) holds can be verified in public, whereas ρ in skX should be

private, and hence the matrices Hρ and Ĥρ,ρ′ are difficult to be computed in the verification of τD
during Judge. Instead, the knowledge of Hρ and Ĥρ,ρ′ are also proven simultaneously by presenting

CX,ρ, ĤsY→≠ρ′ , u1 and r during Dec as public. This implies that Eq. (3) can be verified in public.
Therefore, the instance and the witness are specified in Fig. 7. In a similar manner to the signing,
the representation of the witness K, Hρ and Ĥρ,ρ′ is replaced with (Type 1). Moreover, these
are matrices rather than vectors, and hence the proof is issued for each column of the converted
matrices.

4.2 Security

We show the security of the proposed GSdT GSdTlat. These can be proven in the same way as
[9, 3, 22].

Theorem 1 (Correctness). GSdTlat is 0-correct.
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Proof. Let A be an adversary for the correctness. As in ExpcorrGSdTlat,A,U, the user index i returned by
A satisfies that i ∈ HU and gsk[i] ̸= ϵ. This implies that AddUO created an honest user secret key
gsk[i] = (zi, certi) for i of a secret vector zi and a signature certi of ζi = bin(Fzi) from the issuer
I. Therefore, GSig can correctly issue a proof πE of the knowledge of zi that is signed by I and
is correctly encrypted. Hence, GSig can generate a valid group signature Σ = (Y, (cpζi

, πE)) with
respect to (Y, µ) returned by A. It follows from the completeness of NIZK shown in Lemma 2 that
GVf can correctly verify the proof πE . Therefore, GVf always returns 1.

On the other hand, for any index j ∈ OSY , the attributes X of the opener j satisfy Y (X) = 1
for the access structure Y returned by A. The correctness of ABE shown in Lemma 4 and the
correct secret key for X generated during AddOO imply that the ciphertext (Y, cpζi

) is correctly
decrypted to the valid identity vector ζi that has been encrypted during GSig. Then, Open can find
i’s information (ζi, cert, i,upk[i],Σi) from the registration table reg. Therefore, Open can issue a
proof πD which proves the correctness of the decryption of (Y, cpζi

), and hence Open returns i and
a valid proof πD. These also imply that Judge can confirm that GVf returns 1 and πD is a valid
proof by V . Moreover, since AddOO honestly generates signatures cert and Σi of ζi, and therefore
the correctness of DS shown in Lemma 1 implies that Vf always returns 1. These eventually mean
that Judge always returns 1. Thus, the correctness of GSdTlat holds.

Theorem 2 (Anonymity). Under the LWEn,q,χ assumption, GSdTlat is (Tanom, ϵanom)-anonymous
in the random oracle model for a polynomial Tanom and a negligible function ϵanom.

Proof. This is shown by the hybrid argument. Let A be an adversary violating the anonymity of
GSdTlat. The details are as follows.

Game0 This game is identical to the experiment Expanom-0
GSdTlat,A,U of the anonymity of GSdTlat when

b = 0. Here, all the oracles of the anonymity game are the same as in the definition. All of the hash
values are given from the random oracle H. Then, we have

Pr[Game0(λ) = 1] = Pr
[
Expanom-0

GSdTlat,A,U(λ) = 1
]
. (6)

Game1 This game proceeds in the same way as Game0 except that the new state C is initialized
as ∅ before running A, the random oracle H is replaced with the simulator SimH whose existence is
guaranteed by the zero-knowledge of NIZK shown in Lemma 2, and ChaO-0 and OpenO are replaced
with those as in Fig. 8. In the new ChaO-0, the proof πE is generated by SimP for the zero-knowledge
of NIZK, and the proof πD is also generated by SimP . Observe that the difference between Game0
and Game1 is just the generation of the hash values and the proofs. Namely, all hash values and all
proofs are given from the random oracle H and the prover algorithm P of NIZK in Game0, whereas

Instance itD

� the matrices B ∈ Zn×m̃′
q , CX ∈ Zn×m̃·λ

q , U ∈ Zn×l
q

� the string ρ′ ∈ {0, 1}λ

� the components CX,ρ ∈ Zn×m̃
q , ĤsY ↛=ρ′ ∈ Zm̃·ι×m̃

q , u1 ∈ Zm̃
q , r ∈ [−q/4, q/4]l computed during Dec

� the ciphertext (Y, cpζi ), and the decrypted result ζi ∈ {0, 1}l

Witness wtD the following matrices:

K ∈ [±σ̃
√

m̃+ m̃′](m̃+m̃′)×l, Hρ ∈ [±(2m̃)d]m̃·λ×m̃ and Ĥρ,ρ′ ∈ [±(2m̃)d]m̃·ι×m̃

These satisfy that[
B | CX,ρ

]
K = U mod q, CXHρ = CX,ρ mod q, ĤsY →ρĤρ,ρ′ = ĤsY ↛=ρ′ mod q,[

CX − ρ′ ⊗G
]
Ĥρ,ρ′ = CX,ρ mod q, and u2 −KT

[
u0

u1

]
= ζi⌈q/2⌋+ r mod q.

Figure 7: Instance and Witness on Opening
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ChaO-b(i0, i1, µ, Y )

return ⊥ if

gsk[i0] = ϵ ∨ gsk[i1] = ϵ ∨ ∃j ∈ HU ∪ CU s.t.

Y (X) = 1 ∧ (X, ok0) = ok[j]

(zib , certib)← gsk[ib]

vib ← Fzib ; ζib ← bin(vib)

// Game0–Game2, Game5–Game7

ζib ← 02m // Game3–Game4

(Y, cpζib
)←$ Enc(pkOM, Y, ζib)

C ← C ∪
{
(Y, cpζib

)
}

itE ← (pkI ,B,CY ,F ,U , (Y, cpζib
))

wtE ← ((zi, ζi), certi, (t, e0, e1, e2))

// Game0,Game7

πE ←$ P (itE ,wtE , (Y, cpζi , µ)) // Game0,Game7

πE ←$ SimP (itE , (Y, cpζib
, µ)) // Game1–Game6

return Σ← (Y, (cpζib
, πE))

MS ←MS ∪ {(µ,Σ)}

OpenO(j, µ, (Y, (cpζi
, πE)))

1 : return ⊥ if (µ, (Y, (cpζi , πE))) ∈MS

2 : return ⊥ if ok[j] = ⊥
3 : return (0,⊥) if GVf(gpk, µ, (Y, (cpζi , πE))) ̸= 1

4 : abort if (Y, cpζ) ∈ C // Game2–Game5

5 : ζi ← Dec(okj , (Y, cpζi))

6 : find (cert, i, upk,Σ) s.t. (ζi, cert, i, upk,Σi) ∈ reg

7 : return (0,⊥) if (ζi, cert, i, upk,Σi) /∈ reg

8 : itD ← (B,CX ,CX,ρ,U , ρ′, ĤsY ↛=ρ′ ,u1, r)

9 : wtD ← (K, Ĥρ,ρ′ ,Hρ) // Game0,Game7

10 : τD ← P (itD,wtD, (X, i)) // Game0,Game7

11 : τD ←$ SimP (itD, (X, i)) // Game1–Game6

12 : τ ← (cert,Σi, ζi, τD,CX,ρ, ĤsY ↛=ρ′ ,u1, r)

13 : return (i, τ)

Figure 8: ChaO-b and OpenO in Sequential Games for Anonymity, where // Game∗ denotes that the
corresponding line is performed only in Game∗

those are generated from SimH and SimP in Game1, respectively. It follows from Lemma 2 that

|Pr[Game1 = 1]− Pr[Game0 = 1]| ≤ ϵzk. (7)

Game2 This game proceeds in the same way as Game1 except that the new abort condition is added
as Line 4 in OpenO. Let C be the event that (Y, cpζi

) ∈ C for a query to OpenO by A. Observe that
Game2 coincides with Game1 when the event C does not happen. This implies that

|Pr[Game2 = 1]− Pr[Game1 = 1]| ≤ Pr[C]. (8)

Game3 This game proceeds in the same way as Game2 except that ζi is replaced with the zero
vector 02m in ChaO-0 instead of vib . The difference between Game3 and Game2 can be evaluated by
the IND-CPA of ABE. Namely, we now construct an adversary BABE for the IND-CPA of ABE as in
Fig. 9.

In AddOO in Fig. 9, BABE generates ok[j] by utilizes Ocorr, which is given to the IND-CPA
adversary BABE of ABE. This means that BABE is prohibited from querying any access structure Y
such that Y (X) = 1 for any attributes X given to AddOO. On the other hand, there is no possibility
of winning the anonymity game. In fact, ChaO-b prohibits such an access structure as a ChaO-b
query. Observe that the procedure of BABE when Och-0 is adopted coincides with that of Game2,
whereas the procedure of BABE when Och-1 is adopted coincides with that of Game3. This implies
that

|Pr[Game3 = 1]− Pr[Game2 = 1]| =
∣∣∣Pr[ExpIND-CPA-0

ABE,BABE
(λ) = 1

]
− Pr

[
ExpIND-CPA-1

ABE,BABE
(λ) = 1

]∣∣∣ ≤ ϵABE.
(9)

Game4 This game proceeds in the same way as Game3 except that ChaO-0 is replaced with ChaO-1.
Observe that there is no difference for the returned signature Σ = (Y, (cpζib

, πE)) between ChaO-0
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BOcorr,Och-d
ABE (pkABE)

((pkI , pk
′
OM,F ), ik, omk)←$ GKG(1λ,U); gpk← (pkI , pkABE,F )

HO ← ∅; HU ← ∅; CO ← ∅; CU ← ∅
upk← ∅; usk← ∅; gsk← ∅; ok← ∅; reg← ∅; MS ← ∅; stJoin ← ∅; stIss ← ∅; H ← ∅
C ← ∅
return AChaOb,AddOO,OpenO,StoUO,WRegO,USKO,CrptOO,CrptUO,H(gpk, ik)

ChaO-b(i0, i1, µ, Y )

return ⊥ if

gsk[i0] = ϵ ∨ gsk[i1] = ϵ ∨ ∃j ∈ HU ∪ CU s.t.

Y (X) = 1 ∧ (X, ok0) = ok[j]

(zib , certib)← gsk[ib]

vib ← Fzib ; ζib ← bin(vib)

(Y, cpζib
)←$ Och-d(Y, ζib , 0

2m)

C ← C ∪
{
(Y, cpζib

)
}

itE ← (pkI ,B,CY ,F ,U , (Y, cpζib
))

πE ←$ SimP (itE , (Y, cpζib
, µ))

return Σ← (Y, (cpζib
, πE))

MS ←MS ∪ {(µ,Σ)}

AddOO(j,X)

return ⊥ if ∃j ∈ HO

HO ← HO ∪ {j}
ok[j]← Ocorr(X)

Figure 9: IND-CPA Adversary BABE for ABE from Game1 and Game2

in Game3 and ChaO-1 in Game4. Therefore, we have

Pr[Game4 = 1] = Pr[Game3 = 1]. (10)

Game5 This game proceeds in the same way as Game4 except that ζib is replaced with vib in ChaO-1
instead of the zero vector 02m. In the same way as the evaluation of |Pr[Game3 = 1]− Pr[Game2 = 1]|,
we have

|Pr[Game5 = 1]− Pr[Game4 = 1]| ≤ ϵABE. (11)

Game6 This game proceeds in the same way as Game5 except that the abort condition at Line 4
is removed from OpenO. In the same way as the evaluation of |Pr[Game2 = 1]− Pr[Game1 = 1]|, we
have

|Pr[Game6 = 1]− Pr[Game5 = 1]| ≤ Pr[C]. (12)

Game7 This game proceeds in the same way as Game6 except that the simulated random oracle
SimH and the simulated prover SimP are replaced with the ordinary random oracle H and the prover
algorithm P . In the same way as the evaluation of Pr[Game1 = 1]− Pr[Game0 = 1], we have

|Pr[Game7 = 1]− Pr[Game6 = 1]| ≤ ϵzk. (13)

Observe that the procedure of Game7 is identical to that of Expanom-1
GSdTlat,A,U. This implies that

Pr[Game7 = 1] = Pr
[
Expanom-1

GSdTlat,A,U(λ) = 1
]
. (14)

Putting these together Eqs. (6)–(14), we have

ϵanom =
∣∣Pr[Expanom-0

GSdTlat,A,U(λ) = 1
]
− Pr

[
Expanom-1

GSdTlat,A,U(λ) = 1
]∣∣ ≤ 2ϵABE + 2ϵzk + 2Pr[C]. (15)
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Evaluation of Probability of C We remain in the evaluation of the probability of C. This is done
by constructing an adversary Bss for the simulation soundness of NIZK with the black-box access to
an adversary A violating Game3. It should be noted that the event C is defined in Game2 rather than
Game3. As shown above, the difference between Game3 and Game2 has been evaluated by connecting
IND-CPA of ABE. Therefore, we here construct a reduction algorithm Bss breaking the simulation
soundness of NIZK by the black-box access to the adversary A violating Game3. BSimH,OP

ss runs in
the following way:

(SS1) Bss runs Game3 with the adversary A(gpk, ik) violating Game3.

(SS2) Bss returns the tuple ((pkI ,B,CY ,F ,U , (Y, cpζi
)), (Y, cpζi

, µ), πE) for (pkI ,B,CY ,F ,U)
contained in the group public key gpk and the query (µ, Y, cpζi

, πE) given to OpenO as the
final output if C happens.

When C happens, the query (j, µ, (Y, (cpζi
, πE))) satisfies the following conditions:

(1) (µ, (Y, (cpζi
, πE))) /∈MS

(2) ok[j] ̸= ⊥

(3) GVf(gpk, µ, (Y, (cpζi
, πE))) = 1

(4) (Y, cpζ) ∈ C.

In particular, the condition (3) implies that V ((pkI ,B,CY ,F ,U), (Y, cpζi
, µ), πE) = 1. On the other

hand, the condition (1) implies that πE is not given from SimP . Moreover, the condition (4) implies
that (Y, cpζ) is the ciphertext issued in ChaO-b. This means that (Y, cpζ) is the ciphertext of the zero
vector 02m. It follows from the form of the instance described in Fig. 6 that (pkI ,B,CY ,F ,U) /∈
LNIZK. Therefore, πE can be a forged proof for the simulation soundness of NIZK. Combining the
success probability for the forged proof with the above note, it holds that

Pr[C] ≤ ϵABE + ϵss. (16)

By Eqs. (15) and (16), we have

ϵanom =
∣∣Pr[Expanom-0

GSdTlat,A,U(λ) = 1
]
− Pr

[
Expanom-1

GSdTlat,A,U(λ) = 1
]∣∣ ≤ 3ϵABE + 2ϵzk + ϵss.

It follows from Lemmas 4 and 2 that ϵanom is evaluated as negligible under the LWEn,q,χ assumption.
Hence GSdTlat is anonymous under the LWEn,q,χ assumption with the negligible function ϵanom.

Theorem 3 (Traceability). Under the SISn,m,q,β assumption, GSdTlat is (Ttrac, ϵtrac)-traceable for
a polynomial Ttrac and a negligible function ϵtrac.

Proof. Let A be an adversary violating the traceability of GSdTlat. Lemma 1 implies that DS is
EUF-CMA under the SISn,m,q,β assumption. Therefore, we show this theorem by constructing a
reduction RDS breaking EUF-CMA of DS by the block-box access to an adversary A violating the
traceability of GSdTlat. Given a public key pkDS of DS to the EUF-CMA adversary RDS,

(DS1) RDS generates omk and gpk in the same way as Fig. 5 except that pkI ← pkDS.

(DS2) RDS runs ExptracGSdTlat,A,U with A(gpk, omk). Here, AddUO and StoIO are simulated as in Fig.
10 by utilizing the oracle Osig for the EUF-CMA game of DS.

(DS3) RDS aborts if ExptracGSdTlat,A,U finally returns 0.

(DS4) For the tuple (µ, (Y, (cpζ , πE))) finally returned by A, RDS decrypts (Y, cpζ) to ζ and then
finds upk[i] and gsk[i] = (z, cert) from ζ and the oracle’s states.

(DS5) RDS aborts if Vf(pkI , ζ, cert) ̸= 1.

(DS6) RDS returns (ζ, cert).
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AddUO(i)

return ⊥ if i ∈ HU ∪ CU
(upk[i],usk[i])←$ UKG(1λ)

zi ←$DZ4m,σ; vi ← Fzi; ζi ← bin(vi)

Σi ←$ Sig(usk[i], ζi)

abort if Vf(upk[i], ζi,Σi) ̸= 1

abort if ∃(cert, i, upk, sig)
s.t. (ζi, cert, i, upk, sig) ∈ reg

certi ←$ Osig(ζi)

abort if Vf(pkI , ζi, certi) ̸= 1

reg← reg ∪ {(ζi, certi, i,upk[i],Σi)}
gsk[i]← (zi, certi)

return upk[i]

HU ← HU ∪HU ; stJoin ← (gpk,upk[i],usk[i])

StoIO(i,Min)

return ⊥ if i /∈ CU
(ζ,Σ)←Min

abort if Vf(upk[i], ζ,Σ) ̸= 1

abort if ∃(cert, i, upk, sig)
s.t. (ζ, cert, i, upk, sig) ∈ reg

certi ←$ Osig(ζ)

abort if Vf(pkI , ζ, certi) ̸= 1

reg← reg ∪ {(ζ, certi, i,upk[i],Σ)}
return Mout ← certi

Figure 10: Oracles Simulated by EUF-CMAAdversary ROsig
DS of DS

In a similar manner to Theorem 2, the difference of AddUO and StoIO from the original experiment
ExptracGSdTlat,A,U is that certi is generated via the oracle Osig. Osig can be used, because RDS is now

the EUF-CMA adversary. Therefore, the process (DS2) is equivalent to that of ExptracGSdTlat,A,U.
We now evaluate the abort probability at the process (DS5). The process (DS3) guarantees

that GVf(gpk, µ, (Y, (cpζ , πE))) = 1. More specifically, the verifier V judges that πE is a valid proof
during Vf of GSdTlat in Fig. 5. Recall that πE would prove that Vf(pkI , ζ, cert) = 1 as described
in Fig. 6. This means that V judges that πE is valid even when Vf(pkI , ζ, cert) ̸= 1 if the abort
happens. It follows from the soundness of NIZK explained in Lemma 2 that the abort probability is
bounded by ϵs.

Since Open returns 0 to win the tracing game, it would follow that ζ is not queried to the signing
oracle. Therefore, ExpEUF-CMA

DS,RDS
returns 1 by the pair (ζ, cert) if ExptracGSdTlat,A,U returns 1. More

precisely, we have

ϵtrac ≤ ϵDS + ϵs.

It follows from Lemmas 1 and 2 that ϵtrac can be evaluated as negligible under the SISn,m,q,β
assumption. Thus, GSdTlat is traceable under the SISn,m,q,β assumption with the negligible function
ϵtrac.

Theorem 4 (Non-frameability). Under the SIS4n,4m,q,4σ
√
m assumption, GSdTlat is (Tnf , ϵnf)-non-

frameable in the random oracle model for a polynomial Tnf and a negligible function ϵnf .

Proof. Let A be an adversary violating the non-frameability of GSdTlat. We show this theorem
by utilizing the weak simulation extractability of NIZK shown in Lemma 2. We first change the
original experiment ExpnfGSdTlat,A,U for the non-frameability in the random oracle model into the new

experiment ExpSim-nf
GSdTlat,A,U in a sense that the random oracle H and the prover algorithm P appeared

in ExpnfGSdTlat,A,U are replaced with the simulated ones SimP and SimH in the same way as the game
change from Game0 to Game1 in Theorem 2. Therefore, the difference can be evaluated as∣∣∣Pr[ExpnfGSdTlat,A,U(λ) = 1

]
− Pr

[
ExpSim-nf

GSdTlat,A,U(λ) = 1
]∣∣∣ ≤ ϵzk. (17)

To apply the weak simulation extractability of NIZK to ExpSim-nf
GSdTlat,A,U, we construct an algorithm

Bnf in the following way: On a given matrix F ←$ Z4n×4m
q ,
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(NF1) Bnf runs ExpSim-nf
GSdTlat,A,U with A(gpk, ik, omk), where F of gpk is replaced with the given one.

(NF2) When ExpSim-nf
GSdTlat,A,U returns 1 with the final output (µ, (Y, (cpζ , πE)), i, τ) of A, Bnf re-

trieves the instance itE = (pkI ,B,CY ,F ,U , (Y, cpζ)) of πE from gpk and the signature

(Y, (cpζ , πE)) generated during ExpSim-nf
GSdTlat,A,U. Note that CY can be retrieved by CY =

CHη→Y for C in gpk and Hη→Y ← EvalF(Uη→Y ,C). Then, Bnf returns (itE , (Y, cpζ , µ), πE).

When ExpSim-nf
GSdTlat,A,U returns 1, we have GVf(gpk, µ, (Y, (cpζ , πE))) = 1, namely V (itE , (Y, cpζ , µ), πE) =

1. Therefore, the probability acc by Bnf for the weak simulation extractability of NIZK is evaluated
as

acc = Pr
[
ExpSim-nf

GSdTlat,A,U(λ) = 1
]
. (18)

It follows from Lemma 2 and the definition of the weak simulation extractability that there exist an
extraction algorithm Ext = (Ext1,Ext2), a constant d and a polynomial p such that

ext ≥ 1

p
(acc− νExt)d. (19)

The definition of ext implies that Ext can extract a witness wtE = ((ẑ, ζ̂), ˆcert, (t̂, ê0, ê1, ê2)) of the
instance itE with the probability ext.

Utilizing Ext, we now construct an algorithm RSIS solving the SIS problem. On a given matrix
F ←$ Z4n×4m

q ,

(SE1) RSIS runs (st, itE , (Y, cpζ , µ), πE)←$ Ext1(F ) with the adversary BSimH,SimP

nf (F ) defined above.

Here we let (µ, (Y, (cpζ , πE)), i, τ) with τ ← (cert,Σi, ζi, τD,CX,ρ, ĤsY→≠ρ′ ,u1, r) be the
final output of A during running Bnf .

(SE2) RSIS also runs wtE = ((ẑ, ζ̂), ˆcert, (t̂, ê0, ê1, ê2))← Ext2(st, itE , (Y, cpζ , µ), πE).

(SE3) RSIS retrieves (zi, certi)← gsk[i] and ζi from τ returned by A.

(SE4) RSIS aborts if zi = ẑ ∨ ζi ̸= ζ̂.

(SE5) RSIS returns zi − ẑ.

We now evaluate the abort probability at the process (SE4). We first show that ζi = ζ̂ al-
ways holds. It follows from (itE ,wtE) ∈ RNIZK that (Y, cpζ) contained in both the instance itE

and the label (Y, cpζ , πE) is a ciphertext of ζ̂. On the other hand, since ExpSim-nf
GSdTlat,A,U returns 1,

Judge(gpk, i,upk[i], µ, (Y, (cpζ , πE)), τ) also returns 1. In particular, Judge has verify that πD is a
valid proof as in Fig. 5. More precisely, the valid proof πD guarantees for the open identity vector ζi
is indeed the decryption of (Y, cpζ). The correctness of ABE shown in Lemma 4 implies that ζi = ζ̂.

We next show the probability of zi ̸= ẑ. Since ζi = ζ̂, it holds that v = Fzi = F ẑ, where
ζi = ζ̂ = bin(v). On the other hand, we can observe that A has no chance of knowing zi. In
fact, the only chance to know zi is obtaining gsk[i] = (zi, cert) by making a query the index i
to the user secret key oracle USKO. However, such a query leads that ExpSim-nf

GSdTlat,A,U(λ) returns
0. Therefore, the statistical witness indistinguishability of NIZK shown in Lemma 2 and the min-
entropy of zi ←$ DZ4m,σ guarantee that zi ̸= ẑ with probability 1− ϵwi as discussed in [23, Section
C.2]. Thus, the abort probability at (SE4) can be evaluated as ϵwi.

If RSIS does not abort at (SE4), it holds that F (zi − ẑ) = 0. As mentioned in Section 2.1, for
each z ∈ {zi, ẑ}, we have ∥z∥ ≤ σ

√
4m with at least probability 1 − 2Ω(4m). This implies that

∥zi − ẑ∥ ≤ 4σ
√
m with probability at least 1− 2Ω(4m)+1.

For the algorithm RSIS, we have

Pr
[
F (zi − ẑ) = 0 ∧ ∥zi − ẑ∥ ≤ 4σ

√
m
]
≥ (1− ϵwi)(1− 2Ω(4m)+1)ext = ext− ϵwi − 2Ω(4m)+1. (20)
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Table 2: Comparisons among our proposed GSdT GSdTlat, naive construction by [3] and GSdT from
symmetric-key primitives by [5]

[3] [5] GSdTlat [ours]

|ik| O
(
λ2|λ|3

)
— O

(
λ2|λ|3

)
|omk| O

(
λ2|λ|3

)
— O

(
λ2|λ|3

)
|ok| ξ +O

(
dℓλ3|λ|4

)
O(Nλ|X|) ξ +O

(
dλ2|λ|3

)
|gpk| O

(
ℓλ3|λ|3

)
O(Nλ|U|) O

(
ℓλ2|λ|2

)
|usk| O

(
λ2|λ|3

)
— O

(
λ2|λ|3

)
|upk| O

(
ℓλ3|λ|3

)
— O

(
ℓλ2|λ|2

)
|gsk| O

(
ℓλ2|λ|2

)
O(λ|U|) O

(
ℓ+ λ|λ|2

)
|Σ| ℓY +O

(
(ℓλ|λ|+ dι)λ|λ|3

)
O((ℓ+ |ℓY |)λ) ℓY +O

(
(ℓ+ dι)λ|λ|2

)
|τ | O

(
d(ℓλ|λ|+ ι)λ2|λ|4

)
— O

(
ℓ+ dιλ2|λ|4

)
|id| O

(
ℓλ2|λ|2

)
O(ℓ) O(λ|λ|)

|wtE | O
(
(ℓλ|λ|+ dι)λ|λ|2

)
O((ℓ+ |ℓY |)λ) O

(
(ℓ+ dι)λ|λ|2

)
|wtD| O

(
d(ℓλ|λ|+ ι)λ2|λ|3

)
— O

(
dιλ2|λ|3

)
Joining 1 round 1 round

+O
(
λ2|λ|

)
TRM +O

(
ℓλ3|λ|2

)
TBM — +O

(
λ2|λ|

)
TRM +O

(
λ2|λ|

)
TBM

+2(T ExtBasis
n,2m,q + T SamplePre

n,2m,q,σ) + TTrapGen
n,m,q +2(T ExtBasis

n,2m,q + T SamplePre
n,2m,q,σ)

GSig O
(
(ℓλ|λ|+ dι)(ℓλ|λ|+ ι)λ4|λ|4

)
TRM — O

(
(ℓ+ dι)(ℓ+ ι|λ|)λ|λ|3

)
TRM

+O
(
λ2|λ|

)
TBM + TKSim + T EvalF

ξ,ι O
(
N2ℓ2Y +Mn

)
T sym +TKSim + T EvalF

ξ,ι

+T ExtBasis
n,2m,q + T SamplePre

n,2m,q,σ

GVf O
(
(ℓλ|λ|+ dι)(ℓλ|λ|+ ι)λ4|λ|4

)
TRM O

(
N2ℓ2Y +Mn

)
T sym O

(
(ℓ+ dι)(ℓ+ ι|λ|)λ2|λ|3

)
TRM

+T EvalF
ξ,ι +T EvalF

ξ,ι

Open O
(
d(ℓλ|λ|+ ι)2λ3|λ|5

)
TRM O

(
N2ℓ2Y +Mn

)
T sym O

(
(ℓ+ dι)(ℓ+ ι|λ|)λ3|λ|4

)
TRM

+2T EvalF
ξ,ι + T EvalF

ξ,λ + T EvalFx
ι,λ + T EvalFx

λ,1 +2T EvalF
ξ,ι + T EvalF

ξ,λ + T EvalFx
ι,λ + T EvalFx

λ,1

Judge O
(
d(ℓλ|λ|+ ι)2λ3|λ|5

)
TRM O

(
(ℓ+ dι)(ℓ+ ι|λ|)λ3|λ|4

)
TRM

+O
(
λ2|λ|

)
TBM — +O

(
λ2|λ|

)
TBM

+2T EvalF
ξ,ι + T EvalF

ξ,λ + T EvalFx
ι,λ +2T EvalF

ξ,ι + T EvalF
ξ,λ + T EvalFx

ι,λ

Y t-CNF all-and t-CNF
Model Partially dynamic Static Partially dynamic

Putting together with Eqs. (17)–(20), we have

ϵnf ≤ d

√
p(ϵSIS + ϵwi + 2Ω(4m)+1) + ϵzk + νExt.

It follows from the SIS4m,4n,q,4σ
√
m assumption and Lemma 2 that the left-hand side of the inequality

is negligible, and hence ϵnf is negligible. Thus, GSdTlat is non-frameable under SIS4m,4n,q,4σ
√
m

assumption with the negligible function ϵnf .

5 Comparison

We compare the efficiency of GSdTlat with the naive construction, which is yielded from the generic
construction of a GSdT by [3], and the GSdT from symmetric-key primitives by [5]. The generic
construction by [3] employs a signature scheme, a CP-ABE and a simulation-sound NIZK as building
blocks. Thus we apply our sub-algorithms DS, ABE and NIZK into the generic construction for
comparison. The results are summarized in Tab. 2, where ℓY denotes the length of the representation
of the access policy Y , |λ| = log λ, |ℓY | = log ℓY , |X| is the number of attributes involved in X,
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|U| is the number of attributes in the attribute universe, and (M, n) are the parameters related to
the MPC-in-the-head paradigm (see [5] for the details). Note that several items of [5] are written
as “—”. This means that the corresponding items do not exist, since the construction model of
[5] differs from ours. More specifically, they employed the static model [8], while we employ the
(partially) dynamic model [9]. For computational efficiency for GSdTlat and [3], we only pick up the
following notable computational costs because they are dominant in the overall computational costs.
TRM is the time for the multiplication over Zq. TBM is the time for the multiplication of a bit and an
element in Zq. TAlg

par denotes the running time of an auxiliary algorithm Alg with parameters par for

an input. Note that we also take into account TAlg
par performed in the sub-algorithms DS, NIZK and

ABE. T sym denotes the upper bound of the running times of the symmetric-key primitives involving
the hashing, the commitment, the encryption, and the decryption.

We first discuss the comparison between GSdTlat and [3]. The sizes of a group public key gpk,
an opening key ok, a group secret key gsk and a signature Σ of ours are significantly shorter than
those of [3] as in Tab. 2. The main reason is that an encrypted identity ζ of ours during GSig is
remarkably shorter than that of [3]. Such an identity is denoted by id in Tab. 2. Recall that the
encrypted identity ζ of ours is just 2m length, namely a O(λ|λ|) length string as shown in Subsect.
4.1.1. On the other hand, the encrypted tuple id of [3] consists of an index i ∈ [1, N ], a public key

for DS and two signatures generated by DS, and hence |id| of theirs is evaluated as O
(
ℓλ2|λ|2

)
in

Tab. 2. In a similar manner, the asymptotically computational times of the joining protocol, GSig,
Open and Judge are faster than those of the naive construction. Nevertheless, Open and Judge of
both require the high-cost computations, namely the multiplication. It remains open whether or not
a totally efficient lattice-based GSdT can be constructed.

We next discuss the efficiency of GSdTlat with [5]. For the time efficiency, all the algorithms
of [5] seem faster than those of GSdTlat, because they only employ the symmetric key primitives.
Although the size of the signature by GSdTlat is longer than that by [5], the sizes of ok, gpk and gsk
by ours are independent of the number for the attribute universe. In this sense, [5] requires one to
restrict such a number to be polynomial size. Moreover, our proposed GSdT realizes not only that
it has the anonymity stronger than [5] as mentioned in Section 1.1, but also in the partially dynamic
model and supports the class of t-CNF as an access structure for the tracing function of openers,
while [5] was merely realized in the static model and supports the class of all-and formulas.

6 Concluding Remarks

In this paper, we have introduced the first lattice-based GSdT scheme that has full anonymity.
Although there exists a generic construction of GSdT from [2, 3], we take a different approach to the
construction. The generic construction of [2, 3] is in the sign-then-encrypt-then-prove paradigm like
the construction of the ordinary group signature [9], whereas we have employed the encrypt-then-
prove paradigm, which leads to a simpler construction than the one by the generic construction.
More concretely, we have employed the lattice-based CP-ABE by Tsabary [29] and the lattice-based
GS by [22] (LLMNW GS) in our construction. Our result is not only the first lattice-based GSdT
scheme but also gives a new technique for constructing a GSdT scheme.

We have also compared the asymptotical efficiency of our proposed scheme with the lattice-based
construction, which is yielded by applying the generic construction [3] to the Tsabary CP-ABE and
the pair of the signature and the NIZK which is the same as LLMNW GS, and the GSdT from
symmetric-key primitives [5]. As a result, we can find that the sizes of a group public key, an
opening key, a group secret key and a group signature of ours are significantly shorter than those
of [3]. The computational times of joining, signing, opening and judging are asymptotically more
efficient than theirs. On the other hand, comparing ours with [5], ours realizes a post-quantum
construction not only which has the anonymity stronger than [9], but also in the (partially) dynamic
model [9] as the original syntax by [3] for the class of richer access structures. Moreover, the sizes
of keys for ours are independent of the size of the attribute universe.

We finally explain open questions. The first one is constructing lattice-based GSdT with richer
access structures. Recall that access structures supported in our GSdT are only conjunctive normal

178



International Journal of Networking and Computing

forms whose clauses have t bits of input (t-CNF). Therefore, richer access structures enable us to
more flexibly designate openers during the group signing process. The second one is enhancing the
efficiency of opening and judging. As in Table 2, opening and judging require many multiplications
which are a high cost computation on lattices. Thus, reducing the number of multiplications on
lattices is expected.
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