International Journal of Networking and Computing — www.ijnc.org, ISSN 2185-2847
Volume 14, Number 2, pages 145-156, July 2024

Advanced Implementation of DNN Translator using ResNet9 for Edge Devices

Mery Diana

Graduate School of Science and Technology, Kumamoto University
Kumamoto, 860-0862, Japan
merydianal004@gmail.com

Masato Kiyama and Motoki Amagasaki

Faculty of Advance Science and Technology, Kumamoto University
Kumamoto, 860-0862, Japan
{masato, amagasaki} @cs.kumamoto-u.ac.jp

Masayoshi Ito and Yuki Morishita

Mitsubishi Electric Engineering
Tokyo, 102-0073, Japan
{ito, morishita}@ma.mee.co.jp

Received: February 15, 2024
Revised: May 5, 2024
Accepted: May 28, 2024
Communicated by Shoichi Hirasawa

Abstract

Resource limitations remain challenging in designing and implementing Deep Neural Net-
works (DNNs) on edge devices. The high complexity of DNN architectures and the development
of these models using hardware languages require high-level verification to ensure they run on
specific edge devices such as FPGA (Field Programmable Gate Array). To address these is-
sues, the DNN translator was developed and performed well in the basic models such as MLP
(Multi-layer Perceptron) and LeNet5. The DNN translator generates the DNN models and
their parameters for performing the High-Level Synthesis or HLS technology in C++. In this
study, we applied ResNet as a DNN model with more complex architecture from the CNNs
(Convolutional Neural Networks) family. As a result, the generated C++ files for the ResNet9
and its weights successfully underwent synthesis and implementation on FPGA (Arty A7-100)
using Vitis HLS.

Keywords: Edge Site, Deep Neural Network Translator, High-Level Synthesis, ResNet9

1 Introduction

Introducing Artificial Intelligence (AI) to edge sites presents numerous advantages and challenges.
It leads to a reduction in bandwidth usage, particularly in scenarios where numerous devices are
connected to the cloud [3]. This approach offers scalability and enhances privacy to ensure end-user
safety, as highlighted by Xu et al. [18]. Additionally, it contributes to the alleviation of computation

OThis paper is an extension of presented paper in the CANDAR Workshop 2023

145

Advanced Implementation of DNN Translator using ResNet9 for Edge Devices

load on the cloud side. Despite these promising prospects, there are formidable limitations, notably
in terms of power and resource constraints [12]. Hence, maintaining a keen awareness of resources in
the design of Deep Neural Network (DNN) models and their implementation processes is imperative.
High-Level Synthesis (HLS), a design technology for Field-Programmable Gate Arrays (FPGA)
[16,20], offers several advantages over Register Transfer Level (RTL). HLS employs high-level code,
such as C or C++, commonly used by hardware designers. More, utilizing easily verifiable C or
C++ languages reduces design costs, thereby diminishing production time and enhancing efficiency
[2,10,13].

In the previous study [5], we have developed a translator to convert DNN models from the
PyTorch [15] framework into C++. This translation facilitates DNN implementation on an FPGA as
a potential edge device using the HLS technique. Subsequently, the generated C++ code underwent
HLS using Vitis HLS, conducting synthesis and implementation on the Arty A7-100. In this extended
study, we performed the translator in ResNet9 from a CNN-based family as the deeper model
compared to MLP and LeNet5. ResNet9 was constructed by utilizing several convolutional layers
for residual layers [7] with more complex architecture than MLP and LeNet5. After getting the
C++ files from the DNN translator, we performed the C synthesis and implementation using Vitis
HLS. The synthesized C++ code successfully passed the synthesis phase, and we obtained estimates
for resource utilization and timing during post-implementation. The rest of this document is as
follows. Section II is an overview of related work, while Section III outlines the architecture of the
DNN translator and DNN model. In Section IV, we introduce the evaluation conditions, present the
results, and engage in a discussion. Finally, Section V summarizes our present research and outlines
directions for future work.

2 Related Work

In order to enlarge the implementation of DNN in the FPGA, several researches have been conducted.
[19] developed Caffeine as the accelerator for convolutional layers and fully connected layers by using
the FPGA. This Caffeine, integrated with the Caffe framework, boosts its performance to achieve
better energy efficiency over the GPU implementation. Besides this merit, the implementation of
Caffeine is limited to the convolutional layer and fully connected layer of the DNN model. [6] also
proposed the CNN2Gate that parses the CNN model from several machine learning and performs
the OpenCL synthesis tools to run the project in the FPGA. Compared to the HDL, since it applied
the OpenCL, CNN2Gate may lack control for optimization at the low level, limitation in the syntax,
and does not support dynamic memory handling [14]. Therefore, a DNN translator is required to
parse the DNN architecture and its parameters to be implemented easily and user-friendly.

HLS is one of the techniques in hardware designing that is easier by utilizing C, C++, or System
C [1]. Compared to the RTL technique, HLS can enhance efficiency due to its simplicity in verifi-
cation, thus reducing the design cost. HLS, or high-level synthesis, offers advantages in designing
the hardware compared to RTL technique. Pytorch as the framework is commonly usage in the
design of the DNN model [11]. By using the Python ecosystem, Pytorch offers the imperative and
Pythonic programming style that supports hardware accelerators such as GPU [15]. These condi-
tions enhance the challenges to develop the DNN translator from DNN model that using Pytorch
as the framework. By taking the pros of the Pytorch as the framework for the DNN model and
HLS technique for designing the hardware for implementing them, a DNN translator as mentioned
previouly was developed to generates the C++ for the DNN models and their parameters. In this
paper, we explained the extention of implementation of the translator in the ResNet9 that built
using pytorch framework. ResNet9 as one of the CNN-based model applied the ResNet architecture
with the smaller parameters that makes ResNet9 as a potential DNN model for edge device. We
also presented and analized the HLS results of Resnet9 in FPGA Arty7-100.

146

International Journal of Networking and Computing

3 DNN Translator

We have developed a DNN translator designed to convert DNN models into C++ [5], serving as
one of the high-level codes for High-Level Synthesis (HLS). This translation process aims to expe-
dite the implementation of DNN models on edge devices. Our translator employs PyTorch and the
cgen library [8] to produce structured code from Python. The workflow of the DNN translator is
illustrated in Figure 1, with the corresponding algorithm detailed in Algorithm 1. The DNN model,
constructed using the PyTorch framework, transforms its architecture, weights, and biases, employ-
ing the transform_one_or_zero function. The steps involved in this transformation are outlined in
Algorithm 2. Subsequently, the translator necessitates tensor inputs, also subject to transformation
through the one_or_zero function, as specified in Algorithm 3. The input size can be adjusted to
match the DNN model’s input size. For example, the tensor input applied to the MLP model is
1x10.

Upon completing the transformation of the DNN model and tensor inputs, the DNN translator
executes the gen_test_case function to generate C++ code for the model’s architecture and its pa-
rameters, including weight, layers, and biases. As indicated in Algorithm 1, before C++ generation,
the translator examines the output dimensions of the DNN model and calls the gen_model_cpp func-
tion to iterate through the layers within the DNN model architecture. The DNN translator supports
CNN-based model architecture through convolutional layers, fully connected layers, and flattening.
DNN translators also translate ReLU (Rectified Linear Unit) as the activation function and Max-
Pooling as the pooling layer. Additionally, cgen is utilized to define HLS pragmas within the layer
module and ap_int.h from HLS _arbitary_Precision_Types [17] to define the generated code in inte-
ger (INT8). The translator optimizes the HLS of DNN models by providing the pragma HLS pipeline
and pragma HLS allocation in generating a C++ file for the model architecture. For instance, the
DNN translator employs c.Pragma("HLS pipeline") to generate #pragma HLS pipeline in the
resulting C++ code. We inserted these HLS Pragmas directly into the convolutional layer, flatten
layer, and linear layer by using cgen library (c.Pragma).

DNN Translator

DNN model Transform weight Generate random Compute output Generated C++ of
architecture and biases of the input and transform dimension and > DNN model and its
O PyTorch DNN model to 0 or 1 toOor1 generate C++ wigths for HLS

Figure 1: Workflow of DNN Translator.

Algorithm 1 Transforms and generates the DNN model

Require: model: a neural network model

Require: input_tensor: an input tensor

Require: output_dim: output dimension(s)

Ensure: Generated C++

: model < MLP()

transform_one_or_zero(model)

i < one_or_zero(torch.randn(1, 10))
gen_test_case(model, i, tuple(model(i).size()[1 :]))

W o

3.1 DNN Model

We employed basic models (MLP and LeNet5) in the previous study to assess and validate the DNN
translator. Then, we enhanced the DNN translator implementation into the deeper DNN model,
such as ResNet9. The initial model is the MLP and LeNet5, depicted in Figure 2(a) and Figure 2(b).
We utilized the ResNet9 architecture as illustrated in Figure 2(c) with residual blocks to broaden

147

Advanced Implementation of DNN Translator using ResNet9 for Edge Devices

Algorithm 2 transform_one_or_zero

Require: model
Ensure: Transformed model
1: for all m in model.modules() do
2: if m is an instance of nn.Linear or nn.Conv2d then
m.weight.data < one_or_zero(m.weight.data)
if m.bias # None then
m.bias.data < one_or_zero(m.bias.data)
end if
else
pass
9: end if
10: end for

Algorithm 3 one_or_zero

Require: t¢: a tensor

Ensure: A tensor with elements replaced by 0 or 1
function OneOrZero(t)

mask < F.dropout(torch.ones_like(t),p = 0.5) == 0.0
result < torch.where(mask, 0.0, 1.0)

return result

end function

the scope of our DNN translator’s applicability, particularly in the context of CNN-based models.
Every residual block consists of two convolutional layers and ReLU layers. MNIST [4] dataset with
size 28 x 28 is fed into the MLP model and LeNet5 model in model preparation, such as the training
process. In the ResNet9 model, we applied CIFAR10 [9] as the input (3 x 32 x 32). The image input
can be adjusted as implementation and the model architecture.

a = =
= g o) o) B
Input SR E R s o ® ®| G m® = =2 B = E = E
11’23 —> 2 =7 > > Z =—> Output Input S e s S s e TrE s el »E 2 = Output
(1,28) B cl Bl el = (1, 28, 28) DS RS e B e B =B
(] 5l = ISARL] =~ = =
o E
(a) MLP. (b) LeNet5.
= = = =
o o £ o o} o 5o = o o E
Input S oEet sE S el ok s LELELE LELE cLELELE £ 2 F
~
@23 TRTEFIVENE PO RE PR rE O rE RS R pE ST D2 #E 2 SE DS SE > E > Outpue
o o 5 s a s s = s a e s 8 5
S E] S

(c) ResNet9.

Figure 2: (a)Architecture of MLP, (b)LeNet5, and (c¢)ResNet9.

4 Evaluation

4.1 Evaluation Condition

We comprehensively evaluated the DNN translator and its output to ensure optimal performance in
generating C++ files of ResNet9 for High-Level Synthesis (HLS). By employing the DNN translator,

148

International Journal of Networking and Computing

Algorithm 4 gen_test_case

Require: model: a neural network model
Require: input_tensor: an input tensor
Require: output_dim: output dimension(s)
Ensure: Generated C++

1: procedure GenTestCase(model, input_tensor, output_dim, num_type, header)

2: output_dim + (output_dim,) if isinstance(output_dim, int) else output_dim

3: main_func + c.FunctionBody(c.FunctionDeclaration (c.Value(”int”, “main”), []),
c.Block([]))

4: input_dim < tuple(input_tensor.size()[1 :])

5. main_func.body.append(set_array(c.Value(num_type, gen_array("input”, input_dim)),
input_tensor[0]))

6: main_func.body.append(set_array(c.Value(num_type, gen_array(”output”, output_dim)),
torch.zeros(output_dim)))

7. with open(header, ”w”) as h:

8 top, funcs < gen_model_cpp(model, input_dim, output_dim, num_type, header = h)

9: print(c.Include(”ap_int.h”))

10: print(c.Include(header, system=False))

11: print(top. fdecl)

12: for f in funcs do

13: print(f)

14: end for

15: print(top)

16: main_func.body.append(c.Statement(" + f’top.fdecl.subdecl.name(input, output)” +
"))

17: indezes <+ gen_index_seq(”i”, len(output_dim))

18: output_var < "output” + ””.join(map(lambda z: £’[x]”, indezxes))

19: loop_body <— c.Statement(" + f’printf(”%d, ”, (int){output_var})’ + ")

20: for i, s in zip(reversed(indexes), reversed(output_dim)) do

21: loop-body < c.For("int " 4 7§ =07, "i < s", "i + +", c.Block([loop-body]))

22: if i # indexes[—1] then

23: loop_body.body.append(c.Statement ("printf (

n)"))

24: end if

25: end for

26: main_func.body.append(loop_body)

27: print(main_func)

28: end procedure

149

Advanced Implementation of DNN Translator using ResNet9 for Edge Devices

which translates PyTorch-based DNN models, we successfully obtained the generated C++ code
encapsulating Resnet9’s architecture, weights, and biases. Subsequently, we proceeded with the
synthesis and implementation stages of Vitis HLS, utilizing the Arty A7-100 platform with the
environment as described in Table 1.

Table 1: Evaluation Environment.

HSa(:gz:::Z/ Name Specification
LUTs : 15,850

Block RAM : 4,860 Kbits
Clock Management Tiles : 6
DSP slices : 240

Internal clock speeds
exceeding 450MHz

256 MB DDR3L

with a 16-bit bus @ 333MHz
Internal clock : 450 MHz+
16MB Quad-SPI Flash
Powered : USB or 7V-15V
Pytorch library | torch : 2.0.1

Software Cgen Library 2020.1

HLS Tool Vitis HLS 2021.2

Hardware Arty A7-100

The HLS process was executed sequentially, encompassing C-Synthesis and Co-Simulation. Addi-
tionally, we exported the synthesis results to the Register Transfer Level (RTL) and conducted place
and route operations to ascertain resource utilization and timing summaries post-implementation.
These steps complemented the estimations derived from the synthesis in Vitis HLS 2021.2. The
workflow of the HLS process, leading up to the implementation of the generated C++ code from
DNN models is depicted in Figure 3.

Generated C++of DNN
model and its weight
C-Synthesis
Export RTL/
Implementation

Figure 3: The operations in Vitis HLS from generated C++.

VITIS HLS

4.2 Result

Since the DNN translator generates the models in INT8, we performed experiments to define their
accuracy in similar data types before generating the C++ using the DNN translator. We also
calculated the accuracy of the baseline model in floating point (FP32) as the comparison. As shown
in Table 2, MLP model accuracy is 94.44% in FP32 and 94.14% in INT8. Thus, for ResNet9, model

150

International Journal of Networking and Computing

accuracy decreased from 87.29% to 87.13%. In contrast to both models, LeNet5 accuracy slightly
increased from 98.31% in FP32 and 98.33% in INTS8. Based on the results, the model accuracy in
INTS is nearly equivalent to the baseline model in FP32.

Table 2: Accuray of DNN models.

Accuracy (%)
No | Model | Dataset FP32 | INTR

MLP MNIST 94.44 | 94.14
LeNet5 | MNIST 98.31 | 98.33
ResNet9 | CIFAR10 | 87.29 | 87.13

W N —

The translator successfully generated the C++ files from the DNN models. Documentation
detailing the outcomes of the DNN translator and HLS tools for ResNet9 is provided in Figure
4. Subsequent to the synthesis and implementation phases, we acquired Hardware Description Lan-
guage (HDL) files, including Verilog. The assessment encompassed estimations and implementations
of resource usage for DNN models on the Arty A7-100 platform.

model= ResNet9()

transform_one_or_zero(model) ResNet9
i = one_or_zero(torch.randn(1, 3, 32, 32)) Model
gen_test_case(model, i, tuple(model(i).size()[1:])) (Pytorch)

DNN Translator

ResNet9(ap_uint<8> input[3][32] [32], ap_uint<8> output[10])

{
conv_140483013573504 (input, weight®, bias@, tmp_out@);
relu_64_32_32(tmp_out0);
conv_140483013566064 (tmp_out®, weight2, bias2, tmp_out2);
relu_128_32_32(tmp_out2); Generated
maxpool2d_128_32_32(tmp_out2, tmp_out4); C++
conv_140483030743744 (tmp_out4, weight5, bias5, tmp_out5);
conv_140483030744080 (tmp_out5, weight6, bias6, tmp_out6);
relu_128_16_16(tmp_out6);

HLS tool

1ns /1ps
(* CORE_GENERATION_INFO="ResNet9_ResNet

module ResNet9
ap_local_block,
ap_local_deadlock,
ap_clk,
ap_rst,
ap_start, .
Ty Verilog
ap_idle,
ap_ready,
input_r_addresse,
input_r_ce®,
input_r_q@,
output_r_addresse,
output_r_ced,
output_r_wed,
output_r_do,

Figure 4: The documentation of generated files from DNN Translator and HLS tool.

The resource usage estimates for MLP, LeNet5, and ResNet9 are outlined in Table 3, Table 4,
and Table 5, respectively. We also obtained the summaries of the timing estimation. The estimated
timing for the models falls below the specified target, specifically below 10 ns. Table 6 illustrates
that the MLP model successfully met the required timing, achieving an estimated timing of 6.823
ns, while LeNet5 and ResNet9 reached an estimated timing of 7.248 ns.

151

Advanced Implementation of DNN Translator using ResNet9 for Edge Devices

Table 3: Estimation of resource usage for MLP.

Name BRAM_18K | DSP FF LuT
DSP - - - -
Expression - - - -
FIFO - - - -
Instance 0 - 14,454 | 28,809
Memory 0 - 32 24
Multiplexer - - - 151
Register - - 97 -
Total 0 0 14,495 | 28,984
Available 270 240 | 126,800 | 63,400
Utilization (%) 0 11 45

Table 4: Estimation of resource usage for LeNet5.

Name BRAM_18K | DSP FF LuT
DSP - - - -
Expression - - - -
FIFO - - - -
Instance 0 - 16,896 | 30,417
Memory 6 - 832 126
Multiplexer - - - 2,335
Register - - 24 -
Total 6 0 17,752 | 32,878
Available 270 240 | 126,800 | 63,400
Utilization (%) 2 0 14 51

Table 5: Estimation of resource usage for ResNet9.

Name BRAM_18K | DSP | FF LUT

DSP - - - -
Expression - - 0 235
FIFO - - - -
Instance 45 - 12,904 | 30,333
Memory 310 - 632 126
Multiplexer - - - 2,335
Register - - 24 -
Total 355 0 35,08 | 55,046
Available 270 240 | 126,800 | 63,400
Utilization (%) 131 0 27 86

Table 6: Timing summary of MLP, LeNet5, and ResNet9.

Model Clock | Target | Estimated | Uncertainty
MLP ap-clk 10 ns 6.823 ns 2.7 ns
LeNet5 ap_clk 10 ns 7.248 ns 2.7 ns
ResNet9 | ap_clk 10 ns 7.248 ns 2.7 ns

152

International Journal of Networking and Computing

5 Discussion

After successfully running the translation of the DNN model, we received the model architecture and
its weight in the C++ files. DNN translator translated models into INT8 and generated the pipelines
for synthesis as shown in Figure 4. The generated C++ files from the DNN translator provide the
layers that built the DNN model as the baseline model developed in the Pytorch framework into
C++. For example, the DNN translator entirely generated two residual blocks of ResNet9 that are
similar to the original model’s architecture. Then, we conducted HLS using the generated C++
files to evaluate their performance and gain the HDL files for each model. The result shows that
these generated files were well synthesized in the Vitis HLS. We received information related to
performance estimation, such as a summary of the timing and utilization of resource usage for
implementing the DNN models.

We also performed the place and route to analyze the implementation resource usage and final
timing on the Arty A7-100 as a candidate for edge device. The results in Table 7 facilitate comparing
the implemented resource usage and the earlier estimated resource usage for each model. Table 5
showed that ResNet9 utilized all the memory resources and exceeded the resource availability in the
Arty7-100 as the estimation. For the MLP model, the implementation successfully passed the Critical
Path Delay (CP), with a consumption of 5.615 ns post-synthesis and 8.853 ns post-implementation.
Similarly, LeNet5 met the final timing requirements for the Critical Path, achieving 6.748 ns post-
synthesis and 9.598 ns post-implementation. Even though ResNet consumed 10.121 ns over the
CP required timing in the post-synthesis, it passed the post-implementation timing with 9.815 ns.
These conditions show that a deeper model loads more complexity in operation and longer timing,
which consumes more resource availability in the hardware. However, in the implementation, the
DNN models passed the CP timing required, which is less than 10 ns, as informed in Table 7.
ResNet accomplished adeptly in the Arty7-100 since the post-implementation showed acceptable
resource usage and timing summary. The result of synthesis and implementation confirmed that the
generated C++ files of the DNN translator performed well in the HLS tool.

Table 7: Implementation of resource usage for MLP, LeNet5, and ResNet9.

Name MLP | LeNet5 | ResNet9
SLICE 1,026 4,076 13,920
LUT 2,100 11,232 43,448
FF 2,967 12,299 20,899
DSP 0 0 0
BRAM 2 8 270
LATCH 0 0 0
SRL 17 24 13
CLB 0 0 0
Final Timing
CP required 10 ns 10 ns 10 ns
CP achieved post-synthesis 5.615 ns | 6.748 ns | 10.121 ns
CP achieved post-implementation | 8.853 ns | 9.598 ns 9.815 ns
Timing met met met

Since the DNN translator constructed the pragma HLS Pipeline to optimize the synthesis of
DNN models, the generated C++ performed well in the pipelines during synthesis. Compared to
MLP and LeNet5, ResNet9 applied more pipelines during the synthesis. As shown in Table 8, Table
9, and Table 10, every model utilized the pipelines in each linear layer operation. However, ResNet9
used the pipelines in 2D convolutional layers, reshape operations, and linear layers over the MLP
and LeNet5, as shown in Table 10. The number of pipeline operations differs for each DNN model.
It depends on the stack of the DNN model’s layers. The deeper models, such as ResNet9, operated
more pipelines than the MLP and LeNetb models. ResNet applied two convolutional layers for
each block, increasing the number of synthesis pipelines. Thus, this result indicates that the DNN

153

Advanced Implementation of DNN Translator using ResNet9 for Edge Devices

translator generated the HLS Pragmas as assigned and executed in HLS.

Table 8: Pragma HLS Pipeline for MLP.

Type Location
pipeline | hls-mlpa7/mlpv1.cpp:10 in linear_10x100
pipeline | hls-mlpa7/mlpvl.cpp:34 in linear_100x84
pipeline | hls-mlpa7/mlpvl.cpp:58 in linear_84x10

Table 9: Pragma HLS Pipeline for LeNet5.

Type Location
pipeline | hls-lenet5/lenet5.cpp:9 in conv_140204914556112
pipeline | hls-lenet5/lenet5.cpp:12 in conv_140204914556112
pipeline | hls-lenet5/lenet5.cpp:86 in conv_140204914552944
pipeline | hls-lenet5/lenet5.cpp:89 in conv_140204914552944
pipeline | hls-lenet5/lenet5.cpp:158 in reshape_16_5_5
pipeline | hls-lenet5/lenet5.cpp:161 in reshape_16_5_5
pipeline | hls-lenet5/lenet5.cpp:164 in reshape_16_5_5
pipeline | hls-lenet5/lenet5.cpp:176 in linear_400x120
pipeline | hls-lenet5/lenet5.cpp:200 in linear_120x84
pipeline | hls-lenet5/lenet5.cpp:224 in linear_84x10

6 Conclusion and Future Work

In this research, we introduced the advanced implementation of a DNN translator leveraging the
PyTorch framework in building ResNet9 architecture. The C++ files of ResNet9 generated by
the translator can be seamlessly synthesized using HLS tools like Vitis HLS. Notably, the DNN
translator also incorporates HLS Pragmas, thereby improving the synthesis efficiency of DNN models.
Consequently, the generated C++ files from DNN models using the PyTorch framework can be
effectively implemented on edge devices such as Arty7-100.

Through synthesis using HLS, the deployment of DNN models at the edge site can be significantly
accelerated. As a future study, our future endeavors will involve extending the application of the
DNN translator to various DNN models, not only from the CNN-based model. We will enhance
the translator’s performance in handling the DNN model with complex architecture. Therefore, the
HLS tools can effectively synthesize the files generated by the DNN translator.

References

[1] Donald G. Bailey. The advantages and limitations of high level synthesis for fpga based image
processing. In Proceedings of the 9th International Conference on Distributed Smart Cameras,

ICDSC 15, page 134-139, 2015.

[2] Yosi Ben-Asher and Nadav Rotem. The benefits of using variable-length pipelined operations
in high-level synthesis. ACM Trans. Embed. Comput. Syst., 13(3), dec 2013.

[3] Olivier Debauche, Said Mahmoudi, Sidi Ahmed Mahmoudi, Pierre Manneback, and Frédéric
Lebeau. A new edge architecture for ai-iot services deployment. Procedia Computer Science,
175:10-19, 2020.

[4] Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141-142, 2012.

154

International Journal of Networking and Computing

[5]

[10]

[11]

Table 10: Pragma HLS Pipeline for ResNet9.

Type Location
pipeline | hls-resnet92/testresnet92.cpp:9 in conv_140483013573504
pipeline | hls-resnet92/testresnet92.cpp:12 in conv_140483013573504
pipeline | hls-resnet92/testresnet92.cpp:68 in conv_140483013566064
pipeline | hls-resnet92/testresnet92.cpp:71 in conv_140483013566064
pipeline | hls-resnet92/testresnet92.cpp:145 in conv_140483030743744
pipeline | hls-resnet92/testresnet92.cpp:148 in conv_140483030743744
pipeline | hls-resnet92/testresnet92.cpp:191 in conv_140483030744080
pipeline | hls-resnet92/testresnet92.cpp:194 in conv_140483030744080
pipeline | hls-resnet92/testresnet92.cpp:250 in conv_140483030744032
pipeline | hls-resnet92/testresnet92.cpp:253 in conv_140483030744032
pipeline | hls-resnet92/testresnet92.cpp:322 in conv_140483030744608
pipeline | hls-resnet92/testresnet92.cpp:325 in conv_140483030744608
pipeline | hls-resnet92/testresnet92.cpp:394 in conv_140483030744464
pipeline | hls-resnet92/testresnet92.cpp:397 in conv_140483030744464
pipeline | hls-resnet92/testresnet92.cpp:440 in conv_140483030744704
pipeline | hls-resnet92/testresnet92.cpp:443 in conv_140483030744704
pipeline | hls-resnet92/testresnet92.cpp:512 in reshape_256_2_2
pipeline | hls-resnet92/testresnet92.cpp:515 in reshape_256_2_2
pipeline | hls-resnet92/testresnet92.cpp:518 in reshape_256_2_2
pipeline | hls-resnet92/testresnet92.cpp:530 in linear_1024x10

Mery Diana, Masato Kiyama, Motoki Amagasaki, Masayoshi Ito, and Yuki Morishita. Deep
neural network translator for edge site implementation. In Proceeding of 2023 Eleventh Interna-
tional Symposium on Computing and Networking Workshops (CANDARW), page 52, Matsue,
Japan, nov 2023.

Alireza Ghaffari and Yvon Savaria. Cnn2gate: An implementation of convolutional neural
networks inference on fpgas with automated design space exploration. Electronics, 9(12), 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

Andreas Kloeckner and Contributors. cgen - code generation library. https://github.com/
inducer/cgen, 2020. accessed May 12.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s
thesis, Department of Computer Science, University of Toronto, 2009.

Marcos T. Leipnitz and Gabriel L. Nazar. High-level synthesis of approximate designs under
real-time constraints. ACM Trans. Embed. Comput. Syst., 18(5s), oct 2019.

A. Mahmoud, N. Aggarwal, A. Nobbe, J. R. S. Vicarte, S. V. Adve, C. W. Fletcher, I. Frosio,
and S. K. S. Hari. Pytorchfi: A runtime perturbation tool for dnns. In Proceeding of 2020 50th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops
(DSN-W), pages 25-31, 2020.

Javier Mendez, Kay Bierzynski, M. P. Cuéllar, and Diego P. Morales. Edge intelligence: Con-
cepts, architectures, applications, and future directions. ACM Trans. Embed. Comput. Syst.,
21(5), oct 2022.

Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew Canis,
Yu Ting Chen, Hsuan Hsiao, Stephen Brown, Fabrizio Ferrandi, Jason Anderson, and Koen

155

156

Advanced Implementation of DNN Translator using ResNet9 for Edge Devices

Bertels. A survey and evaluation of fpga high-level synthesis tools. IEEFE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 35(10):1591-1604, 2016.

Katharina Ostaszewski, Philip Heinisch, and Hendrik Ranocha. Advantages and pitfalls of
opencl in computational physics. In Proceedings of the International Workshop on OpenCL,
IWOCL "18, New York, NY, USA, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. https://pytorch.org, 2021.

Zi Wang and Benjamin Carrion Schafer. Learning from the past: Efficient high-level synthesis
design space exploration for fpgas. ACM Trans. Des. Autom. Electron. Syst., 27(4), 2022.

Xilinx, Inc. Xilinx vitis high-level synthesis (hls) documentation, 2022. accessed May 14.

Dianlei Xu, Tong Li, Yong Li, Xiang Su, Sasu Tarkoma, Tao Jiang, Jon Crowcroft, and Pan Hui.
Edge Intelligence: Architectures, Challenges, and Applications, June 2020. arXiv:2003.12172
[cs].

Chen Zhang, Guangyu Sun, Zhenman Fang, Peipei Zhou, Peichen Pan, and Jason Cong. Caf-
feine: Toward uniformed representation and acceleration for deep convolutional neural networks.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(11):2072—
2085, 2019.

Jieru Zhao, Liang Feng, Sharad Sinha, Wei Zhang, Yun Liang, and Bingsheng He. Comba: A
comprehensive model-based analysis framework for high level synthesis of real applications. In
Proceeding of 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 430-437, 2017.

