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Abstract

In this work, we propose the Network Performance Collector (NPC) workflow for automated
network performance characterization. The workflow is based on the collection, processing as
well as visualization of network performance metrics such as throughput and latency and can
be used for analysis with different network performance models. Depending on the chosen
model, benchmark tools such as iperf or sockperf as well as microbenchmarks specific to parallel
programming models can be automated and orchestrated for data collection with the NPC.
The data obtained can then be used by NPC, for example, to validate and characterize the
performance of the underlying network or to analyze the system boundaries for a particular
application. We provide a prototype implementation of the proposed workflow and demonstrate
its effectiveness by automating an extended Roofline model analysis.

Keywords: Network Interconnects, Automated Performance Characterization, Extended Roofline
Model, HPC, Network Benchmarks, JUBE Benchmarking Framework

1 Introduction

There are several ways to determine the actual performance characteristics of a point-to-point link
for a given interconnection network. Well-known tools such as gperf [34] or sockperf [39] offer various
network benchmarks to determine concrete values for network metrics such as the throughput or
latency of a connection. As with most benchmarks, the reproducibility of the obtained results and
the observed performance depends on the configured parameter space and the execution environ-
ment. Network benchmark tools offer a wide range of options depending on the network technology
and protocol, but are commonly based on the client-server model, i.e. it is necessary to use dif-
ferent parameters for server and client side. This circumstance makes it difficult to perform such



International Journal of Networking and Computing

benchmarks on supercomputers where workload managers such as Slurm are used. In addition,
microbenchmarks for parallel programming models such as MPI can provide an estimate for the
network performance observed by applications. Although it is possible to obtain an interactive shell,
it would be more convenient and user-oriented to run these benchmarks as simple, automated jobs
that can be scheduled by the workload manager.

To address these shortcomings, we propose the Network Performance Collector (NPC) workflow
to ensure reproducibility, comparability, and portability of the obtained results. With NPC, it is
possible to automate the benchmarking process and easily obtain performance data for different
subsets of the available benchmark configurations. The modularity of its design allows NPC to be
configured, applied, and extended to different measurement tools, system configurations, and net-
work performance models, such as the Roofline model [49]. The goal is to develop a tool chain for
automating the characterization of modern HPC systems, with particular regard to the increasingly
heterogeneous (network) infrastructure. One example is the Modular Supercomputer Architecture
(MSA) [27,40], which leverages a system design that is based on heterogeneous hardware modules
instead of the traditional homogeneous, fat-node approach. MSA systems consist of multiple mod-
ules, including a general-purpose CPU cluster, an accelerator-based Booster cluster (e.g. GPUs), or
a quantum computing module as independent compute resources. The modularity of these compo-
nents also affects the deployed network technologies, i.e. each module could use a different technology
such as InfiniBand or Ethernet. In this context, a workflow for network performance modeling and
automated system characterization will be even more important.

This paper extends our previous work [3] and makes the following contributions:

e We introduce the Network Performance Collector (NPC) workflow, which provides the means
to configure and run benchmark and application sets in an automated manner. Its design
targets the reproducibility, comparability, and portability of obtained performance results.

e We provide a proof-of-concept implementation of the proposed workflow that can be applied to
applications and (micro)benchmarks. For demonstration purposes, we integrate an extended
version of the Roofline model.

e We demonstrate the effectiveness and applicability of our proposed workflow by evaluating
different network and micro-benchmarks as well as two selected applications on three different
compute clusters: FUCHS-CSC and Cesari-MSQC at Goethe University Frankfurt, and the
DEEP prototype system at the Jiilich Supercomputing Centre.

The remainder of this work is organized as follows. Section 2 provides an introduction to network
benchmarks and performance models and discusses related work. Section 3 outlines the proposed
workflow for automated network performance characterization. In Section 4, the prototype imple-
mentation of the workflow is discussed. Preliminary performance results and a proof-of-concept are
presented in Section 5 by applying the workflow to automate an extended Roofline characterization.
Section 6 provides a discussion about future work. The paper concludes in Section 7.

2 Background and Motivation

In the following, we provide an overview of tools for measuring network performance and their
features. We also discuss relevant work in the area of performance modeling and prediction. Special
emphasis is placed on the Roofline model, since we use this model for our prototype implementation.

2.1 Network Performance Measurement

Network performance is characterized by several key factors that collectively determine how well
a network functions. This includes numerous characteristics and parameters, such as bandwidth,
latency, jitter, throughput, reliability and scalability, that must be analyzed together to evaluate
a given network. Therefore, we define network performance measurement as the set of processes
and tools that can be used to quantitatively and qualitatively benchmark network performance and
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provide exploitable data to address network performance issues. In this work, we focus on the
automation of network performance characterization based on a selection of network performance
benchmarks, which generate data that can be tailored to baseline performance using pre-set routines.

gperf [34], for example, can be used to measure the throughput and latency between two nodes
for the Transmission Control Protocol / Internet Protocol (TCP/IP) and Remote Direct Memory
Access (RDMA). A convenient aspect of gperf is that the number of different benchmarks that are
run sequentially can be defined without having to restart the client or server. Moreover, it provides
a specific command line parameter that can be used to terminate the server process from the client
side. sockperf [39] can be used to measure throughput and latency via the Socket API, which
means that it is not possible to measure raw RDMA performance. RDMA communication can only
be evaluated by using Socket Direct Protocol (SDP) or Internet Protocol over Infiniband (IPolIB).
hpcbench [22] is an older project specifically designed to provide benchmarks for what were then
considered high-performance networking technologies, including Myrinet, Gigabit Ethernet, and
QsNet. It is noteworthy that hpcbench combined benchmarks for User Datagram Protocol (UDP),
TCP and the Message Passing Interface (MPI) in one project. perftest [33] consists of several
independent benchmarks specifically designed to evaluate RDMA-based communication using Verbs.
Alternative tools that are oftentimes available on Linux machines are iperf3, netperf, and nuttcp,
which can also be used to evaluate TCP /IP-based networks.

Besides low-level network benchmarks, a wide variety of programming model specific microbench-
marks and application benchmarks can be used to analyze the impact of software and middleware
on network performance. An example is the OMB (OSU Micro-Benchmarks) [30], which provides
means to test various communication routines for parallel programming models such as the Message

Passing Interface (MPI) [35] and OpenSHMEM [12].

2.2 Performance Models

A recent survey [37] has summarized an overview of state-of-the-art analytical communication per-
formance models, including LogP, LogfP and log,, P. The LogP machine [13], for example, is a
model for parallel computation. The name is not related to the mathematical logarithmic function.
Instead, the machine is described by the four parameters: L, o, g and P. The LogP machine consists
of as many processing units with distributed memory as desired. The processing units are connected
via an abstract communication medium that enables point-to-point communication. This model is
pairwise synchronous and overall asynchronous, and the units are measured in multiples of processor
cycles. LogP is described by the four parameters:

e [, an upper bound on the latency of the communication medium.
e 0, the overhead of sending and receiving a message.

e g, the gap, defined as the minimum time interval between two send or receive operations. The
reciprocal value of g corresponds to the available communication bandwidth per processor.

e P, the number of processing units.

LogfP [21] is a model for small message performance over the InfiniBand network. This model
provides knowledge about the inherent parallelism of a specific InfiniBand hardware and encour-
ages developers to use this parallelism efficiently. Cameron et al. proposed log,, P [10], a general
software-parameterized model of point-to-point communication for use in performance prediction
and evaluation. It can be used to analyze the impact of middleware on distributed communication.

The Bulk Synchronous Parallel (BSP) model is a parallel computing framework introduced by
Leslie Valiant [46]. Its intend is to simplify the design and analysis of parallel algorithms for dis-
tributed memory systems. In BSP, computation is structured into discrete supersteps, with proces-
sors performing local computation and synchronized communication at the end of each superstep.
This model abstracts away hardware complexities and considers the network as a black box, focusing
on computation, communication, and synchronization. BSP facilitates the development of parallel
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Figure 1: Example of a naive Rooline Model [51].

algorithms by providing a clear and predictable way to balance workloads, distribute data, and an-
alyze performance. Its simplicity makes it a valuable tool for designing and understanding parallel
processing in various applications, from scientific simulations to big data processing.

T(h) = hg+ 1 (1)

To model the cost of a communication superstep, the BSP model introduces the h-relation in
which every processor sends and receives at most h data words: h = max{hs, h,}. Here, h is the
maximum number of data words sent by the processor, while h, denotes the maximum number
of data words received by the processor. The cost of an h-relation can be described as shown in
Equation 1. g gives the time per data word and I the global synchronization time. Basically, g
describes the gap between sending successive data words, while I provides the latency.

In contrast, the Roofline model [19] is intuitive and can be used to estimate the performance
of a given processor along with off-chip memory traffic. Essentially, it is a two dimensional graph
showing the operational intensity (see Equation 2), also referred to as the arithmetical intensity, on
the x-axis and the attainable floating point performance (see Equation 3) on the y-axis.

Floating point operations

(2)

Operational Intensity =

Memory bytes transferred

Attainable GFlops/sec = Min(Peak Floating Point Performance,
Peak Memory Bandwidth x Operational Intensity)

3)

As shown in Figure 1, the Roofline curve illustrates the theoretical peak performance of the
system in terms of memory bandwidth and computational power. The point where the diagonal
and horizontal ceilings intersect is known as the ridge point (RP). This point represents the optimal
operational intensity for a given system, and can be used to identify potential performance bottle-
necks. The main objective of the Roofline model is to set upper limits on the attainable floating
point performance and DRAM bandwidth to characterize the performance of a given machine. Us-
ing these upper bounds, the performance of various symmetric multiprocessing (SMP) applications
can be evaluated and analyzed, i.e. applications can be categorized as memory-bound or compute-
bound depending on their position within the model. Optimal performance is achieved when the
application can neither be classified as compute-bound nor memory-bound.

The traditional Roofline model can also be extended, for example to incorporate computing
cores running on a GPU. The PCle bandwidth can also be a useful additional upper bound, as it
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defines the upper limit for the speed of data transfers between host and device memory. In addi-
tion, for distributed programs, the attainable bandwidth of interconnection networks can be used
as another upper bound [15]. Recently, Wang et al. [47] have introduced the Roofline Power (RLP)
management based on a latency-aware Roofline model. The RLP employs rigorously selected but
generally available hardware performance events to construct rooflines. In particular, RLP extends
the naive Roofline model to include the memory access latency metric. The diverse applicability
of the Roofline model proves that it provides a good starting point for a wide variety of perfor-
mance studies. We intend to automate an extension of the traditional Roofline model for network
performance characterization as part of this work.

2.3 Related Work

Previous work has mainly focused on three types of methods to characterize and predict performance:
analytical modeling, replay-based modeling, and statistical modeling. Another viable option can be
simulation. These approaches can be used to model the behavior of HPC applications and workloads.

An analytical modeling method has arithmetic formulas to describe performance and can quickly
provide a prediction on metrics such as execution time or bandwidth. However, this method needs
extensive efforts of human experts with in-depth understanding of network technologies. Today,
communication performance modeling faces the challenge of the increasing complexity of the com-
putational nodes of current networks. Rico-Gallego et al. [37] have put together an in-depth survey of
existing communication performance models, which analytically represents the cost of network com-
munication based on a limited number of platform-specific parameters. Many models have appeared
over time, including LogP [13], LogfP [21], and log,, P [10].

A replay-based model is derived from historical run traces that contain detailed information about
the computation and communication of an HPC program or workload. By analyzing traces, a syn-
thetic program can be auto-generated to reproduce the behavior of the original program and predict
its performance. However, replay-based modeling typically requires a large amount of storage to
preserve traces (from hundreds of megabytes to dozens of gigabytes for each run). In addition, a
synthetic application can only represent one particular execution path of the original application,
which also limits the applicability of playback-based modeling. Especially for network performance,
only limited options are available. The simulator Dimemas [19,41] can be used to analyze the perfor-
mance of message-passing applications. Its traces can be further analyzed with the visualization tool
Paraver [26]. Another replay-based tool is called ScalaTrace [29]. It relies on intra- and inter-node
compression techniques of MPI events to extract an application’s communication structure. These
traces can then be used to replay and further analyze an application’s MPI communication behav-
ior. Recently, CODES [8,25] has become a popular choice to simulate large-scale storage systems,
I/0O workloads, HPC network fabrics, distributed science systems, and data-intensive computation
environments. the CODES simulation framework is built atop the Rensselaer Optimistic Simulation
System (ROSS) [11], a discrete event simulation framework. Tools such as TRACER [1] can be used
for predicting network performance and understanding network behavior by simulating messaging
on interconnection networks with CODES.

A statistical model exploits machine learning techniques to determine the mapping function
between performance metrics and specific characteristics. With enough training data, statistical
models are able to make relatively accurate predictions about performance without the need for
expertise and human input. It is natural and convenient to use the input parameters of an HPC
program as characteristics. However, important performance factors may not be explicitly covered
by input parameters. This is an important observation especially for the characterization of net-
work performance. In recent years, studies have focused on how to apply machine learning methods
to analyze and predict network performance. Wang et al. [48], for example, explain how to apply
machine learning technology in the networking domain and also provide a brief survey of latest
representative advances. Boutaba et al. [7] provide a comprehensive discussion about how differ-
ent machine learning paradigms can be applied to fundamental problems in networking, including
traffic prediction, routing and classification, congestion control, resource and fault management,
Quality-of-Service management, and network security. Another survey [50] performed in 2019 fo-



International Journal of Networking and Computing

Network Performance Collector (NPC)

¢ Network %

J S
{ Performance } Phase 2: Phase 4:
Y Modgl H Automation Result
9 Selection e Visualization
. 4 3
~\

Benchmark
and Metric
Identification

Phase 3:
Performance
Modeling

Network %,
Tuningand
\ Optimization

.

......

Figure 2: Overview of the NPC workflow.

cuses on machine learning techniques applied to software-defined networking (SDN). In 2020, Sun
et al. [42] introduced automated performance modeling and performance prediction of parallel MPI
applications based on applied machine learning with a focus on execution time prediction.

All of the discussed performance prediction and analysis methods are complementary to our
work. With our proposed workflow, one of our goals is to provide an intuitive, low-overhead method
for collecting network performance data during application execution or system maintenance. Its
modular design allows the inclusion of additional performance models. Users, code developers, and
system administrators can easily gain insight into the application and system performance of a given
HPC platform. Hence, our main goal is to provide a performance engineering tooling infrastructure
that can easily incorporate and automate various performance models and visualization methods.

3 Network Performance Collector (NPC) Workflow

Our paper proposes an automated and modular workflow design for network performance bench-
marking, characterization, and metrics evaluation, as shown in Figure 2. The design philosophy of
the Network Performance Collector (NPC) workflow follows three key principles:

1. Reproducibility is crucial for benchmarking because it ensures that performance measurements
can be consistently validated by different parties. Reliable benchmarking helps assess hardware
and software performance accurately, aiding in fair evaluations and informed decision-making.

2. Comparability is vital for benchmarking as it allows for fair and meaningful performance com-
parisons between different systems or configurations. It ensures that benchmark results accu-
rately reflect the relative strengths and weaknesses of various technologies.

3. Portability is essential for benchmarks because it enables consistent testing across diverse
computing environments. Benchmarks that can run on various platforms and architectures
ensure that performance assessments can be conducted universally, enhancing the practicality
and relevance of benchmarking results.

Automating benchmarks is important for reproducibility and hence comparability which is the major
intent when performing benchmarks. Furthermore, managing different combinations of parameters
is error-prone and often results in significant amounts of work especially if the parameter space
gets large. To mitigate these issues, NPC helps perform and analyze network performance in a
systematic way. It allows user-defined benchmark sets that can be adapted to new architectures
and applications. In addition, the workflow provides means for pre- and post-processing to further
analyze the results with different performance models.
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The Network Performance Collector (NPC) workflow is divided into multiple phases. Prior to
Phase 1 Benchmark and Metric Identification, a suitable Network Performance Model needs to be
selected, depending on the performance aspect or system behavior (e.g. speed, bandwidth, latency)
to be analyzed. It is important to note that this step defines at least a subset of the information
needed for Phase 1. In the future, a network performance model selector module will be included
as Phase 0, which will provide a predefined set of performance models and their test configurations.
Depending on the chosen model, the metrics of interest need to be defined as well as the benchmark
and parameter set. This decision must be made with respect to the given network technology. In
addition, further microbenchmarks for parallel programming models such as MPI or Partitioned
Global Address Space (PGAS) [2] can be included. These microbenchmarks reflect the observed
communication performance at application level and can help with the identification of bottlenecks
and overheads in the software stack.

The next step in the workflow is Phase 2 Automation, i.e. the orchestration and execution
of the chosen benchmark set. Benchmarking a computer system usually involves numerous tasks,
involving several runs of different applications. Configuring, compiling, and running a benchmark
suite on several platforms with the accompanied tasks of result verification and analysis needs a
lot of administrative and configuration work and produces a lot of data, which has to be analyzed
and collected in a central database. Without a benchmarking environment all these steps have to
be performed by hand. Phase 2 delivers such a benchmarking environment by providing a scripted
framework that ensures interoperability and portability with little configuration overhead.

Subsequently, in Phase 3 Performance Modeling, the extraction of the corresponding benchmark
results from the generated output is performed and prepared for further processing. This phase
includes parsing the results of the benchmark runs and the characterization of the system network
performance by applying an appropriate performance model. In Sections 5.3 and 5.4, we demonstrate
how the extended Roofline model can be adopted to evaluate the network performance.

In Phase 4 Result Visualization, all generated benchmark results are converted into a suitable
presentation format, e.g. a chart, a table or a csv file. Depending on the user-defined settings,
Phases 2 and 3 can be run multiple times in an iterative manner, for example to analyze whether
the results of different benchmarks are time-variant or -invariant. Including time as an additional
dimension, Phase 4 then can provide insight into an application’s performance over time, enabling
the identification and understanding of performance anomalies.

Finally, the findings and insights of the NPC workflow can be used to apply Network Tuning
and Optimization, for example to change the network settings or communication behavior of a
certain application. While this phase is currently not implemented yet, automated tuning, bottleneck
identification, and optimization will be provided as Phase 5 through the integration with MAWA-
HPC, as discussed in Section 6.2. If further analysis is necessary or requested, the NPC workflow
can be performed again. This can be the case, for example, after optimizations have been applied
or if a new system is to be analyzed with the same benchmark set.

4 NPC Prototype Implementation

In the following, we describe the prototype implementation of our proposed workflow, which utilizes
the JUBE environment and serves as a proof-of-concept. Furthermore, we present the Network
Performance Benchmark (NPB), which demonstrates how the workflow can be used to automate
low-level network microbenchmarks.

4.1 Workflow Automation

The NPC workflow implementation utilizes the JUBE benchmarking environment [36]. JUBE pro-
vides a script-based framework specifically to create and automate benchmark sets, and to provide
reproducible and comparable results across runs on different compute platforms, i.e. JUBE ensures
portability. JUBE-based workflows can either be written in YAML or XML. Our prototype imple-
mentation currently includes Phases 2 and 3, as shown in Figure 2. We exploit JUBE’s ability to
execute shell commands directly, which makes it easy to submit jobs with different parameters and
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configurations to the system’s workload manager. All steps defined in JUBE run inside their own
work directory. To collect results from different directories, the NPC implementation uses JUBE’s
Analysis Module, which provides a custom set of benchmark-specific regular expressions to extract
the desired values from the result files. After the extraction, the collected results can be displayed
and saved to a file inside the work directory.

One of the key motivations of the NPC workflow is to create a toolset which is able to orches-
trate the deployment of benchmarks without the overhead of manual configuration. Therefore, a
key design aspect is to maintain platform independence. A modular design is able to abstract from
the entanglement between benchmark and platform to create the necessary level of abstraction. As
discussed previously, portability is a key driver when creating a flexible and user friendly bench-
marking environment. For this purpose, JUBE provides an include feature in order to incorporate
heterogeneous system and benchmark specific architecture details. The light yellow part of Figure
3 schematically shows the structure of the workflow implementation for maintaining a platform in-
dependent design. A benchmark set for a particular benchmark is composed of three configuration
files. For each embedded benchmark code, the benchmark_spec.xml file contains all the necessary
information to run the code with different option sets. For example, each command line parameter
that is accepted is given its own entry with a corresponding value or list of values for which a result
must be determined. Furthermore, the specification file contains the required regular expressions
to process and extract the desired information from the benchmark output. In addition to these
benchmark-related specifications, the implementation requires the platform.xml file. This file con-
sists mainly of the required variables and options used to interact with the workload manager. It
may also contain cluster-specific default values for submitting and executing jobs. The final bench-
mark orchestration and configuration is done in the top-level file named benchmark.xml. Here each
benchmark is orchestrated through one of the available options. It also contains the job submission
configuration, e.g. for MPI applications mpirun must be defined as the startup program with all
required startup parameters. Depending on the benchmark, several steps with internal dependencies
are defined here, e.g. a benchmark run could consist of a build, configuration and execution
step. A major advantage of maintaining this modular design philosophy is the applicability of the
NPC workflow on a cross-platform basis. In practice, the switch between different platforms can be
achieved by simply exchanging the platform.xml files containing information specific to the current
architecture of the system in question.
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After defining all of the benchmark-related information, the workflow starts by executing jube
run (light blue boxes in Figure 3). The JUBE runtime executes all defined steps and interacts with
the workload manager to submit the job scripts to the appropriate queues waiting for execution.
JUBE does not track the progress of individual jobs. Therefore, jube continue must be used to
signal to the runtime that job execution is complete and the results are now ready for processing.
At the end of the workflow, jube analyse and jube result are used to extract individual values
from the result files and put them into the defined result schema, e.g. csv, to convert them. Since
this process can be lengthy, there is an option to use jube-autorun which goes through all stages
without user interaction. An alternative would be to create a bash script that checks the status
of the benchmark with jube continue and continues with the workflow once the job execution is
complete. For example, the bash script can be run every 30 seconds with a CronJob, which should
be available on any UNIX-like operating system. Examples are provided in Section 5.

4.2 Network Performance Benchmark (NPB)

Complementing our proposed NPC workflow, we also design the Python-based Network Performance
Benchmark (NPB) for Phase 2, which addresses the shortcomings introduced by popular network
benchmarks such as gperf or sockperf in terms of automation. Instead of real applications, NPB
can be used as a synthetic workload in the NPC workflow. NPB accepts a number of command line
arguments to properly orchestrate the selected benchmark. Processes are created with the help of
mpi4py. The use of MPI facilitates the creation of separate processes for server and client on remote
compute nodes. NPB checks at startup if the correct number of processes is requested, otherwise the
program is terminated. Furthermore, it identifies the hostname of the server automatically, which
makes it easy to use in conjunction with workload managers on HPC systems such as Slurm.

Listing 1: Example NPB call for sockperf.
mpirun -np 2 ./npb
--servercmd="sockperf server"
--clientcmd="sockperf throughput -i HOSTNAME"
--killserver

Listing 1 shows an example NPB call for the sockperf throughput benchmark with default pa-
rameters. NPB is instrumented with both the command for the server and the command for the
client part of the benchmark. One implementation detail is the keyword HOSTNAME, which is used
as a wildcard for the IP address of the server. This keyword is essential when NPB is used in con-
junction with a resource or workload manager. In this case, the nodes on which NPB is executed
are usually not known in advance. By doing this, we establish a setup phase where the host names
of the machines are exchanged and used to replace the keyword HOSTNAME in the client command.
Since sockperf has no method to shut down the server side without explicitly terminating it, NPB
is equipped with a killserver parameter. This parameter generates a message that is forwarded to
the MPI process that has created the server process, which in turn triggers a termination signal to
the server process via the subprocess API.

Benchmarks such as gperf provide the ability to obtain measurements for a range of parameters,
such as message sizes from 1 to 4096 bytes. In addition, NPB implements the repeat keyword, which
can be used to specify a range of values including a step size for benchmarks. This function is
typically not supported natively by network benchmarks, but is mandatory to realize meaningful
measurement series. The syntax of the repeat feature is similar to the one used by gperf (e.g.
--repeat msg size:16:32768:*2 would result in the execution of the benchmark for 12 times with
values from 16 to 32768 doubled in each iteration). It should be noted that the number of hyphens
before the keyword repeat actually matters, since it is replicated for the command to be used for the
benchmark (i.e. —-repeat results in --msg_size whereas -repeat produces -msg_size).

It may be necessary to manipulate parts of a hostname determined by the NPB. This might be
the case if the nodes are equipped with additional network interface controllers (NICs) or if different
subnets are to be used. An example of such a use case is the presence of an IPoIB configuration. To
solve this, NPB accepts two additional arguments to find and replace certain parts of a hostname.

10
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Any benchmark that cannot output results in the data formats csv or json must be used in
conjunction with a custom parser, which are provided by NPB. The parser has to implement a
function with a specific signature, i.e. it takes the input string, the header for the csv file and the
output format as commands. The latter are optional if only a specific format is of interest.

5 Experimental Evaluation and Proof of Concept

In this section, we evaluate the applicability of our workflow implementation. First, we use NPB
from Phase 2 to conduct a bandwidth analysis with different network benchmarks and MPI imple-
mentations. Then, we employ the NPC to apply the Roofline model for selected applications. Both
examples can be seen as preliminary work in automated network performance characterization.

5.1 Test Environment

The primary system employed for our experiments is the FUCHS-CSC Cluster at Goethe University
Frankfurt, while the Cesari-MSQC and the DEEP Prototype System are used complementarily for

the roofline analysis in Section 5.3

FUCHS-CSC: The general-purpose computing platform is based on Intel CPU architectures
running Scientific Linux 7.9 and SLURM as a resource manager. The cluster comprises water-cooled
racks and features a total of 198 identical nodes. Each node is equipped with two Intel Xeon E5-2670
v2 (Ivy Bridge) processors, 128 GB of RAM and FDR InfiniBand connectivity. Additionally, each
node provides up to 1.4 TB of local scratch space. FUCHS-CSC is backed by a parallel scratch file
system based on BeeGFS with an aggregated bandwidth of 27 GB/s and a capacity of 2.4 PB.

Cesari-MSQC: This small general-purpose cluster is located at Goethe University Frankfurt and
managed by the Modular Supercomputing and Quantum Computing (MSQC) group. The system
consists of 16 nodes each powered by two Intel Xeon E5-2660 v2 (Ivy Bridge) in a dual socket
configuration, with 32 GB of RAM and FDR InfiniBand. The cluste leverages Rocky Linux 8.7
(Green Obsidian) as the Operating System and Slurm as the resource manager.

DEEP Prototype: The DEEP system is an MSA prototype comprising three distinct compute
modules. The Cluster Module (CM) utilizes 50 nodes, each equipped with two Intel Xeon Gold
6146 (Skylake) processors, 192 GB of RAM and EDR InfiniBand connectivity. In addition, each
CM node incorporates a 400 GB NVMe SSD. The second module is the Ezxtreme Scale Booster
(ESB), consisting of 75 nodes powered by single Intel Xeon Silver 4215 (Cascade Lake) processors
and Nvidia V100 Tesla GPUs (32 GB HMB2). Each ESB node is equipped with 48 GB of RAM and
EDR InfiniBand. The third module is the Data Analytics Module (DAM) providing 16 nodes with
two Intel Xeon Platinum 8260M (Cascade Lake) processors, 384 GB of RAM and EDR InfiniBand
connectivity. Eight DAM nodes are equipped with a single Nvidia V100 Tesla GPU, while four
nodes feature two GPUs of the same type. The last four DAM nodes are configured with two Intel
STRATIX10 FPGAs (32 GB DDR4) each All nodes in the DAM module are equipped with two
1.5 TB Intel Optane SSDs [23].

5.2 Applicability of the Network Performance Benchmark

To test the applicability of our NPB implementation, we have defined an experimental environment
in which we want to study the performance of different benchmarks and compare them with each
other. We chose gperf and sockperf as low-level network benchmarks because both are capable of
providing results for the network technologies Gigabit Ethernet (GigE) and InfiniBand. In addition,
we used the OSU Micro-Benchmarks (OMB) [30] to provide a comparison with the performance
results of MPI-based point-to-point communication. Here, we also compare the performance of two
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Figure 4: Comparison between the benchmarks gperf and sockperf and the MPI implementations
OpenMPI and MVAPICH2.

Table 1: Benchmark configuration.

’ Benchmark \ #Nodes \ #Process \ #OMPThreads | Precision

HimenoXL 2 8 - FP32
HimenoXL 4 64 - FP32
HPCG 2 4 40 FP64
HPCG 4 8 80 FP64

different MPI implementations with each other, namely MVAPICH2 [31] and OpenMPI [17]. The
benchmark runs were conducted for message sizes ranging from 16 to 32768 bytes.

Figure 4 depicts the results for GigE (upper plot) and FDR InfiniBand (lower plot). As can be
seen, the performance achieved with gperf and sockperf is quite similar for GigE. The throughput
delivered by the MPI benchmarks also reaches peak performance, but only for message sizes of 4096
bytes and larger. Both gperf and sockperf perform measurements for a fixed period of time, e.g. 1
second. During this time, the client sends as many messages as possible, so the network reaches its
saturation point much earlier. The OMB does not run for a specific time, but sends a defined number
of messages. This number is called the window size and has a default value of 64. The observation
is the same for both network technologies and can be explained by the large difference in message
rates. A closer look at the FDR InfiniBand results reveals the poor performance of sockperf. As
mentioned in Section 2.1, sockperf can only be used with the Socket API. Thus, the results shown
were obtained with TPoIB, which is likely to perform the worst in this case.

5.3 Roofline Model Analysis
5.3.1 Machine Characterization

We used gperf to determine an upper ceiling for the attainable network bandwidth. The measurement
was performed for a reliable connected queue pair. For the floating point ceiling of the used processor,
the Likwid Performance Tools [45] were applied. The peak Floating Point Operations per Second
(FLOPS) were measured with 1ikwid-bench -t peakflops_avx -W N:400kB:40 for FUCHS-CSC
and Cesari-MSQC benchmark configuration for single and double precision, respectively. For the
CM of the DEEP system, 1ikwid-bench -t peakflops_avx512 fma -W N:384kB:48 was used.

5.3.2 Application Benchmarks and Experimental Setup

We used the well-known Himeno [20] and High Performance Conjugate Gradients (HPCG) [14]
benchmarks to test the proposed workflow and evaluate the application of the Roofline model. Both
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Figure 5: Roofline model with Himeno and HPCG results.

benchmarks use MPI to leverage the single program multiple data (SPMD) paradigm and report
the FLOPS achieved as benchmark results. Since we are interested in the network performance,
we have to measure the number of received and transmitted bytes. For this task, both benchmarks
were modified to support the Performance Application Programming Interface (PAPI) [43]. PAPI
provides access to hardware performance counters for the CPU as well as for the NIC. Using PAPI’s
low-level API, it is possible to track the amount of bytes transferred per node. The roofline can
then be defined as shown in Equation 4:

P = min(Ppeqr, I - bs), (4)
where Py, is the attainable floating point performance in FLOPS. The slope is defined in Eq. 5:

FLOP byt
I-b, = Ll (5)
network byte s

where I corresponds to the operational intensity and b, is the attainable network bandwidth. Fig-
ure 5 shows the Roofline model for a single node of the system used, i.e., the results were downsam-
pled to reflect the performance results at the node level regardless of the number of processes. The
benchmark configuration can be seen in Table 1. For the Himeno benchmark, we used the “static
allocation, MPI” implementation without employing additional threads and did not provide any
hints for process binding. HPCG has been configured to use MPI for inter-node communication and
OpenMP for multi-threading at the node-level. Here, we used the -map-by ppr:1:socket option
provided by OpenMPI’s mpirun implementation to launch exactly one MPI process per available
socket. For the OpenMP threads, we used the OMP_PLACES=cores environment variable to control
the location where threads are launched. The FUCHS-CSC and Cesari-MSQC clusters each offer ten
cores per socket per machine. Consequently, we chose to create 10 threads per socket and map them
individually. In addition, although a node in the CM module of the DEEP system provides up to
12 cores per socket, for the sake of better comparison, we still chose to spawn 10 threads per socket.
Since we used a dual socket system, we made sure, that MPI processes were spawned in a Non-
Uniform Memory Access (NUMA) aware fashion, employing the -map-by socket option provided
by OpenMPI’s mpirun implementation. HPCG has been configured to use MPI for inter-node com-
munication and OpenMP for multi-threading at the node level. For the OpenMP threads, we used
the OMP_PLACES=cores environment variable to control the location where threads are launched. In
this case, we chose to spawn 10 threads per socket and bind them respectively to a single core.

The Himeno benchmark needs to be configured with a fixed problem size, i.e. running with an
increasing number of processes shows strong scaling behavior. HPCG adjusts the total problem size
depending on the number of processes started, while the local problem size remains the same for
each process, leading to weak scaling results.
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Table 2: Benchmark configuration.

Benchmark \ #Nodes \ #Processes \ #OMPThreads | Precision

HimenoXL 2 20 - FP32
HimenoXL 4 40 - FP32
HimenoXL 8 80 - FP32
HPCG 2 4 40 FP64
HPCG 4 8 80 FP64
HPCG 8 16 160 FP64

Figure 5 depicts the resulting Roofline model including the benchmark results. The results
show that both problems are computation bound and are not affected by the available network
performance. As expected, the operational intensity decreases by a factor of two when the number
of nodes is doubled. The increase in processes and nodes also leads to more network communication,
which pushes the point further to the upper boundary of network bandwidth when the number of
nodes is four. Furthermore, it is evident that overall performance improves when utilizing more
nodes and processes, irrespective of the system in use. In the case of the Himeno benchmark, an
increased number of nodes leads to a proportional reduction in the problem size per node, directly
impacting the data that can be accommodated in cache. Given the presence of AVX 512 vector
instructions and Fused Multiply Add (FMA) units, the Skylake architecture is better suited for
executing the Himeno benchmark, as indicated by the performance results. On the other hand, for
the HPCG benchmark, the variations in the vector architecture of the employed machines do not
significantly influence the overall performance.

5.4 Analyzing Variance in Performance Data over Time

To exploit the advantages and automation capabilities of our proposed NPC workflow, we want to
investigate whether the performance results of different benchmarks are time-variant or invariant.
We use the same benchmark set as in Section 5.3, including network performance data for point-to-
point links over the available InfiniBand network. Table 2 shows the used benchmark configurations.
Compared to the previous measurements, we decided to run the benchmarks in three different
configurations, including tests on up to eight nodes. In addition, the number of processes used for
the Himeno benchmark was increased to make better use of the available computing capacity, since
it does not offer multi-threading. The HPCG results were run with a configuration very similar to
the one used for the previous experiments.

The duration of the experiment was 15 days with one measurement at 12:00 AM and another at
12:00 PM, resulting in a sample size of n = 30 for each observed performance metric. We focused on
the floating point performance achieved, but also tracked the bytes sent and received through the
hardware counter of the Mellanox NIC. The automated execution of the workflow is accomplished
by setting up a CronJob that takes care of the on-time execution and thus the submission of the
job to the Slurm Workload Manager. We use the theoretical limits of the used hardware, both for
floating point performance and network bandwidth, to evaluate the obtained performance results.

5.4.1 Determination of Theoretical Performance Limits

Calculating the theoretical floating point performance of a given CPU requires knowledge of the
microarchitecture specification. As can be seen in Equation 7, the attainable FLOPS of a given CPU
are defined as the product of the number of cores, the frequency at which each core is operated,
and the number of floating-point values processed in a single cycle. The latter is a crucial aspect
of performance, since SIMD (Single Instruction Multiple Data) enables the CPU to execute a single
instruction for as many floating-point values as will fit in the vector register, e.g. 8 values with double
precision for a vector register width of 512 bits. In addition, modern CPUs can be equipped with
specialized SIMD units that perform commonly used operations such as a multiplication immediately
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Table 3: Fuchs-CSC CPU specification.

’ CPU \ #Cores \ Frequency \ #SIMD \ #SIMD Units \ FMA ‘
[ Intel Xeon E5-2670 v2 | 10 [ 2.5 GHz [ AVX (256 bit) | 2 | -]

Table 4: Theoretical floating point performance limits for the used experimental setup.

’ #Nodes \ #Sockets \ Precision \ GFLOPS ‘

1 2 FP32 800
1 2 FP64 400
2 4 FP32 1600
2 4 FP64 800
4 8 FP32 3200
4 8 FP64 1600
8 16 FP32 6400
8 16 FP64 3200

followed by an addition in a single cycle. This type of computing unit is called a Fused Multiply
Add (FMA). Consequently, Equation 6 defines the number of executable floating point operations
(FLOPs) per cycle as the product of the number of values processed by the SIMD and FMA units
and the number of units as the scaling factor.

FLOPs  SIMD Width FMA Width
cycle  FP64/32 FP64/32

cycles FLOPs
. d ’ 1 (7)
secon cycle

Table 3 contains the necessary technical details to calculate the theoretical FLOPS for the CPU
type used in the FUCHS-CSC system. For a single CPU and single precision, this results in FLOPS =
10-2.5GHz -8 -2 = 400 GFLOPS. The CPU used provides AVX vector instructions operating on
256-bit vector registers, i.e., it is possible to process eight single precision values (FP32) in one
cycle; there are two SIMD units and zero FMA units. In Table 4 the calculated values for different
numbers of sockets, nodes, single and double precision can be found.

- Scaling factor (6)

FLOPS = cores -

5.4.2 Performance Results over Time

In this part, we analyze the results of the long-term benchmark experiment at the system level.
Furthermore, the distribution of the allocated compute nodes is analyzed and discussed. Figure 6
displays the achieved floating point performance of the Himeno benchmark in GFLOPS. The x-axis
refers to the measurements performed, with adjacent values, starting on the left, scheduled with a
time difference of 12 hours. From a performance perspective, it can be observed that doubling the
number of processes and thus the number of compute nodes used roughly leads to a doubling of the
achieved GFLOPS. It can also be seen that the fluctuations in performance between the individual
measurements are almost negligible for 20 and 40 processes. Larger fluctuations are observed for the
series of measurements with 80 processes. A special case is the last point (Measurement ID = 30)
for both series with 20 and 80 processes, where the performance drops drastically. Looking at the
results for the HPCG benchmark in Figure 7, we can observe a similar pattern. As with the Himeno
benchmark, the floating point performance achieved increases by more than a factor of two when
the number of processes is doubled, i.e., when the number of compute nodes is doubled.

Similar to the previous observation, the performance suffers significantly for the last measurement
of the test series for eight and sixteen processes. Since the hostnames of the compute nodes used
were recorded for each measurement point, we can identify the nodes used by the Himeno and HPCG
benchmarks at the point of low performance. The data suggests that the results were obtained on
the same set of compute nodes. In fact, the four nodes used for the Himeno benchmark with 40
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Figure 6: Floating point performance of the Himeno benchmark over a period of 15 days with two
measurements per day.
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Figure 7: Floating point performance of the HPCG benchmark over a period of 15 days with two
measurements per day.

processes and the HPCG benchmark with 8 processes were in the next largest set of nodes. This is
a clear indication of a problem with one or all of the four nodes and could be further investigated
by the cluster’s maintenance staff.

A performance rating for all benchmark configurations can be found in the Table 5. The table
shows the results as a percentage of the corresponding theoretical peak performance. For better
comparability and accuracy, the mean value of the GFLOPS of all measurements was used to calcu-
late the final percentage. It can be observed that the percentages for both the Himeno and HPCG
benchmarks do not change significantly with the different number of compute nodes used. This is
directly related to looking at the system-level results. In the previous figures, we observed that
doubling the number of nodes also roughly doubles the performance. In fact, however, doubling the
number of nodes also doubles the theoretical peak floating point performance.

In addition to the Himeno and HPCG benchmark, gperf was used to obtain bandwidth mea-
surements for the available FDR InfiniBand link. The benchmark is configured to use a reliable
connected queue pair and repeatedly send messages with a size of 4 MB over a point-to-point link.
Figure 8 illustrates the pattern of bandwidth results over the 15-day period. Unlike the floating-
point performance results of the Himneo and HPCG benchmarks, the achieved bandwidth is not
as constant. The maximum value is 6330 MB/s, while the minimum value is below 6100 MB/s.
The mean value is 6160 MB/s with a standard deviation of 43.3 MB/s, which is about 88% of the
theoretical limit of 7000 MB/s. The results for network performance are highly dependent on the
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Table 5: Achieved percentage of the theoretical floating point performance.

| Benchmark | #Nodes [ % |

Himeno 2 4.356
Himeno 4 4.125
Himeno 8 4.203
HPCG 2 1.013
HPCG 4 0.981
HPCG 8 0.975

network topology used and also on the current amount of traffic, since network resources are shared
across the cluster. Workload managers like Slurm allocate compute resources that are not far from
each other, i.e. the distance in terms of hops (switches) should be small to allow nearest neighbor
communication. For the gperf bandwidth benchmark, this means that we can assume that the num-
ber of two nodes required for the measurements are connected to the same switch. The presence
of switching delays caused by a high level of network traffic can be an explanation for the observed
bandwidth fluctuations.

6350

6300 A

6250 A

6200 A

Bandwidth [MB/s]

6150 A

6100 A

12345678 91011121314151617 181920 21 22 23 24 25 26 27 28 29 30
Measurement ID
Figure 8: Bandwidth results for RDMA point-to-point connections (reliable connected) using gperf
over a period of 15 days with two measurements per day.

Since the FUCHS-CSC cluster at Goethe University is shared by many users, the measurements
cannot be performed with the same computing resources at each run. Figure 9 consists of three heat
maps, one for each benchmark, which provide information about which nodes of the cluster were
used for the measurements and how often a particular node was used. Rack numbers are shown on
the x-axis, while node numbers are shown on the y-axis. For example, the naming convention used
is node24-001, referring to the 24th rack and the first server in the rack itself. In addition, the term
node24 defines the position of the top-of-the-rack switch within the fat tree network topology used.
During the 15 days of the experiment, 178 out of 198 nodes were online and available. Of these 178
nodes, the Himeno benchmark was run on 112 different compute nodes. The HPCG benchmark ran
on 107 different nodes. Qperf used 38 different nodes out of 178 available nodes.

6 Discussion and Future Work

This work can be considered as a proof-of-concept analysis for our proposed NPC workflow. The
current implementation limits the user to predefined options for performance analysis, including
bandwidth performance, roofline analysis, and time variance, while its modular design allows for
easy integration of new benchmarks, performance models, and visualization strategies. By using the
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Figure 9: Heat maps of the allocated nodes for the individual benchmarks; n denotes the number
of runs for which a specific node has been allocated.
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JUBE benchmarking framework, our workflow ensures the reproducibility and comparability of the
collected results. At the same time, JUBE offers the possibility to easily create benchmark sets, run
them on different computer systems and evaluate the obtained results. In the following, we discuss
the potential of the workflow and outline how we intend to extend and use it in the future.

6.1 Modeling Latency and Limitations of the Roofline Analysis

As discussed in Section 2.2, the Roofline model serves to identify performance limitations primarily
associated with throughput, such as memory bandwidth and computational capacity. However, it
is not suitable for detecting constraints arising from factors unrelated to throughput, like cache
capacities and the latency introduced by the memory hierarchy. Integrating latency considerations
is notably complex, as it necessitates a deep understanding of the underlying microarchitecture of
the processor and the memory subsystem. In [9], a roofline extension is proposed, utilizing a Directed
Acyclic Graph (DAG) based performance analysis that operates on a per-cycle basis.

While there are extensions for network throughput within the Roofline model [3], the progress
towards extending it for network latency is relatively limited. This is primarily due to the various
environmental factors that impact network latency, including network load at a given point in time.

6.2 Incorporating Additional Performance Aspects and Models

The prototype implementation of the NPC workflow currently focuses in particular on the tradi-
tional Roofline model extended for network performance. Our future work will focus on integrating
additional performance models and network metrics into the workflow for the user to choose from
in Phase 0. Sections 2.2 and 2.3 introduced multiple different methods to characterize and predict
network performance. For our work, potential candidates are LogfP [21] and 7-Lop [38]. LogfP
specifically targets the performance modeling for RDMA network fabrics, which is of particular in-
terest in HPC systems and also considers small message transfers. 7-Lop [38], on the other hand,
considers middleware costs, contention, synchronization, non-peer-to-peer collectives, and segments.

In addition, we also want to extend the potential of the Roofline model to include the examina-
tion of MPI operations. The well-known Roofline model is designed to provide a two-dimensional
view of floating point performance, operational intensity, and memory bandwidth. For applications
that use a distributed memory programming paradigm such as MPI, it may not be sufficient to
consider only the local information of the nodes. An extension focusing on the MPI aspect of an

application could use the ratio of MPLOps () the y-axis, i.e., MPI performance, and communication

second
intensity as %@ps on the x-axis. In this view, the slope of the roofline would still be a function

of bandwidth over operational intensity. This extension will also address network-related latency
issues in MPI-based applications. The required application data can be collected using profiling
tools such as Scalasca [18]. Typically, a profiler provides detailed information about the time spent
in certain functions and also about the memory requirements. An impeding challenge is determining
appropriate ceilings for the performance of MPI operations, since applications typically use different
classes of MPI calls such as send-receive and collective operations, e.g., reductions. Collective com-
munication is particularly difficult to analyze, since the amount of operations performed per second
also depends on the number of processes involved in the operation. Therefore, it would be necessary
to use flexible microbenchmarks for the essential operations. To model the mixed use of MPI calls
in applications, the output of the profiler can be analyzed to calculate a weighted ceiling based on
the distribution of MPI calls used, which is mapped to the results of the microbenchmarks.

6.3 Integration into the MAWA-HPC Framework

Given the complexity of modern HPC systems, achieving theoretical peak performance depends on
a myriad of parameters and system configurations. In order to optimize the system performance
and efficiently use the underlying resources, various methods can be applied, including simulation,
benchmarking, and monitoring. However, these methods and the tools are not compatible with each
other and only consider a selection of performance factors such network, I/0, resource allocation, or
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Figure 10: Integration into the MAWA-HPC framework [51].

parallel execution. Yet, each of these approaches generates knowledge that can be applied to similar
problems or system configurations. To avoid that such knowledge is collected only for one-time
purposes, and to also support other users, this knowledge must be easily accessible and available to
the community. The MAWA-HPC (Modular and Automated Workload Analysis for HPC Systems)
framework [52,54] aims to develop a generic workflow and tool infrastructure that can be applied to
different use cases and workloads from various science domains. Through its modular architecture,
the workflow enables the support of various community tools, which increases the compatibility of
the individual tools and covers new use cases.

By utilizing the support of monitoring and profiling tools, node-level performance engineering
tools, network benchmarks, and microbenchmarks for different parallel programming models, we
plan to integrate a multi-dimensional Roofline model and holistic performance scoring system into
MAWA-HPC. The holistic performance score, as illustrated in Figure 10, takes into account multiple
performance factors, including network, compute, and parallel I/O. Our previous work has intro-
duced the I/O Roofline model [51,53], which is tool and platform agnostic. The I/O Roofline model
can easily be combined with NPC via the JUBE framework. As showcased in Section 5.4, including
time as a third dimension, the Roofline model can provide insight into an application’s performance
over time, enabling the identification and understanding of performance anomalies. This will provide
a comprehensive and interactive analysis for various use cases [6,28]. For example, user hints such
as Drishti [5] as well as bottleneck detection, pattern analysis, and performance prediction can be
provided, leading to valuable insights for understanding the performance of emerging workloads.

6.4 Performance Analysis of the Modular Supercomputing Architecture

The Modular Supercomputer Architecture (MSA) [27,40] breaks with traditional HPC system ar-
chitectures by orchestrating heterogeneous computing resources at system-level, organizing them in
compute modules with different hardware and performance characteristics. Modules with disruptive
technologies, such as quantum devices, will also be included in a modular supercomputer to satisfy
the needs of specific user communities. The goal is to provide cost-effective computing at extreme
performance scales fitting the needs of a wide range of computational sciences. This approach brings
substantial benefits for heterogeneous applications and workflows.

In a modular supercomputer, each application can dynamically decide which kinds and how
many nodes to use, mapping its intrinsic requirements and concurrency patterns onto the hardware.
Codes that perform multi-physics or multi-scale simulations can run across compute modules due to a
global system-software and programming environment. Application workflows that execute different
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actions after (or in parallel) to each other can also be distributed in order to run each workflow-
component on the best suited hardware, and exchange data either directly (via message-passing
communication) or via the filesystem. A modular supercomputer can provide any combination or
ratio of resources between modules and is not bound to fixed allocations between, for example,
CPUs and accelerators, as is the case with clusters with heterogeneous nodes. It is therefore ideal
for running a heterogeneous mix of applications (higher throughput and energy efficiency).

The complex hardware environment is complemented by a software architecture [4,44] designed
to carefully address the requirements of co-designing and mapping applications for MSA systems. It
focuses on the most relevant parts of the software stack required to run a supercomputer while also
exploiting the modular supercomputer architecture. For example, the ParaStation MPI communica-
tion library [32] is designed to leverage distributed memory systems and the OmpSs-2 programming
model [16] is used to exploit many-core processors, deep memory hierarchies, and accelerators. Fur-
thermore, the software stack provides support for resiliency (i.e. checkpointing), parallel 1/0, file
system and storage. To support the complex I/O and storage system, the DEEP-EST project has
focused on MSA-aware extensions [4] for BeeGFS and SIONIib.

The design of the network architecture for a modular supercomputer employs a modular approach
throughout the whole system as well. In other words, the design of each module is driven by
the requirements of the applications, which even influence the choice of the underlying network
technology. In the DEEP-EST prototype [24], for example, the network federation comprises three
different network technologies: 40 Gigabit Ethernet, InfiniBand, and Extoll. Given this complexity,
modeling and understanding the performance of the different technologies is not a trivial task, as the
interaction and impact of the various network fabrics must also be characterized. The NPC workflow
holds great potential for automating the characterization and analysis of such complex system and
network architectures. Instead of running individual benchmark sets on every single subsystem,
NPC can be used to orchestrate the intra- and inter-module performance analysis for different
run configurations, e.g. different combinations of compute modules. Since NPC is script-based,
the workflow can exploit MSA-awareness for MPI and Slurm developed specifically for modular
supercomputing systems. In future work, we plan to analyze the interplay of different interconnection
networks when running code on compute modules with different network characteristics. For this
purpose, we will first port existing network benchmarks for modular supercomputing systems.

7 Conclusion
In conclusion, the design of the NPC workflow provides an initial framework for the automation of

performance analysis and characterization. The design follows three key principles: reproducibility,
comparability, and portability. The main objective is to provide a tooling infrastructure that orches-
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trates the use of benchmarks without the effort of manual configuration and enables the automatic
evaluation and presentation of measurement results. Our prototype implementation highlights that
the NPC can be implemented efficiently. In the experimental evaluation, we used the NPC workflow
to perform roofline modeling for different hardware platforms and benchmarks. In addition, we also
considered aspects such as time variance and system coverage. The modular design of NPC makes it
easy to incorporate additional network performance characteristics, such as network efficiency or la-
tency, and performance models. As discussed, the Roofline model is not applicable to analyze latency
aspects. Therefore, we plan to investigate different techniques for modeling latency, for which we will
also use the NPC to collect performance data. We also plan to extend our approach with existing
work in the areas of simulation, machine learning, and analytical methods for performance estima-
tion. In addition, our work is part of the MAWA-HPC project to evaluate and combine network
performance, machine utilization and performance metrics, and I/O-related metrics into a unified
performance model. Future work will also focus on performance characterization of modular super-
computing systems. Further information, including the prototype implementation of NPC and the
NPB tool, is available on our GitHub companion page: https://github.com/msqc-goethe/npc.
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