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Abstract

With the increasing demand for spatial positioning on modern mobile devices, Simultane-
ous Localization and Mapping (SLAM), particularly camera-based Visual SLAM, has become
essential for real-time perception and positioning by processing continuous image data. How-
ever, these algorithms often entail high memory and computational requirements, making it
challenging to deploy them on mobile devices and run for extended periods. To address this
issue, the edge-assisted SLAM architecture, which offloads computationally intensive tasks to
edge servers, has been proposed. Despite its potential, existing solutions in this domain suf-
fer from significant limitations in data synchronization and recovery capability, compromising
both the robustness and accuracy of the system. In response to the identified limitations, we
analyze the impact of the current data synchronization and relocalization recovery processes on
system performance, and introduce a novel multithreaded tracking approach integrated with an
efficient relocalization mechanism. We validated our approach in standard datasets, including
the robustness of the system, tracking recovery capability, and localization accuracy. Exper-
imental results demonstrate that our solution reduces tracking interruptions by up to 94.2%,
significantly improves coverage, a vital robustness metric of the SLAM system, by up to 30.1%,
and shortens relocalization recovery time by up to 35.2%. Furthermore, our approach improves
the localization accuracy by 43.7% in translation scenarios and 36.8% in rotation scenarios.

Keywords: visual slam, edge computing, edge assisted slam, multithreaded system, thread refac-
toring, slam relocalization

0Part of this work was previously published in CANDAR 2024, focusing primarily on the parallel thread updates
and keyframe backup mechanism
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1 Introduction

With the rapid advancement of sensor technology and network connectivity, a growing number
of applications leveraging spatial and environmental information are emerging on mobile devices.
Mobile platforms have become a popular choice due to their convenience and portability. For these
applications, precise spatial data acquisition and rapid processing are crucial, particularly for tasks
such as real-time positioning and path planning. In addition, Augmented Reality (AR) applications
also rely on real-time environmental data to interact with users [1]. Spatial perception has been
a prominent research topic for years, with various modes tailored to different applications. These
include location recognition, where an image (e.g., from a camera) is captured and matched to a
previously known location; odometry, which tracks or estimates the path taken by a mobile device
from a starting point; and localization, which involves determining the absolute position of a mobile
device relative to known landmarks. Each method offers distinct advantages and trade-offs regarding
computational complexity and practical applicability, making them suitable for a wide range of use
cases. In this context, Visual Simultaneous Localization and Mapping (Visual SLAM) stands as
the foundational and most effective algorithm for spatial positioning [2]. It collects environmental
data through cameras, performs algorithmic processing for position estimation, and generates a map
with environmental information. A typical Visual-SLAM algorithm consists of three primary tasks.
First, as the mobile device moves, the algorithm performs inter-frame alignment by matching feature
points and selects keyframes that capture significant environmental information. The second step
involves local mapping, where the pose information calculated in the first step is optimized. The
third step is loop closure, which enables the algorithm to recognize when the mobile device revisits
a previously encountered location. This requires the algorithm to compare the current frame with
all prior frames to identify a match. Visual-SLAM can accurately estimate the camera’s pose and
the movement path; however, as a resource-intensive algorithm, its memory and computational
requirements increase over time. This growing demand for resources presents a significant challenge
when deploying the algorithm on mobile devices; this usually results in an inability to process image
data in real-time and low accuracy, especially when integrating it with other applications [3]. Some
simplified versions of Visual SLAM minimize the complexity of the optimization algorithm to allow it
to run on mobile devices, but this typically leads to a significant decrease in system accuracy [4], [5].

To address this challenge, increasing research efforts are focused on offloading computationally
intensive tasks in Visual SLAM to external devices, thereby ensuring the system’s stable opera-
tion [6]. Given the system’s real-time performance requirement, integrating edge computing and
distributing tasks to local devices near the data source presents a viable solution. In contrast to
cloud computing, edge computing has lower transmission latency [7]. This approach, where complex
computational tasks are offloaded to edge servers, is commonly referred to as edge-assisted Visual
SLAM [8]. In the system, the mobile device estimates the position through image tracking, referred
to as the Tracking module, while tasks such as map optimization are offloaded to the edge server.
The optimized map is then returned to the mobile device, which synchronizes the data and updates
the map. While this distributed architecture reduces the computational load on mobile devices,
it also brings several challenges. Existing studies [9, 10] focus more on improving the transmission
efficiency between mobile devices and edge servers, but they do not consider the impact of data syn-
chronization delay or the system recovery capabilities on the mobile device. First, as the Tracking
module constantly requires access to the map data, tracking interruptions occur during the local
map update to prevent conflicts and maintain map consistency. Extended interruptions in track-
ing degrade the system’s robustness and negatively impact its positioning accuracy. Second, when
tracking is lost due to insufficient collected information, the system relies on the global map for
relocalization. Since the global map is stored on the edge server, the communication delay between
the mobile device and the edge server substantially increases the repositioning recovery time, which
also worsens the pose estimation error. In response to these challenges, we base our approach on
an advanced edge-assisted Visual SLAM system (i.e., Edge-SLAM [11]), where the data synchro-
nization process of the mobile device is split into independent threads for parallel processing, and
the relocalization process is offloaded to the edge server to enhance the system’s robustness and
accuracy. Our research makes the following contributions:
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� We split the local map update in Edge-SLAM into independent threads for parallel processing,
significantly enhancing the system’s robustness. As a result, compared to Edge-SLAM, the
tracking interruption time is reduced by approximately 94.2%, while coverage [12], a key
robustness metric for SLAM systems, improves by up to 30.1%.

� We offload the system’s relocalization process to the edge server, effectively reducing the time
required for relocalization recovery and enhancing the system’s accuracy. Compared to Edge-
SLAM, we reduce the time required for system relocalization recovery by up to 35.2%.

� After evaluation using standard datasets, our solution demonstrates a significant improvement
in system accuracy, with an enhancement of up to 43.7% in translation scenarios and 36.8%
in rotation scenarios.

� We perform experimental evaluations on hardware consumption, including CPU and memory
usage. The results show that our approach does not incur significant additional costs.

This study is divided into five parts: introduction, research background (visual-SLAM, edge-assisted
architecture, and system analysis), system introduction (design concepts and system mechanism),
experimental evaluation, and conclusion.

2 Background

2.1 Visual SLAM Modules

The Visual SLAM system is mainly divided into three modules. The Tracking module is responsible
for processing the information collected by the camera and estimating the camera position in real
time; the Local Mapping and Loop Closing modules are responsible for optimizing the camera
position information. The specific module descriptions are as follows:

� The Tracking module compares the frame passed into the system with the feature information
of the previous frame or the previously stored feature information and estimates the current
posture of the camera, including position and direction. Frames containing a large amount
of new environmental information are selected as key frames by other modules for subsequent
processing. If the matching feature information is insufficient, the system will determine that
tracking has been lost [11], and it needs to rely on the relocalization algorithm to restore
normal tracking. Long-term tracking loss will greatly reduce the system’s accuracy and affect
the user experience.

� The Local Mapping module will perform local Bundle Adjustment (BA) to optimize the posture
information of all keyframes to improve the positioning accuracy of the system.

� The Loop Closing module is responsible for detecting whether the system returns to the vis-
ited location during operation. If so, the system will correct and optimize the accumulated
positioning error.

Each module depends on the map, a shared data structure that stores the spatial information
computed by the system, including camera poses and feature point information. Maps play a crucial
role in Visual SLAM, as inaccurate map data can impede the system’s long-term stability and
performance [13]. Therefore, in Visual SLAM research for mobile devices, the emphasis is placed on
reducing computational load while maintaining map accuracy [10,14,15].

2.2 Related Work of Edge-assisted Visual SLAM

Visual SLAM systems are increasingly being deployed on mobile devices. However, a significant chal-
lenge arises from the conflict between the high computational demands of SLAM and the limited
processing power of mobile devices [2]. To address this issue, ORB-SLAM [3] and LSD-SLAM [4]
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introduced a tracking-only mode to reduce computational load, significantly compromising position-
ing accuracy. The advent of edge-assisted architectures has emerged as a practical solution [15],
offloading computational tasks from mobile devices to edge servers via local network hopping, thus
alleviating the strain on mobile resources.

For the related research, CloudSLAM [16] offloads the Loop Closure module to the cloud, while
only the Tracking and Local Mapping modules are executed on the mobile device. However, it does
not significantly reduce the resource consumption on the mobile device. Based on ORB-SLAM2, a
typical Visual SLAM system, the Edge-SLAM framework, proposed by Ben Ali A J et al., serves
as a classic example of this edge-assisted approach. In this study, the Tracking module operates
on the mobile device, while other modules are offloaded to the edge server. The mobile device
retains only a portion of the map, while the complete map is stored on the edge server. The edge
periodically sends optimized map data back to the mobile device, significantly reducing CPU and
memory usage on the mobile device. Building upon Edge-SLAM, Sossalla et al. investigated the
impact of data exchange frequency between mobile devices and edge servers on system performance
and optimized the local map update mechanism [17]. PRE-SLAM further enhanced this framework
by incorporating feature persistence filtering, which filters dynamic feature points to reduce the
mobile device’s workload, improving positioning accuracy. However, most existing studies on edge
collaboration focus primarily on enhancing system performance during normal tracking, with limited
attention given to the effects of data synchronization delays and the system’s ability to recover after
tracking failure.

On the other hand, relocalization is also a key focus in Visual SLAM, with various methods
proposed. For example, a binary test classifier in [18] identifies feature correspondences for relocal-
ization, but its high memory requirements limit performance in large-scale environments. In [19,20],
a bag-of-words approach is used with a visibility map to find revisited locations. Straub et al. [21]
match descriptors of the current frame with map points to estimate pose, though it is computation-
ally expensive. To improve efficiency, Moteki et al. [22] propose an image-to-image or image-to-map
approach based on geometric modeling between the current and target frames. The above relo-
calization strategies are implemented in systems like ORB-SLAM2, which struggles with tracking
failures and requires high similarity between the new frame and the reconstructed map. System re-
covery is crucial for accuracy and robustness. Our research improves edge-assisted Visual SLAM by
redesigning data synchronization and enhancing the relocalization mechanism to boost performance.

2.3 Analysis on Edge-SLAM

Our study is based on the typical edge-assisted visual SLAM architecture Edge-SLAM [11], which
divides the representative visual SLAM system ORB-SLAM2 into a mobile device and an edge
server. The Tracking module remains on the mobile device in this setting, while the Local Mapping
and Loop Closure modules are offloaded to the edge server. Same as ORB-SLAM2, it uses the ORB
feature algorithm (Oriented FAST and rotated BRIEF) [23] to extract features from image frames.
It can remain stable in dynamic environments with a fast calculation speed and is suitable for real-
time SLAM. In addition, it uses optical flow estimation to perform pose estimation. By analyzing
the changes in pixel brightness in two consecutive frames of images, the direction and speed of
movement of the midpoint in the image are calculated, thereby estimating the object’s or camera’s
relative motion. After obtaining the initial pose, BA (Bundle Adjustment) [24] is used to optimize
the estimated results. It has high accuracy and real-time performance, which is suitable for moving
objects. The map part only keeps a small part of the map (called the local map) on the mobile
device, which is required for tracking, while the entire map (called the global map) is stored on the
edge server. Once a keyframe has been identified, the pertinent information is transmitted to the
server and incorporated into the global map. The mobile device periodically receives the optimized
location information from the edge server and synchronizes it with the local map. Compared with
ORB-SLAM2, Edge-SLAM adds a local map update and modifies the relocalization procedure. By
analyzing these two processes, we identified the key issues in the current system and proposed
corresponding solutions.
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Figure 1: Data synchronization in Edge-SLAM system. Green represents frames processed by the
system, red represents frames not processed by the system, and gray represents keyframes.

Table 1: The execution time proportion of each process in Edge-SLAM system

System Process Proportion

Edge-SLAM

Feature Detection 26.9%
Local Map Update 20.4%

Pose Prediction 35.1%
Keyframe Creation 17.6%

2.3.1 Local Map Update

In Edge-SLAM, the local map update is an integral part of the Tracking module and is executed
sequentially. Before processing each incoming frame, the system checks if an update to the map is
necessary. When a data synchronization update is required, the system pauses the Tracking module,
clears the existing map, and loads the updated map sent from the edge server. The detailed data
synchronization process is illustrated in Figure 1. The total data synchronization time ∆T can
be divided into edge data processing time ∆TE and local map update time ∆TL, which can be
summarized as (1):

∆T = ∆TE +∆TL (1)

Since Edge-SLAM temporarily stops receiving frames during the local map update, the Tracking
module experiences an interruption, with the duration of this interruption equal to the local map
update time, denoted as ∆TL. Once the update is complete, the Tracking module resumes opera-
tion. However, prolonged interruptions in tracking prevent the system from continuously providing
location estimates, significantly compromising system robustness and leading to a loss of positioning
accuracy and stability [25]. We evaluated the proportion of execution time consumed by the system’s
main processes, as shown in Table 1. These processes mainly include feature detection (extracting
feature points from image frames), local map update(updating the local map based on data received
from the edge server), pose prediction (estimating the current pose by analyzing spatial changes
in feature points), and keyframe creation (selecting frames with significant changes as keyframes).
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Figure 2: Relocalization mechanism in Edge-SLAM system. Green means the system is in a normal
tracking state, and red means the system is in a relocalization state.

We find that local map update, i.e., ∆TL in Figure 1, accounts for 20.4% of the total execution
time, which is a result of the introduction of the edge-distributed architecture. Therefore, we should
reduce the local map update time ∆TL. To this end, we process the entire local map update as an
independent thread in parallel and propose a keyframe backup mechanism to ensure the localization
accuracy of the system.

2.3.2 Relocalization Recovery

Edge-SLAM tracking has two operating states. The system stays in normal tracking mode when
the feature points between frames are sufficiently matched. However, it enters relocalization mode
if tracking is lost due to insufficient feature point matching caused by fast movement, sharp turns,
or other factors. In this mode, the system attempts to optimize the position and resume normal
tracking. To achieve this, the system needs to find suitable candidate keyframes in the map to
perform pose recovery. Since the global map is on the edge server and the mobile device only saves
part of the map information, it is necessary to send a request to the edge server, and the required set
of candidate keyframes is transmitted back as a relocalization map at a fixed interval, as shown in
Figure 2. We can find that the time from the mobile device sending the first relocalization request to
receiving the relocalization data from the edge server and completing the local map update is ∆TEL,
which is an additional delay for the relocalization process. Because the relocalization map is large,
it takes more time to transmit data and update the map. Based on the standard TUM datasets [26]
that are suitable for evaluating the relocalization recovery performance of the system, we compared
the time required for relocalization recovery of ORB-SLAM2 and Edge-SLAM; we found that Edge-
SLAM takes much more time to recover from the tracking loss status. The extended relocalization
state seriously affects the accuracy of the system; we should avoid these additional delays to shorten
the relocalization duration. To this end, we redesigned the relocalization method and adopted an
efficient mechanism to complete relocalization recovery.
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Figure 3: Architecture of the Enhanced Edge-Assisted Visual SLAM System

3 Enhancing Robustness and Accuracy in Edge-Assisted Vi-
sual SLAM Implementation

3.1 System Design

Our work consists of two parts: local map update optimization and relocalization improvement. The
system architecture in Figure 3 shows these parts in blue and green, respectively. First, to shorten
the tracking interruption time caused by local map updates, we separate the update process into a
single module, namely the Local Map Update module shown in Figure 3, which is parallel to the
Tracking module. The red dotted line is the data interaction between the mobile device and the
edge server. The parallel approach can significantly shorten the system interruption time caused by
local map updates, but there are also some challenges. Since the Tracking module is tightly coupled
with the local map, it is challenging to decouple, and the current system architecture utilizes a single
local map, which prevents the parallel processing of the Tracking module and Local Map Update
module. Furthermore, even if the local map update is separated from the Tracking module, the
frame information processed by the Tracking module will still be lost during the update procedure.
To address these challenges, we add a map storage structure dedicated to local map updates and split
the process into more detailed parts to ensure efficient data synchronization. When the mobile device
receives map information from the edge server, the Local Map Update module starts synchronization.
During this period, the Tracking module is not interrupted and continues to use the local original
map for tracking. To prevent the loss of keyframe information during the local map update, we
also back up the keyframe information generated during this period and send it to the Local Map
Update module to merge it with the new map to improve the system’s positioning accuracy.

Then, to complete the relocalization recovery work more efficiently, we move the relocalization
algorithm to the edge to ensure that it can be completed as quickly as possible, that is, the Relo-
calization module on the edge server side shown in Figure 3. A dedicated communication channel
transmits relocation data to minimize delays and prevent network congestion. Upon successful re-
localization on the server, the optimized pose and reference keyframe are returned to the mobile
device.
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Figure 4: Data parallel synchronization with a keyframe backup mechanism. Frames marked in
yellow are lost when the map is updating, and blue are keyframes added to the Staging Map.

Table 2: The execution time proportion of each function in the local map update

Process Functions Proportion

Local Map Update

Map Cleanness 7.03%
Keyframe Insertion 87.72%

Reference Update 0.16%
Lastframe Update 5.09%

3.2 Thread Splitting and Keyframe Backup

To enable parallel processing of local map updates, we decouple the update process from the Tracking
module by splitting it into smaller, independent functions. The specific functions and their execution
time ratios are shown in Table 2. The local map update consists of four main functions: Map
Cleanness, which cleans up the original local map; Keyframe Insertion, which stores new keyframes
along with environment information; and Reference Update and Lastframe Update, which updates
the position information of the reference keyframe and the last frame, respectively. Our analysis
shows that Keyframe Insertion is the most time-consuming part of the update process. Based on
the analysis, we separate Keyframe Insertion and Reference Update into a dedicated Local Map
Update module, running in parallel with the Tracking module. Meanwhile, Map Cleanness and Last
Frame Update functions stay in the Tracking module to prevent thread conflicts. In addition to
threading separation, we introduce a Staging Map, a dedicated storage unit for local map updates.
This ensures that the local map update does not interfere with other system operations. The Local
Map Update module performs two main tasks: it stores map data from the edge server into the
staging map, inserts keyframe information, and updates reference data for the Tracking module,
allowing uninterrupted tracking. Once the new map is ready, the Tracking module updates the last
frame’s position based on the staging map and cleans up the original map. The staging map is used
for tracking, while the original map becomes the new staging map. Since Lastframe Update cannot
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Figure 5: Proposed relocalization mechanism. Green means recovery is successful, and red means
recovery fails.

run in parallel, the interruption time due to local map updates is now limited to Map Cleanup and
Lastframe Update, which account for just 12% of the original interruption time.

After separating the local map update, we find that a lot of keyframe information is still lost
during the update. As shown in Fig. 4, the updated map misses the yellow keyframes marked. Since
these recent keyframes are critical for calculating position information, losing them significantly
reduces the localization accuracy. Based on the separation of local map update threads, we design
a keyframe backup mechanism to ensure the updated map contains more keyframe information.
We redesign the functional dependencies to ensure that the new mechanism operates independently
from the Local Map Update module. The selected keyframe information is inserted into the new
map during the local map update and synchronized accordingly. The keyframes marked in blue in
Figure 4 are inserted into the Staging Map that is currently being updated.

3.3 Relocalization Mechanism Improvement

To improve the efficiency of relocalization, we migrate the relocalization algorithm (including can-
didate frame selection and pose recovery) from the mobile device to the edge server. As shown in
Figure 5, when relocalization occurs, the mobile device serializes the current frame and transmits
it to the edge server as a string, with a data size of about 250kb. The server then performs relo-
calization using its global map. If the relocalization fails, a fixed-size flag string (75KB) is returned
to notify the mobile device. If successful, the server returns the relocalized frame along with its
reference keyframe; both serialized into larger strings totaling approximately 800KB. This remains
significantly smaller than the complete relocalization map required by the Edge-SLAM mechanism,
which typically exceeds 5MB in size. At the same time, the mobile device also attempts local relo-
calization using its local map. If the local relocalization succeeds before receiving the server result, it
immediately resumes normal tracking, thereby reducing idle waiting time. In addition, since the re-
localization map is no longer transmitted to the mobile device, the system’s memory consumption on
the mobile device is also reduced. Another key design element is the use of dedicated communication
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Table 3: Relocalization Execution Process Evaluation

Process ∆TLR ∆TER ∆TS + ∆TBF ∆TS + ∆TBT

Execution time(ms) 55 11 47 168

channels to prevent network congestion. Following the architectural principles of Edge-SLAM, we
assign separate TCP-based ports to each type of operation between the mobile device and the edge
server (i.e., local map updates, keyframe creation, and the novel relocalization process). In addition,
in order to ensure relocalization efficiency, the local map update and keyframe creation channels
are suspended during the relocalization phase. This approach effectively eliminates conflicts caused
by concurrent transmissions, ensures uninterrupted data flow, and maintains the responsiveness of
mobile devices throughout the relocation process with minimal additional latency.

To verify the practicality of the mechanism, we measure the execution and transmission delays
under a typical home network (see Section 4.1 for details). As shown in Figure 5, ∆TLR represents
the time required for mobile-side local map relocalization, and ∆TER represents the time required
for server-side global map relocalization. The whole process includes the selection of candidate
nodes and posture recovery. ∆TS represents the data transmission time from the client to the
server, while ∆TBF and ∆TBT represent the response time in the case of relocalization failure
and success, respectively. The empirical results (see Table 3) demonstrate that server-side global
map relocalization runs significantly faster than local map relocalization due to the server’s greater
computational power when global map relocalization fails (i.e., ∆TS plus ∆TBF in Table 3), the
overall latency increases only slightly (by about 5%) owing to the extremely small size of the returned
data. When relocalization succeeds (i.e., ∆TS plus ∆TBT in Table 3), the transmission time increases
(up to 168 ms) due to the larger volume of response data, occasionally causing minor frame drops.
Nevertheless, because the mobile device immediately exits the relocalization state upon receiving the
result from the server, this transient delay does not have a lasting impact on system performance.
Furthermore, since the transmitted data is currently uncompressed, there remains room for further
optimization of transmission efficiency.

4 Evaluation

4.1 Experimental Environment

We built the following experimental environment to evaluate the improvements brought by our
proposed optimization scheme. The edge server comprises a MacBook Pro with an Apple M1 Pro chip
running Ubuntu 22.04 LTS, featuring an 8-core CPU and 32 GB of RAM. The mobile device, with
limited hardware resources, is a Raspberry Pi 4 running Ubuntu 22.04 LTS, equipped with a 4-core
CPU and 4 GB of RAM. In our experimental setup, both the mobile device and the edge server were
connected to the same local Wi-Fi network (IEEE 802.11ac), simulating a typical home environment.
This configuration mirrors a practical edge computing scenario, such as those found in smart homes
or indoor robotics applications. Data transmission between the two devices was facilitated using the
Transmission Control Protocol (TCP), ensuring reliable and orderly communication over the local
area network (LAN). Using the standard network diagnostic tools, iperf3 and ping, we measured an
average bandwidth of approximately 50 Mbps, an average latency of less than 10 milliseconds, and
observed no packet loss. It is worth noting that this evaluation was conducted under a single-device
setup and does not account for potential network congestion that may occur when multiple mobile
clients simultaneously access the edge server.

For evaluation, we utilize four widely used TUM benchmark datasets [27]: fr2 desk with person
(”Desk”), fr2 pioneer slam2 (”Pioneer2”), fr2 pioneer slam3 (”Pioneer3”), fr2 pioneer 360 (”FP 360”).
These datasets collectively represent a range of motion patterns and environmental complexities for
evaluating system robustness and relocalization performance. Each sequence contains synchronized
color and depth images: the RGB images are stored in PNG format at a resolution of 640Ö480 pixels
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Table 4: System Robustness Evaluation

Dataset System Average Interruption(ms) Coverage(%)

Desk

Edge-SLAM 473.6 86.9
Multithread 53.2 97.2
Relocate 446.3 91.6

Multithread-RL 51.4 98.2

Pioneer2

Edge-SLAM 1613.7 64.5
Multithread 96.8 93.2
Relocate 910.4 88.3

Multithread-RL 93.2 94.6

Pioneer3

Edge-SLAM 1167.5 86.7
Multithread 74.4 97.4
Relocate 745.5 90.3

Multithread-RL 75.1 97.5

with 8-bit per channel(RGB), while the depth images are 16-bit single-channel PNGs at the same res-
olution. The ”Desk” sequence involves limited camera motion with dynamic foreground interference
(e.g., a moving person), typically without causing tracking failure, and is thus suitable for assessing
performance under mild dynamic disturbances. ”Pioneer2” features structured indoor navigation
without forming a closed loop, providing a balanced scenario for evaluating localization stability in
moderately complex environments. ”Pioneer3” includes longer trajectories and transitions across
visually diverse regions, making it suitable for testing relocalization capabilities in large-scale and
semantically varied scenes. In contrast, ”FP 360” focuses on pure rotational motion with repeated
360-degree turns, offering a challenging case for evaluating the system’s robustness to large angular
changes and loop closure detection. These sequences constitute a comprehensive benchmark suite
for systematically evaluating SLAM performance across diverse and realistic operational scenarios.
To evaluate the robustness of the system, we used the rosbag playback method [28], with a fixed
playback rate of 30 frames per second for continuous frame streaming. This consistent rate simulated
real-time operation. If the mobile device loses tracking due to the local map updates, subsequent
frames are discarded. Our evaluation primarily covers four aspects: system robustness, relocalization
recovery time, system accuracy, and CPU and memory usage. For comparison, ORB-SLAM2 was
excluded from the robustness evaluation because it does not include the local map update. However,
for all other metrics, we compare our proposed method with ORB-SLAM2 and Edge-SLAM.

4.2 Robustness Improvement

First, we evaluate the system’s robustness in our proposed solution. The coverage CR, which is
related to the total number of frames NTF and the number of frames processed by the system NPF ,
is a critical metric for the robustness of SLAM systems [10]. Here, NTF represents the total number
of frames in the dataset, while NPF denotes the number of frames successfully processed by the
system after running through the entire dataset. This relationship can be expressed as shown in
equation (2):

CR =
NPF

NTF
(2)

In our evaluation, ”Multithread” refers to our parallel thread update scheme, while ”Relocate”
represents the relocation optimization scheme. ”Multithread-RL” denotes the combined scheme
integrating both approaches. The evaluation results are shown in Table 4. Both of our proposed
solutions enhance the robustness of the system, with the parallel local map update solution showing
particularly significant improvements across all three datasets. For the relatively simple ”Desk”
dataset, where no tracking loss occurred, the integrated method reduced the average tracking in-
terruption time caused by local map updates from 473.6 ms to 51.4 ms, while trajectory coverage

95



Enhancing in Edge-Assisted Visual SLAM

Table 5: Relocalization Recovery Time Evaluation

Dataset System Time used for Relocation(s)

Pioneer2

ORB-SLAM2 67.61
Edge-SLAM 79.35
Multithread 72.39
Relocate 69.52

Multithread-RL 67.67

Pioneer3

ORB-SLAM2 14.25
Edge-SLAM 21.86
Multithread 17.71
Relocate 14.06

Multithread-RL 14.17

FP 360

ORB-SLAM2 35.49
Edge-SLAM 45.82
Multithread 42.06
Relocate 39.13

Multithread-RL 40.23

increased from 86.9% to 98.2%. In more complex datasets such as ”Pioneer2” and ”Pioneer3,” track-
ing failures frequently triggered the transfer of keyframes to the mobile device for local map updates,
leading to severe tracking interruptions in Edge-SLAM. In contrast, our relocalization mechanism
effectively mitigated this issue by suspending local map updates during periods of tracking loss.
For example, on the ”Pioneer2” dataset, the average interruption time during relocalization was
reduced from 1613.7 ms to 910.4 ms, representing a reduction of up to 43.6%. Our parallel local
map update mechanism achieved even greater robustness improvements. The integration of both op-
timization strategies results in a significant 30.1% increase in trajectory coverage on the ”Pioneer2”
dataset. Similarly, we also observed substantial improvements in the ”Pioneer3” dataset. These
results demonstrate the effectiveness of our proposed mechanisms in enhancing system robustness
across varying levels of scene complexity.

4.3 Relocalization Recovery Evaluation

We adopt relocalization recovery time as an evaluation metric to assess the system’s ability to re-
gain tracking after a failure. This metric is commonly used in SLAM evaluations to measure the
efficiency of relocalization processes [26, 29]. It represents the duration required for the system to
successfully resume normal tracking after tracking is lost. In our experiments, we measured the
total recovery time over the entire runtime of each dataset. The results are presented in Table 5.
Compared with Edge-SLAM, our proposed relocalization mechanism significantly reduces the re-
covery time and closes the performance gap with ORB-SLAM2. On the more complex “Pioneer3”
dataset, for example, the recovery time was reduced from 21.86 s to 14.06 s—a 35.7% improvement.
Moreover, our relocalization mechanism integrates well with the parallel thread-based local map
update strategy, maintaining consistently strong relocalization performance across different system
configurations.

4.4 System Accuracy Optimization

We also evaluate the system’s localization accuracy using two widely adopted metrics: Absolute
Trajectory Error (ATE) and Relative Pose Error (RPE) [10]. ATE is commonly used to assess the
overall accuracy of visual SLAM systems, while RPE is particularly effective in quantifying drift.
RPE is divided into the components of translational (RPE.t) and rotational (RPE.r). We utilize the
official evaluation scripts and compute the Root Mean Square Error (RMSE) for ATE and RPE.
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Table 6: System Accuracy Evaluation

Dataset System ATE(cm) RPE.t (cm) RPE.r (deg)

Pioneer2

ORB-SLAM2 6.17 10.25 1.87
Edge-SLAM 7.37 11.63 2.17
Multithread 5.43 8.65 1.69
Relocate 5.13 9.06 1.89

Multithread-RL 4.69 7.51 1.56

Pioneer3

ORB-SLAM2 5.56 12.21 2.99
Edge-SLAM 5.79 10.66 2.53
Multithread 4.87 8.84 2.04
Relocate 5.05 8.89 2.12

Multithread-RL 4.82 8.33 1.89

FP 360

ORB-SLAM2 2.24 4.71 1.77
Edge-SLAM 2.23 4.78 1.84
Multithread 1.96 3.97 1.53
Relocate 2.21 3.77 1.71

Multithread-RL 1.33 2.69 1.19

We conducted 20 runs on three standard TUM datasets to ensure statistical reliability. The “Desk”
dataset was excluded from this evaluation because no tracking loss occurred, making it unsuitable for
observing the effectiveness of the proposed relocalization mechanism. The experimental results are
summarized in Table 6. Compared with Edge-SLAM, both of our proposed strategies significantly
reduce localization errors across all three datasets, especially in complex scenes or those involving
large rotational motions. For instance, on the “FP 360” dataset, our parallel local map update
scheme reduced the rotational error (RPE.r) from 1.84° to 1.19°, a 35.3% improvement. This aligns
with our expectations, as the system preserves critical keyframe information during rotation. In
addition, the relocalization mechanism further enhanced localization accuracy, particularly in ATE
and RPE.t, by ensuring better tracking recovery. However, since the system suspends frame pro-
cessing during local map updates, the RPE.r remains relatively higher. When both strategies are
integrated, the system substantially improves localization accuracy. Specifically, on the “FP 360”
dataset, ATE is reduced from 2.24 cm to 1.33 cm (a 40.4% decrease), and RPE.t is reduced from
4.71 cm to 2.69 cm (a 43.7% decrease), compared to Edge-SLAM.

4.5 CPU and Memory Consumption Analysis

To evaluate the CPU and memory consumption on mobile device, we observe the CPU and memory
usage during system operation. We compare our integrated solution with Edge-slam and orb-slam2,
respectively. Figure 6 illustrates the comparison of CPU usage. The straight lines in the figure
represent the average CPU usage on the mobile device throughout the SLAM process. As shown in
Figure 6, due to the addition of parallel threads, the CPU usage of our proposed system is slightly
higher than that of Edge-SLAM, with the average CPU usage increasing from 53.9% (Edge-SLAM)
to 60.7% (proposed system). However, compared to ORB-SLAM2, the CPU usage of our system
remains significantly lower, with a 30.4% difference. Figure 7 presents the comparison of memory
usage. As we can see, the memory usage of ORB-SLAM2 increases continuously over time, with
the system occupying more memory as it runs. In contrast, both our proposed system and Edge-
SLAM show very stable memory usage with minimal difference between them, as the staging map
contains only a small number of keyframes. Moreover, our proposed relocalization mechanism no
longer requires receiving the relocalization map, further reducing memory consumption during the
process.

In conclusion, our solution provides notable improvements in robustness and localization accuracy
despite the slight increase in CPU usage. Furthermore, we observe that all Visual SLAM systems
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in the experiment suffer a significant decline in processing efficiency over extended periods. This
performance degradation is primarily due to insufficient swap memory, which decreases as the system
operates.

Figure 6: Comparison of CPU Consumption in Visual SLAM System

Figure 7: Comparison of Memory Consumption in Visual SLAM System

5 Conclusion

For edge-assisted Visual SLAM, rapid data synchronization between the mobile device and the edge
server presents a significant challenge. Additionally, the distributed architecture also affects the
system’s ability to recover after a tracking loss; this weakens the system’s robustness and impacts
its accuracy. To address this, we separated the data synchronization process on the mobile device
into an independent thread and processed it in parallel while backing up keyframe information to
compensate for the accuracy loss during synchronization. Furthermore, we proposed an efficient
relocalization mechanism that can help the system restore tracking more effectively. Overall, our
approach reduces the tracking interruption time caused by local data synchronization on the mobile
device by up to 94.2%, improves coverage by up to 30.1%, reduces the time required for system
relocalization recovery by up to 35.2%, and increases the system’s localization accuracy to 43.7%
and 36.8% in translation and rotation scenarios, respectively.

By evaluating the system’s CPU and memory usage, we found that the exchange memory usage
in the edge-assisted Visual SLAM architecture is quite high, and insufficient exchange memory space
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negatively affects the system’s execution efficiency. There is also room for further improving data
exchange efficiency between the mobile device and the edge server. In future work, we plan to
conduct a more in-depth analysis and evaluation of these issues and aim to further reduce resource
consumption and the mobile device’s end-to-end load through hardware and software optimizations.
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