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Abstract

We propose and evaluate a system call-based Moving Target Defense (MTD) mechanism
as a countermeasure against code injection attacks that exploit unknown vulnerabilities. Al-
though integrating the proposed MTD mechanism into the OS kernel would be more ideal, we
implemented it in userland for this study in order to demonstrate its feasibility and evaluate
its effectiveness. The proposed system randomizes the mapping between system call numbers
and their corresponding functions, thereby invalidating system calls issued by injected malicious
code. Since system calls serve as the primary interface through which user applications access
system resources, this randomization prevents attackers from achieving their objectives, even if
they successfully inject code into a process. This approach, categorized as an MTD technique, is
particularly promising against zero-day attacks, where vulnerabilities are exploited before they
are patched. By dynamically altering the mapping at each system call invocation, the system
increases its runtime diversity and unpredictability. While kernel-level implementation remains
a future goal, our evaluation—conducted by remapping system call invocations through a user-
land wrapper—demonstrates that the proposed method can detect and mitigate code injection
attacks in a wide range of existing compiled programs, without requiring specialized hardware
support.

Keywords: information security, Moving Target Defense, system call randomization, code injec-
tion attack
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1 Introduction

This research aims to defend against cyber attacks on information systems. In particular, we focus
on code injection attacks including zero-day attacks and propose a new defense method against them.
If the system is vulnerable to code injection attacks, arbitrary programs prepared by attackers may
be executed on it. Therefore, this vulnerability is highly serious, and countermeasures against it
are essential [1]. Code injection attacks are typically performed using vulnerabilities, such as stack
overflow vulnerabilities. Attackers first inject the program into memory on the target system and
finally make the system jump the CPU execution point to the position of the injected code to make
the system execute the program.

Data execution prevention (DEP) is one of the existing defense methods against injection attacks
[2-4]. DEP prevents code execution from the stack or heap by marking memory areas in a process
non-executable unless the area contains executable code. This raises an exception when attempting
to execute these areas. Although DEP prevents many attacks, it has some shortcomings. First,
DEP requires hardware support, making it difficult to use DEP when we select a CPU that does
not support it. Second, all areas in the program should be clearly separated into the code and data
areas before execution. In some programs, such as the JIT compiler and self-modifying code, we put
executable codes in the data area, thus, DEPs sometimes cannot protect these programs. Third,
there are a few cases where it is bypassed [5-7]. Given these circumstances, DEP is not a perfect
solution for code injection attacks.

In this paper, we propose and evaluate a system call-based Moving Target Defense (MTD) [8]
mechanism as a countermeasure against code injection attacks that exploit unknown vulnerabili-
ties. Although integrating the proposed MTD mechanism into the OS kernel would be more ideal,
we implemented it in userland for this study in order to demonstrate its feasibility and evaluate
its effectiveness. The proposed system randomizes the mapping between system call numbers and
their corresponding functions, thereby invalidating system calls issued by injected malicious code.
Since system calls serve as the primary interface through which user applications access system
resources, this randomization prevents attackers from achieving their objectives, even if they suc-
cessfully inject code into a process. This approach, categorized as an MTD technique, is particularly
promising against zero-day attacks, where vulnerabilities are exploited before they are patched. By
dynamically altering the mapping at each system call invocation, the system increases its runtime
diversity and unpredictability. While kernel-level implementation remains a future goal, our evalua-
tion—conducted by remapping system call invocations through a userland wrapper—demonstrates
that the proposed method can detect and mitigate code injection attacks in a wide range of existing
compiled programs, without requiring specialized hardware support [9,10].

The system call MTD is a randomization technique that disables code injection attacks by
randomizing the mapping between system call numbers and functions. As system calls are the
only way for user applications to access system resources, system call MTD limits the processing
and resources that an injected by attackers program can perform and access. There are existing
research projects on system call mapping randomization [11-15], which perform randomization once,
before loading the program into memory. However, such methods have no effect when information
about randomization is disclosed to attackers. We enhanced the system call mapping randomization
by continuing to re-randomize multiple times at runtime to resist information disclosure. We have
confirmed that our proposed method is an effective defense method against zero-day attacks, such
as code injection attacks, through experiments using smashme [16], which contains a buffer overflow
vulnerability, and a Bash program with the ShellShock [17] vulnerability, where code embedded in
the value of an environment variable is interpreted and executed by Bash. In other experiments, we
measured the performance overhead in the execution time of the system call MTD applied by our
method. One of the unique features of this method is that it applies a binary patch to a legitimate
user program so that correct system calls can be issued even in an execution environment where
system call MTD is applied.

The remainder of this study is organized as follows: Section 2 describes related research; Section
3 formalizes the threats that the system call MTD mitigates, and Section 4 explains the design of
the proposed method; Section 5 explains the two components that our method consists of; Section 6
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describes how to apply the method by directly rewriting the compiled program; Section 7 describes
the limitations of our method; Section 8 describes the experimentation performed to evaluate the
effectiveness and performance; Section 9 describes the improvements in our method; and finally,
Section 10 concludes.

2 Related Works

Code-injection attacks have been addressed using three primary defense strategies: memory protec-
tion, instruction randomization, and system call randomization.

The first category is Data Execution Prevention (DEP) [2-4], which implements page-level mem-
ory protection by marking memory regions as non-executable. For example, DEP prevents the ex-
ecution of injected code by ensuring that the stack or data segments cannot be executed. This
technique requires hardware support to generate an exception when an attempt is made to execute
instructions from a non-executable page.

The second category is randomization-based defenses, also known as Moving Target Defense
(MTD) techniques. These defenses enhance security by introducing uncertainty into program be-
havior or memory layout, thus making it harder for attackers to craft reliable exploits. A widely
used example is Address Space Layout Randomization (ASLR) [18,19], which randomizes mem-
ory addresses such as the stack, heap, and libraries at runtime. However, on resource-constrained
systems, ASLR may lack sufficient entropy, allowing attackers to eventually infer critical memory
locations [20].

Another approach in this category is Instruction Set Randomization (ISR) [21,22], which ran-
domizes the instruction set itself. This prevents the successful execution of injected code unless it
conforms to the randomized instruction set. Although ISR can be implemented in software, it often
incurs high overhead. Hardware-assisted ISR can mitigate this performance penalty.

The third strategy is System Call Randomization, particularly System Call MTD, which provides
a lightweight alternative to ISR. Instead of randomizing the entire instruction set, it randomizes only
system call numbers, thereby reducing overhead. Previous studies on system call randomization [11-
15] typically applied the randomization once at process startup. This approach can be circumvented
if attackers manage to probe the mapping through trial execution and behavior observation.

To address this limitation, our work introduces repeated randomization of system call mappings
during runtime, ensuring that even if attackers discover the mapping at one point, it will become
obsolete due to subsequent re-randomization. This technique provides resilience even under partial
information disclosure, improving overall defense against runtime binary injection.

In our earlier work [23], system call MTD was demonstrated only with small, library-free pro-
grams due to implementation limitations at the time. As a result, the evaluation was restricted in
scope. In this study, we overcome those limitations by enabling our MTD approach to support nearly
all statically linked programs, and we evaluate its effectiveness and performance through extensive
experiments.

3 Threat Model

We consider a strong threat model in which an attacker has already succeeded in injecting malicious
code by exploiting vulnerabilities in the system. Despite this compromise, our system call MTD
mechanism is designed to prevent the injected code from performing any meaningful actions and to
facilitate the detection of such execution attempts. This assumption underscores that our approach
is not restricted to any particular code injection technique, thereby ensuring broader applicability.

Furthermore, we assume the target programs follow a common fault-tolerant design pattern where
a new worker process is spawned using fork whenever an existing worker crashes. This pattern is
prevalent in real-world server applications. Under this model, we also consider a more persistent
adversary capable of performing clone-probing attacks, where the attacker probes not only a single
process but also continues probing across newly spawned processes.
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4 Design

In this research, we make the assumption that the tracer program is safe. The assumed threat model
is that an attacker can insert code from outside at any time, and we made it possible to experiment
with a PoC (Proof of Concept) of the proposed method in the form of a tracer, a function that should
originally be possessed by the OS. In other words, the assumed model is based on the premise that
an unknown vulnerability exists that allows code to be injected from outside, and all user programs
are executed using the tracer. Although this function should originally be possessed by the OS
kernel, this time we made it easy to execute as a PoC, and demonstrated the effectiveness of the
proposed method, that is, that it can defend against and detect injection attacks.

4.1 Re-randomization Points

Runtime randomization is divided into two classes based on randomization trigger conditions [24].
One randomization trigger condition is clock-timing-based randomization, where re-randomization
is triggered at fixed intervals. However, this is inefficient in cases where it is clear what causes
the information disclosure about randomization, or what is related to the progress of the attacker’s
probing. The other randomization trigger condition is risk-based on-demand runtime randomization,
where re-randomization is triggered at risky operations that may cause information disclosure. This
method of approaching the problem directly was more efficient.

Generally, which does not depend on how the system call MTD is implemented, the method
of invalidating randomization is to call the system call, and then obtain information about the
randomized mapping from its behavior. From this perspective, a system call itself is an action that
may give attackers information about randomization. Therefore, it is considered appropriate to use
the timing of system call invocation as the trigger condition for re-randomization.

4.2 Randomization Space

Several operating systems do not have many system calls; for example, Ubuntu 20.04 has 334 system
calls. Therefore, when using the shuffling method (interchanging with each other in the existing
system call number space) in randomization, the probability that an attacker will choose a certain
intended system call in a randomized context is not sufficiently small and is a few hundredths.
However, it is possible to increase randomization space. For example, in the x86_64 architecture, a
system call is called by first storing the system call number in the rax register and then executing the
syscall (sysenter) instruction. Because the size of the rax register is 64 bits, the actual size of the
system call number space is 264. Certainly, in this case, an attacker has only an 2% chance of calling
the intended system call. Also, when n system calls are randomized, the probability that the attacker
correctly selects the randomized system call is 1/(264(264 —1) ... (264 — (n—2))(25* — (n—1))), which
is very small. Therefore, the possibility of a successful attack can be greatly reduced by increasing
the number of system calls to be randomized.

The /dev/random of the Linux 6.8.0 kernel used in the experiment has Secure Random Genera-
tors (CSPRNG), a cryptographically secure pseudorandom number generator built into the kernel,
available, and is considered sufficient for general use [25].

4.3 Randomized System Calls

Fig. 1 shows the correspondence between the randomized system call table and the original table
when only the write is randomized. The table on the left in Figure 1 is a ”randomized system call
table” sorted in ascending order with a maximum of 264 — 1. The size is not 18 exabytes large.
As mentioned in Section 4.2, the randomization space size is 254, and the numbers of system calls
are 334; therefore, many numbers are not assigned to any system calls. The numbers that these
attackers might use are assigned to the getpid. The getpid system call simply returns the process
ID of the calling process, thus, it would be impossible for the execution of the getpid to harm the
system.
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Randomized system call table Original system call table

0 0 e »| 0 (read)

1 39 1 (write)

2 2 "N 2 (open)

39 39 39 (getpid) (Do nothing)
Random Number | (N
Unused Number 39 Number of system calls - 1

Figure 1: Correspondence between the randomized system call table and the original table.

Regarding the operation of getpid(), for example, in the case of Linux with amd64 architecture,
the following number 39 (0x27) is set in the eax register and the syscall command is executed. This
causes the system to switch to kernel mode operation.

0x00007ff£f£7c£5a90 <+0>: endbr64
0x00007££ff£f7c£5a94 <+4>: mov $0x27, heax
0x00007££££f7cf5a99 <+9>: syscall
0x00007ff£f£f7cf5a9b <+11>: ret

In other words, it transfers CPU control from user mode (Ring3) to kernel mode (Ring0), auto-
matically switches the stack, saves the values of the user mode instruction pointer (RIP) and flag
register (RFLAGS), jumps to the address of the system call handler, and executes the system call
corresponding to the system call number (value of the eax register). In the case of getpid, it copies
the process number (PID) in a data structure called the process control block (PCB) inside the
kernel to eax.

Not all system calls require to be barred from being executed by attackers. The overhead incurred
by applying this technique can be reduced by minimizing the number of system calls to which
randomization is applied. This study does not discuss which system calls must be prohibited from
being executed by attackers.

5 Implementation

We implemented a system-call mapping MTD. The implementation assumes the x86_64 architecture
and Linux OS as the execution environment.

5.1 Overview

As shown in Fig. 2, our prototype consists of two components: a target and a tracer program.
The target program is the substance of the application, and the tracer program is a system call
virtualizer that is added to apply the system call MTD to the target program. The target program
has a correspondence table between system calls and randomized numbers in memory, which refers
to when calling the system calls. The tracer intercepts the execution of a syscall instruction by the
target, refers to the rax register (the number of called system calls), de-randomizes it, and stores the
original system call number in the rax register. It then sends a new randomized system call table to
the target program using inter-process communication (IPC) and resumes its execution. The target
updates the old system call table with the new one received from the tracer. The above processing
is performed each time the system calls to be randomized.

As aforementioned, the tracer sends a system call table that the target uses for randomization
to the target using IPC, although this is tricky. Because the tracer and the target are designed
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Trap system call

Permit
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Prohibit Injected

De-randomize

Call system call

System call table
reference

System call table

random  random

Create new table

random random

Figure 2: Outline of implementation of the proposed method.

to be separate programs, they cannot perform secure IPC using anonymous shared memory or the
like. As we assumed the context in which attack codes can be injected, the IPC requires to be
encrypted. However, this makes the security of our method dependent on the encryption algorithm
used. Therefore, the tracer sends the encryption key that will be used for the next sending, along
with the new system call table to the target. The format of the sending data is shown in Fig. 3. As
shown in the figure, as the system call table is just a random number on the data, there is no need
to add the key data after the system call table, and the decrypted bits can be the secret key to be
used for the next sending. As the system call table is just a random number on the data, there is no
need to add the key data after the system call table, and the decrypted bits can be the secret key
to be used for the next sending.

5.2 Tracer Program

Algorithm 1 outlines the process of the tracer program. First, the tracer spawns a process to execute
the target program, and the parent process traces this process using the ptrace system call. Next, it
creates a system call randomizer corresponding to the initial process of the target program and sends
the randomized system call table to this process. From here, the tracer program repeatedly captures
and handles system call invocations from any process of the target program. The tracer program
intercepts the system calls of the target program just before and immediately after their invocation.
Before the invocation, it references the value in the rax register (the system call number), reverses
the randomization, and stores the original system call number in the rax register. At this point, if a
system call should have been randomized but is not, it is considered an attack, and the system call
is neutralized as described in Section 4.3. Immediately after the invocation, the tracer updates and
sends the corresponding randomized system call table to the process.

As shown in Fig. 4, because the target program may spawn multiple processes, the tracer should
apply the system call mapping MTD to the target root process, child processes spawned from the
root, and grandchild processes spawned from the child processes. If the invoked system call is
clone, clone3, fork, or vfork, the tracer identifies the process ID of the new process spawned
by the target program from the return value (the rax register value) and creates a system call
randomizer corresponding to this ID. Consequently, even if the target program is multi-process, the
system call MTD can be applied to each process, thereby preventing the previously mentioned clone
probing attack.
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Cipher text 1
@ Secret key 1

0x598466690b4212327

0x8c16df192e046e65

O0xb6c85b371df2687¢

Oxadacacd163ee6d66

0x83d403910b078742

Oxdd2b74fa79423{34

0x1c8091714dbb532e

0x2969291d85783b5b

Plain text 1

system call 1

0xda5065f8bf26a465

system call 2

0x513dabe357465151

system call 3

Oxaa48ca4650493b52

system call 4

0x8dc585¢cce696563d

0xf1200fc5c1034f2e  0x68015a94c7c912ca  Oxb5b125ab80f466e3

Cipher text 2
@ Secret key 2

Oxdda2fof1a88a8735
T

Y

0x8dc585cce696563d

0xda5065f8bf26a465 0x513dabe357465151 Oxaa48ca4650493b52

system call 1 system call 2 system call 3 system call 4

Plain text 2

O0x2b706a3d7e25eb4b  0x393cf177908f439b = Ox1ff9efeddObdbdb1 = 0x50677c3d4el1cd108

Figure 3: Format of data sent from the tracer program to the target program.

Apply system call MTD Target program

Root Process Process 1 Process 1-1

Tracer Program

\_j'ocess 2 Process 2-1
\’~\ _j:ocess 27
>

-
~ e

Create a new randomizer

Figure 4: The target program may spawn multiple processes.

6 Application To Target Program

To change the numbers used for system calls to random numbers sent from the tracer program,
it is necessary to rewrite the program of the original application. There are three main ways to
rewrite the program: rewriting the source code, rewriting the compiler, and rewriting the binary.
The method of binary rewriting has the advantage that it can apply the system call MTD even when
the source code is unavailable, as is often the case with commercial off-the-shelf (COTS) software.
We used E9Patch [26] to apply our method to a compiled program.

E9Patch is a tool for static binary rewriting without the need for control flow recovery and associ-
ated assumptions or heuristics. Most static binary rewriting tools require some form of control-flow
recovery to adjust the set of jump targets in the rewritten binary. However, because recovering
control-flow information from binary code is difficult in general [27,28], they rely on a set of heuris-
tics or assumptions, such as specific compilers, specific source languages, or binary file metadata
information [29]. Because E9Patch is highly scalable by design, where it does not require that in-
formation, it can reliably rewrite large binaries including Google Chrome [30] and FireFox [31] web
browsers.
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Algorithm 2 The processing of the function to be inserted.

function FUNC(rax)

if raz is TARGET SYSCALL NUM then
tid < GETTID()

1:
2
3
4: MuTeEx_ Lock()

5: randomizer <— GET__RANDOMIZER (tid)

6: if Is__ Not_ INITIALIZED(randomizer, tid) then
7 INITIALIZE(randomizer, tid)

8

9

end if

: UPDATE(randomizer)
10: rax < GET__SYSCALL_ NUM(randomizer, rax)
11: MuTeEX__ UNLOCK()
12: else if rax = SYS EXIT then
13: tid < GETTID()
14: MuTeX__LOCK()
15: DELETE__RANDOMIZER(tid)
16: MuTEX__UNLOCK()

17: end if
18: end function

Our method inserts function executions before every syscall instruction in the original target
program using E9Patch. Algorithm 2 presents an overview of the function processing. As mentioned
in Section 5.2, each randomizer is provided to each process (thread) using the tracer program.
Therefore, in the target program, each thread requires its own randomizer. In the C language, we
can use thread-local storage [32], which is static memory local to a thread, with the __thread or
thread_ local (since C11 [33]) keywords. However, it is impractical to insert thread-local variables
that are not managed by the original target program. Instead, our implementation has randomizers
on separate chaining [34] tables, which are often used in the implementation of a hash table, as
the global shared variable. Therefore, Figure2 includes mutex locking and unlocking. Processing of
function branches based on the value of the rax register. In the x86_64 architecture, the value of
the rax register before executing the syscall instruction is the system call number. If the system call
number is randomized, randomization should be performed. First, it obtains the randomizer using
the thread ID. Then, if the randomizer is not initialized, that is, it is the first randomized system
call in the newly spawned thread, it performs an initialization process, such as opening the IPC. It
then receives a new randomized system call table through IPC, decrypts it, and updates the key.
Finally, it stores a randomized number in the rax register. If the system call number is the number
of exit system calls, it deletes the randomizer corresponding to the current thread.

$ ./e9compile.sh func.c

$ ./e9tool \
--match ’asm=sys(?:enter|call)’ \
--patch ’call [before] func(&rax)@func’ \
target

Figure 5: Commands for applying system call MTD using E9Patch.

To apply the system call MTD to the "target,” compile the function with e9compile and insert
it with the e9tool(Fig. 5).

7 Limitation

In addition, in this evaluation experiment, we make the assumption that the tracer program itself
cannot be attacked. This is due to convenience in implementing the PoC. Ideally, it would be
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better to incorporate it into the system program as an OS function. This approach would result
in less overhead and would make the tracer program itself unnecessary. Here, we implemented and
evaluated the proposed method using the tracer program to confirm whether system call MTD can
defend against and detect attacks when there is a binary injection in an information system that is
unknown from the defense side.

First, because our method was implemented using E9Patch, E9Patch’s limitations apply to our
method. This means that if the original program has significantly large code or data segments,
causing virtual address space shortages, it may fail to apply our method. The second limitation is
that, in most cases, it cannot be applied to dynamically linked binaries. Particularly, the case in
which syscall instructions are scattered in multiple binaries is not supported. Third, the system
calls used in the randomization process shown in Algorithm 2 (read, open, getpid) cannot be
randomized owing to implementation.

The second and third limitations have the potential to be remedied by devising an implementa-
tion.

8 Evaluation
In this section, we evaluate the effectiveness and performance of the proposed method. We conducted

two experiments to apply the system call MTD to programs. These experiments were conducted on
Intel(R) Xeon(R) w3-2423, and DDR5-4800 RAM 64GB.

8.1 Exploit Testing
8.1.1 Smashme

Listing 1: smashme.c.

1 #include <stdio.h>
2 #include <stdlib.h>
#include <string.h>

7 char smashme[64];
8  puts("Welcome to the Dr. Phil Show. Wanna smash?");

9 fflush(stdout);

10  gets(smashme) ;

11 if (strstr(smashme, "Smash me outside, how bout dAAAAAAAAAAA")) {
12 return 0;

13}

14 exit (0);

15 }

$ gcc -fno-stackprotector -z execstack -static smashme.c

Figure 6: Compiling smashme.c.

To verify the effectiveness of our method, we tested whether the method could defeat a code
injection attack. In this experiment, the system call MTD randomized only the execve system call.
We executed exploits against both the program with the system call MTD applied and the original
program. The program was the binary of smashme [16], which is one of the challenges in DEF CON
CTF Qualifier 2017 (Capture The Flag competitions). The source code is listed in Listingl. It was
compiled using the command shown in Fig. 6. The smashme program was compiled by disabling
the stack protector, allowing an executable stack, and linking it statically using GCC. This means
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that it lacks security protection, and the stack was executable. The program read some bytes from
stdin and had buffer overflow vulnerability, which allowed us to inject code, [35] that executes a
shell.

Welcome to the Dr. P Welcome to the Dr. P

hil Show. Wanna smas hil Show. Wanna smas

h? h?

$ 1s Invalid system call

flag smashme

$ cat flag

The flag is: ... (b) (b) Performance with system call MTD.

(a) (a) Performance without system call MTD.

Figure 7: Getting a shell by exploiting smashme.

The results are shown in Fig. 7. In the case of smashme without the system call MTD, the
exploit successfully obtained a shell and captured the flag by executing commands in it (Fig. 7(a)).
However, when the system call MTD was applied to smashme, the exploit failed and could not
obtain a shell or capture the flag (Fig. 7(b)). The output "Invalid system call” in the figure is from
the tracer program, and indicates that the system call was called with an unassigned number and
was invalidated. The shellcode tried to call execve("/bin/sh", ...) but could not, because the
execve was randomized.

8.1.2 Shellshock

$ ./configure CC="gcc -static" CFLAGS="-static" LDFLAGS=-Bstatic
$ make
$ make install

Figure 8: Compiling bash-4.3.

The second experiment involved evaluating the application of MTD to Bash, an OSS (Open
Source Software) commonly used in enterprise systems. It was compiled using the command shown
in Fig. 8. Bash was compiled as a statically linked binary by configuring GCC to use static linking,
followed by the execution of the usual make and make install commands. In this experiment, the
system call MTD randomized only the write system call. The vulnerability was ShellShock [17].
ShellShock is a vulnerability wherein code embedded within environment variables is interpreted
and executed by Bash.

$ env x="() :;; echo VULNERABLE’ bash-4.3 -c "echo This is a test"
VULNERABLE
This is a test

Figure 9: Shellshock.

When using a Bash version affected by the ShellShock vulnerability, unintended code execution
occurs, resulting in the output "VULNERABLE” (Figure9). Furthermore, when executing com-
mands in a Bash environment with system call MTD applied, it is necessary to apply system call
MTD to those commands as well. In this experiment, we obtained the precompiled BusyBox binary
(AMD64 version) [36], applied MTD to it, and conducted evaluation experiments. BusyBox [37]
combines tiny versions of many common UNIX utilities into a single small executable. By apply-
ing MTD to BusyBox, it is possible to collectively apply MTD to commands executed in a Bash
environment.
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$ ./tracer ./bash-4.3-test
Invalid system call
Invalid system call
Invalid system call
Invalid system call
Invalid system call

$ echo This is a test

This is a test

$ 1s

Invalid system call

$ ./busybox-test ls
busybox-test tracer e9compile.sh func.c
bash-4.3-test e9tool

(a) (a) Command execution by Bash with MTD applied.

$ env x="() :;; 1s’ ./tracer ./bash-4.3-test -c "echo This is a test"
Invalid system call
Invalid system call
Invalid system call
Invalid system call
Invalid system call
Invalid system call
Invalid system call
Invalid system call

(b) (b) Execution of ”1s” by ShellShock.

$ env x="() :;; ./busybox-test 1ls’ ./tracer ./bash-4.3-test -c "echo This is a test"
busybox-test tracer e9compile.sh func.c

bash-4.3-test e9tool

Invalid system call

Invalid system call

Invalid system call

Invalid system call

Invalid system call

(c) (c¢) Execution of ”busybox-test 1s” by ShellShock.

Figure 10: Experiments with Bash.

The results are shown in Fig. 10. Both bash-4.3-test and busybox-test have system call MTD
applied. In FigurelO(a), the message ”Invalid system call” is output during the startup process of
bash-4.3-test due to the use of an external write system call, although the startup itself is successful.
The echo command functions correctly since it is an internal Bash function, similar to pwd and cd,
but the ls command fails to execute because it is an external function. Conversely, the internal
Is command within BusyBox executes successfully because system call MTD has been applied to
BusyBox. In FigurelO(b), an attempt is made to embed and execute ls within the value of an
environment variable using the ShellShock vulnerability, resulting in the output ”Invalid system
call”. This indicates that the attempted call to Is, being an external Bash function, failed because
the write system call had been randomized. In Figurel0(c), the execution of the command ”busybox-
test Is” embedded in the value of an environment variable using the ShellShock vulnerability is
successful. From these results, it can be concluded that although the ShellShock vulnerability
remains, randomizing the write system call prevents the exploitation of external write system calls.

These experiments demonstrated the effectiveness of the system call MTD against buffer overflow
vulnerabilities and the Shellshock vulnerability in Bash. It is reasonable to assume that this method
can also be applied to other OSS software. When the system call MTD is applied to software
with other typical vulnerabilities or even unknown vulnerabilities, similar defensive effects can be
expected, as the system calls invoked by an attacker would correspond to unassigned numbers.
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8.2 Performance

Our method introduced an increase in execution time owing to the execution of the inserted binary
and context switching caused by ptrace and mutex locking. We measured the performance overhead
of our method by testing the performance of programs to which the system call MTD was applied
and the original programs.

Listing 2: threads.c.

I #include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#define NUM_THREADS 1
#define NUM_LOOPS 1

(]

ULk W

-3

void *thread func(void *arg)

9 {

10 for (int i = 0; i < NUM_LOOPS; i++) getpid();
11}

oo

13 int main()

14 {

15  pthread_t v[NUM_THREADS];

16 for (int i = 0; i < NUM_THREADS; i++) {

17 if (pthread create(&v[i], NULL, thread_func, NULL) != 0) {

18 perror("create\n");

19 return -1;

20 }

21 }

22 for (int i = 0; i < NUM_THREADS; i++) {
23 if (pthread_join(v[i], NULL) != 0) {
24 perror("join\n");

25 return -1;

26 ¥

27}

28 return 0;

!\1[\.4
-«

The source code is listed in Listing2. The main thread creates NUM_THREADS threads, and each
thread executes the getpid system call NUM_LOOPS times in parallel. In this experiment, the system
call MTD randomized the getpid system call. If several threads executed the inserted function
simultaneously, the possibility of incurring additional overhead may have increased because of mu-
tex locking. The execution time in real time was measured while varying the number of threads
(NUM_THREADS) and getpid system call invocations (NUM_LOOPS). We chose the getpid system call
to measure this overhead. Because the getpid system call is one of the fastest system calls, a large
part of this program was occupied by the processing of the inserted function. This forces more
threads to enter the critical section at the same time. We measured the real-time execution time
while changing the number of times the system call was called and the number of threads. When
the number of randomized system calls is two or more, one of them is the getpid system call, and
the rest specify numbers from 600 onwards, for which the functionality is not defined.

Fig. 11 and Fig. 12 show the result of the execution time performance test. Clearly from these
figures, the execution time decreases when the number of threads increases in the case with the
system call MTD as in the case without the system call MTD. However, in programs to which the
system call MTD was applied, the rate of diminution in execution time decreased as the number
of threads increased. We assumed that this was because mutex locking in the target program and
ptrace by the tracer program serialized part of the processing. From this graph, it can be observed
that even with an increase in the number of randomized system calls, the increase in execution time
was not particularly significant.

We conducted an additional experiment to analyze the causes of the execution time overhead
and the amount of overhead. In the case that the target program had only one thread, the factors
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that affected the execution time were mainly traced by the tracer program, system call hooking
in the target program, and randomization processing. Randomization processing involves the IPC
and the inserted program to obtain the randomizer and some processing for randomization. In the
additional experiment, NUM_THREADS was fixed at one and NUM_LOOPS was fixed at 500,000, and we
measured the execution times of the program to which only ptrace and system call hooking were
attached, (without randomization), respectively.

Table 1: Number of system calls to be randomized and execution time.

[1 2 4 8 16
original 0.068sec | 0.068sec | 0.068sec | 0.068sec | 0.068 sec
original + ptrace + hooks || 5.11sec | 5.11sec | 5.11sec | 5.11sec | 5.11sec

original + system call || 15.0sec | 20.1sec | 29.6sec | 48.7sec | 88.1sec
MTD

Tablel shows the results of this experiment. The ptrace and system call hooks are the overheads
that were equally applied to all system calls contained in the original target program. Therefore,
the overhead when applying the system call MTD to a certain program is expressed by the following
formula:

overhead = (ptrace_.OH + hooks_ OH) x num_syscalls

+randomization_ OH X num_randomized_syscalls

Where x_ OH denotes the overhead per system call. From this formula and Tablel, we obtain the
formula below. *_n denotes the number of system calls to be randomized.

5.11 — 0.068
ptrace_1_OH + hooks_1.OH = 0000 = 1.01 x 1075 (sec)
15.0 = 5.11
randomization_.1_OH = 200000 — 1.98 x 1075 (sec)
5.11 — 0.068
ptrace 2_.OH + hooks 2. OH = 00000 — 1.01 x 1075 (sec)
20.1 -5.11
randomization. OH = 200000 = 3.00 x 107° (sec)
.11 -0.
ptrace 4. OH + hooks 4.OH = % =1.01 x 1075 (sec)
29.6 —5.11
randomization 4 OH = % =4.90 x 1075 (sec)
11-0. ;
ptrace 8_OH + hooks 8 OH = % = 1.01 x 107 (sec)
48.7 —-5.11
randomization 8_OH = % = 8.73 x 1075 (sec)
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5.11 — 0.068
_16_ _16- =—=1.01 -5
ptrace 16_OH + hooks_16_.OH £00000 01 x 1077 (sec)
88.1 —5.11
ization_16_OH =—=1. 1074
randomization_16_0 200000 66 x 107" (sec)

From this formula and Tablel, it was found that a non-randomized system call incurs an overhead
of 1.01 x 10~°s per call, while for randomized system calls, the overheads per call were determined
to be 1.98 x 107 5%s, 3.00 x 107 %s, 4.90 x 10~ °s, 8.73 x 107 %s, and 1.66 x 10~%*s when the number of
randomized system calls was 1, 2, 4, 8, and 16, respectively. In summary, the results are as shown in
Figurel3. The graph indicates that the increase in overhead becomes less significant as the number
of randomized system calls increases.

9 Future Work

The main problem we have to solve is the removal of the limitations in Section 7. Among them,
it is important to apply the system call MTD to dynamically linked programs. This will allow our
method to support almost all the existing programs.

Implementing the tracer program using ptrace introduces performance overhead in the execution
time of system calls and parallel threads. Improving the implementation and design to reduce the
overhead will make this method more practical.

10 Conclusion

In this study, we proposed an MTD for system call mapping as a defense against code injection
attacks. Our method can be applied to almost all existing statically linked compiled programs.

Our method consisted of a tracer program and a target program. The target program is the
system to which the method is applied, and the tracer program traces the system calls of the
target program and provides randomization to the target program. Randomization is performed
many times at runtime to prevent an attacker from obtaining information about randomization by
investigation. The tracer program uses IPC to send a randomized system call table to the target
program.

In the experiment, we applied a system call MTD to the program smashme containing the vulner-
abilities. Consequently, the exploit could not execute shell programs. Additionally, we conducted an
experiment applying the system call MTD to Bash containing the ShellShock vulnerability. In this
Bash, commands using BusyBox with the system call MTD were successful, whereas commands us-
ing external system calls failed. These results indicate that our method can safely execute programs
that include code injection vulnerabilities. In other experiments, we measured the performance
overhead in the execution time of the system call MTD applied by our method. As a next step, we
should reduce this overhead for our method to be practical.
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Algorithm 1 Outline of tracer program processing.

1: function MAIN()

2. pid < FORK()

3: if pid = 0 then

4: EXEcv(argv)

5: return

6: end if

7: PTRACE(ATTACH, pid)

8: PTRACE(SYSCALL, pid)

9: CREATE__RANDOMIZER(pid)

10: UPDATE__AND__SEND__SYSTABLE(pid)

11: loop

12: pid, status <— WAITPID(—1,  WALL)

13: switch status do

14: case PTRACE SYSCALL

15: regs < PTRACE(GETREGS, pid)

16: if Is_ ENTERSTOP(regs) then

17: if Is  RANDOMIZED(pid, regs) then

18: regs < DERANDOMIZE(pid, regs)

19: PTRACE(SETREGS, regs)
20: else if IS ATTACK(pid, regs) then
21: regs < INVALIDATE(regs)
22: PTRACE(SETREGS, regs)
23: end if
24: else
25: if IS FORrK(regs) then
26: newprocess pid < GETRAX(regs)
27: CREATE_ RANDOMIZER (newprocess_ pid)
28: UPDATE__AND__SEND__SYSTABLE(newprocess_ pid)
29: end if

30: if WAs_ RANDOMIZED(pid, regs) then
31: UPDATE__AND__SEND__SYSTABLE(pid)
32: end if

33: end if

34: PTRACE(SYSCALL, pid)

35: case EXITED

36: DELETE__ RANDOMIZER(pid)

37 if NUMBER__OF__ RANDOMIZERS() = 0 then
38: return

39: end if
40: end switch

41: end loop
42: end function
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