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Abstract

Statistical processing and Artificial Intelligence (AI) development utilizing big data have
been actively researched recently. However, there are growing concerns about privacy violations
due to the use of private data. For such concerns, the EU General Data Protection Regulation
(GDPR) was introduced to regulate the handling of personal information. The GDPR makes it
difficult to discover medical knowledge through big data analysis in medical studies. However,
the GDPR is not concerned with handling non-personally identifiable statistical information.
Statistical information is commonly published, collected, and analyzed. However, it is unknown
whether collecting and analyzing such statistical information can generate medical evidence
through variable-to-variable research, such as the relationship between tobacco and cancer.

In this paper, we propose to use statistical information that is not concerned by the GDPR
to estimate cross-tabulation tables, which are usually generated from personal information in
medical research and are widely used for analysis between medical variables. In particular, as
statistical information, we use “patient characteristics” formatted data commonly published in
medical research. The scope of this paper is the situation where the publisher of statistical
information and the analyst of published statistical information differ. On the publisher side,
we assume the publisher collects raw data from a target people group by random sampling mul-
tiple times and converts the data to patient characteristics formatted data. On the analyst side,
we assume the analyst collects those published many random sampled patient characteristics
formatted data and estimates the cross-tabulation table by the Law of Large Numbers (LLN).
We model the publisher-analyst situation described above. In the aforementioned model, we
evaluate our proposal estimation’s usefulness through both theoretical and experimental accu-
racy assessments. Furthermore, for quantitative Privacy Preserving Data Mining (PPDM), we
evaluate the risk of anonymity when collecting multiple patient characteristics using the existing
anonymity indicator, the Patient Family Detect on Overall Category (PFDOC) entropy. We
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theoretically and experimentally check the occurrence rate of vulnerable patient characteristics
with PFDOC entropy equal to zero obtained by the analyst. In the experiment, the target
people group data is 20,000 personal data which have four categorical binary values. As the
publisher model, we created 10,000 patient characteristics, which are statistics for randomly
sampled 50 data from the 20,000 data. As the analyst model, we estimated the cross-tabulation
table by the 10,000 patient characteristics. The theoretical prediction error was 1.8% (95% CI),
and the experimental error was within 1.5% (95% CI, n = 100), indicating a close agreement
between theory and experiment. Regarding anonymity, it was theoretically expected that PF-
DOC entropy = 0 patient characteristics would be rare in categories with a population ratio
of 25% to 75%, leading to ensured anonymity. It was confirmed in the experiment. Based on
these results, we can conclude that, by using the patient characteristics formatted data release
and collection model and selecting the appropriate population ratio categories, an analyst can
accurately estimate cross-tabulation tables while preserving PFDOC entropy-based anonymity
without legal restriction.

Keywords: random sampling, health care, patient characteristics

1 Introduction

1.1 Background

Big data has been widely used to create statistics and Artificial Intelligence (AI) but using personal
data involves the privacy invasion risk [21]. Because of this concern, the EU General Data Protection
Regulation (GDPR) regulates data treatment. However, the GDPR makes knowledge discovery
through big data difficult especially in the medical field because medical data is sensitive.

Fig. 1 shows the traditional medical research methods’ validity hierarchy that is generally con-
sidered medical evidence level [12]. In randomized control trials (RCT), cohort studies, case control
studies, case series, and reports, relationships between novel medical variables, such as tobacco and
lung cancer, can be uncovered. However, these traditional medical research methods are challenging
to conduct publicly under the GDPR regulations because these methods handle personal informa-
tion. Systematic review and meta analysis [4] require only publicly available statistical data which
are not concerned by the GDPR [16]. However, systematic review and meta analysis are methods
that combine the results of existing medical articles to enhance the results. Thus the analyst cannot
analyze the relationship between arbitrary new variables.

Figure 1: Medical study methods validity pyramid [12].

In contrast to these conventional medical methods, non-traditional medical research methods
can be conducted by statistical information. Some of these methods can derive new variable-to-
variable analyses. This type of study can be separated into medical statistical information analyzing
methods [17], and non-medical statistical information analysis with medical data methods [6] [14].
However, because these methods differ from traditional medical research analysis methods, whether
medical validity can be ensured is unclear. Moreover, because the input data is often not common
medical data, whether traditional medical organizations can issue such data is unclear.
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1.2 Contributions and paper outline

In this paper, we propose a new technique for estimating data required for medical evidence gener-
ation from publicly available medical statistics. Specifically, the technique generates an estimated
cross-tabulation table as Table 1 by using patient characteristics as Table 2. The cross-tabulation
table example is shown in Table 1. In Table 1, the ratios of “diabetes and over 65 years of age”,
“diabetes and under 65 years of age”, “non-diabetes and over 65 years of age,” and “non-diabetes
and under 65 years of age” are expressed as A, B, C, and D respectively. Table 2 shows the example
of the patient characteristics that summarize the patient background statistics of a drug trial. The
patient characteristics are published in medical articles because the results vary depending on the
patient background.

Table 1: Example of cross-tabulation table of diabetes vs. age [20].

Diabetes Non-Diabetes
Age ≥65 yr A C
Age <65 yr B D

Table 2: Patient characteristics from Covid-19 clinical research paper (modified as appropriate) [19].

To quantify the methodology, we propose a model where the publisher of patient characteristics
statistics and the analyst estimating cross-tabulation tables are independent. We then present a
method for estimating cross-tabulation tables in this model by using the Law of Large Numbers
(LLN). Note that the patients included in the patient characteristics are assumed to be randomly
selected from the target patient population because patients select medical institutions randomly,
and the application of LLN to the estimation process becomes more appropriate as the sample size
of the randomly selected data increases. In this analyst estimation model, we derive a theoretical
estimation error equation and compare it to the experimental estimation error. Moreover, we quan-
titatively examine the relationship between usefulness and anonymity which is a famous problem in
Privacy Preserving Data Mining (PPDM) field [11]. For a quantitative anonymity check on a col-
lection of multiple patient characteristics, we utilize an existing patient characteristics vulnerability
indicator called Patient Family Detect on Overall Category (PFDOC) entropy [8].

Namely, our contributions are the following four points.

� We propose to use publicly available statistical information that is not concerned by the GDPR
[16] to estimate cross-tabulation tables, which are often created from personal information in
medical research and are widely used for the analysis of medical variables. More specifically,
we propose to estimate cross-tabulation tables [20] from multiple “patient characteristics” [19]
formatted statistics.

� We model how the publisher processes the personal data into the patient characteristics format
and how the analyst estimates cross-tabulation tables for quantitative analysis.
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� We theoretically and experimentally estimate cross-tabulation tables to confirm the proposed
estimation accuracy.

� We theoretically and experimentally check the anonymity of multiple patient characteristics
acquisition through PFDOC entropy = 0 [8] patient characteristics occurrence rate for PPDM.

The overview of the proposal method is shown in Fig. 2. The scope of this paper is the situation
where the data publisher is different from the data analyst. For example, the data publisher is a
public health official. The publisher asks local residents about their history of COVID-19 infection,
age, and gender and then provides daily data formatted as patient characteristics. On the other
hand, the data analyst collects much of the published patient characteristics and estimates cross-
tabulation tables.

Figure 2: Overview of proposal method. The publisher randomly samples from the target people
group multiply and converts sampled data to patient characteristics format. The analyst collects
the published data and estimates the cross-tabulation table by the Law of Large Numbers (LLN).

The challenge of the proposed method is that one patient characteristics usually shows only one
ratio per category in the target group, such as “diabetes rate” or “age over 65 years old rate”. Thus,
the “population ratio of diabetes and over 65 years of age” is unknown, and the analyst can not get
A in Table 1. However, if the analyst has many patient characteristics randomly generated from
the target people group, the analyst can estimate that the average value of diabetes among patient
characteristics gets close to the diabetes ratio (A + B)/(A + B + C + D) in Table 1 by LLN [18].
Through such estimation, the analyst can estimate A, B, C, and D. In this paper, we present a
single instance of the many possible estimations.

Our proposal method enables the discovery of new medical relationships between variables com-
monly used for generating medical evidence while preserving PFDOC entropy-based anonymity by
selecting categories based on the population ratio. The method avoids the need for medical analysis
performed primarily in healthcare institutions due to privacy concerns, by using publicly available
medical statistical data that is exempt from legal privacy issues.

The remainder of this paper is organized as follows. In section 2, we review related work.
In section 3, we make preliminary preparations. In section 4, we describe the publisher’s model.
In section 5, we describe the analyst estimation example. In section 6, we describe the analyst
estimation model. In section 7, we present the theoretical evaluation of our proposal estimation
model. In section 8, we present the experimental evaluation of our proposal estimation model. In
section 9, we discuss the result. In section 10, we present the conclusion and future work.
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2 Related Work

2.1 Common medical study methods

As shown in Fig. 1, the traditional medical studies have a validity hierarchy that is generally con-
sidered medical evidence level [12]. Case series and reports are reported by experienced physicians.
Case control and some cohort studies are methods that retrospectively examine groups of patients
with and without exposure. RCT and some cohort studies are methods that prospectively examine
groups of patients with and without exposure. Meta analyses and systematic reviews integrate the
results of several existing medical articles to increase validity [4]. In particular, meta analysis ag-
gregates statistical results based on patient characteristics comparisons in many medical articles to
ensure uniformity of patient backgrounds [19].

2.2 Medical knowledge discovery form public available statistical infor-
mation

Medical statistics are published daily by various medical organizations. Based on these statistics,
some studies predict the future number of COVID-19 infections in a given area [17]. In addition,
medical analysis methods based on collecting non-medical statistics produced by non-medical organi-
zations combined with medical information have also been proposed. For example, a study analyzed
the relationship between national policy and COVID-19 mortality [14]. For another example, a
study analyzed the relationship between COVID-19 and human flow using Google’s location-based
statistics [6].

2.3 PPDM

The PPDM is developed to extract utility from data without disclosing confidential information [11].
The algorithms proposed by PPDM achieve privacy based on specific privacy metrics, but it has
been pointed out that there is a trade-off of reduced utility, such as decreased accuracy of the model.
Therefore, it is necessary to examine how much utility can be maintained while ensuring a certain
level of anonymity.

2.4 l-diversity

Releasing quasi-identifier (QI) can result in anonymity violation. A q⋆-block represents a tuple of
individuals who possess the same non-sensitive QI combinations. When the diversity of q⋆-block
is low, the risk of sensitive QI inference, such as homogeneity attack or background attack [10],
increases. Anonymity protection through l-diversity is crucial in such cases.

Definition 1. (l-Diversity [10]): A q⋆-block is l-diverse if contains at least l “well-represented”
values for the sensitive QI S. A table is l-diverse if every q⋆-block is l-diverse.

The value “l” of l-diversity can be expressed in different ways, such as by number, entropy, and
frequency, and is well represented in each representation.

The entropy l-diversity has been proposed as a method to quantify l-diversity.

Definition 2. (Entropy l-diversity [10]): A table is entropy l-diverse if for every q⋆-block

−
∑
s∈S

p(q⋆,s) log
(
p(q⋆,s′)

)
≧ log(ℓ) (1)

(where p(q⋆,s) =
n(q⋆,s)∑

s′∈S n(q⋆,s′)
is the fraction of tuples in the q⋆-block with sensitive QI value equal

to s. And n(q⋆,s) is the number of s in q⋆-block)

The concept of entropy l-diversity is that a low biased distribution of sensitive QI in a q⋆-block
increases anonymity.
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2.5 PFDOC attack and PFDOC entropy

Patient characteristics indicate what percentage of clinical trial patients belong to what category.
The PFDOC attack [8] is an anonymity violation for patient characteristics.

Table 3 is vulnerable to the PFDOC attack. The patient population (333 individuals) in this
clinical trial is primarily hypertensive (330 individuals). An attacker, such as a patient’s relative, can
infer the health condition of a specific patient with a high degree of certainty through knowledge of
the patient’s inclusion in the primarily hypertensive patient population (330 out of 333 individuals)
in this clinical trial.

Table 3: Example of the Patient Family Detect on Overall Category (PFDOC) attack vulnerable
patient characteristics [8].

Total number
(N = 333)

Hypertension 330

Table 4 displays the patient characteristics model with Na representing the total number of
clinical trial participants and A representing the number of patients in a specific category. The
PFDOC entropy, an indicator of PFDOC attack vulnerability, is defined in the following manner.

Table 4: Model of the patient characteristics [8].

Total number
(N = Na)

Category A

Definition 3. (Patient Family Detect on Overall Category Entropy (PFDOC Entropy)): In the
patient characteristics, the total number of patients is Na and the number of patients belonging to
the category is A, as Table 4. The PFDOC Entropy is calculated as follows.

−(A/Na) log(A/Na)− ((Na−A)/Na)) log((Na−A)/Na)) (2)

Note that if A = 0, then the PFDOC Entropy = 0.

This anonymity violation stems from the principle of l-diversity [10], where low diversity in a
population with similar characteristics leads to a violation of anonymity. When a QI has a low
PFDOC entropy, patients in that group have either a high or low probability of possessing that
QI, leading to a violation of anonymity. This is indicated by the PFDOC entropy l-diversity, which
applies entropy l-diversity to express the anonymity violation from the PFDOC attack.

Definition 4. (Patient Family Detect on Overall Category Entropy l-diversity (PFDOC Entropy
l-diversity)): A patient characteristics is PFDOC Entropy l-diverse if for every category

PFDOC Entropy ≧ log(l) (3)

3 Preliminaries

3.1 The GDPR concern and anonymity

According to the GDPR Recital 26, the GDPR does not concern processing anonymous informa-
tion, including for statistical or research purposes [16]. Moreover, European Data Protection Board
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(EDPB) mentions that “the GDPR will no longer be applicable to these fully aggregated and
anonymised datasets” [5]. However, the aggregated data should follow these rules (1) the aggre-
gate data must not be connected directly to identifying data (2) A known systematic method of
(re)identifying must not exist, and (3) the data must not be linked to a specific person [7].

3.2 Odds ratio, logistic regression, and multiple regression from cross-
tabulation tables in medicine

In medical studies, the usual choice of statistical analysis method is multiple regression for continuous
value responses, logistic regression for categorical responses, and Cox’s proportional hazards model
for censored responses. Note that Cox’s proportional hazards model is a variant of logistic [2].

Odds ratios are used to assess the risk from exposure to some factor like tobacco [20]. In Table 1,
diabetes odds ratio is calculated as (A×D)/(B × C).

The logistic regression is expressed as follows.

log(π/(1− π)) = β0 + β1x1 + . . .+ βkxk (4)

π is the event occurrence probability due to the exposure, xj is a variable that reflects the
exposure of j th factor by a value of 1 or 0, and βj is the impact of the exposure to the factor on
the probability of the event occurrence. The relationship exp(βj) = ORj is known, where ORj is
the odds ratio for the exposure to the j th factor. Because the odds ratio can be calculated from
the cross-tabulation table, the function (4) can be determined from the cross-tabulation table [2].

The multiple regression is expressed as follows.

Y = β0 + β1x1 + . . .+ βkxk + e (5)

Y is the target response variable, xj is a variable that reflects the exposure of j th factor, βj

is the impact of the exposure to the factor, and e is a residual term. For k = 1, the least-squares
method determines (5) for as follows.

β1 =

∑n
i=1 (xi − x̄) (yi − ȳ)∑n

i=1 (xi − x̄)
2 , β0 = ȳ − β1x̄ (6)

xi, yi are the values determined by the exposure and the occurrence of the event in the i th data,
and the number of (xi, yi) = (1, 1), (1, 0), (0, 1), (0, 0) can be obtained from the cross-tabulation
table. In addition, x̄ and ȳ are the means of xi and yi, which can also be obtained from the cross-
tabulation table. In the case where k is general, the function (5) is determined similarly from the
cross-tabulation table [1].

3.3 LLN and normal distribution

LLN is the law stating as follows [18]. “The average of the results from a large number of trials tends
to get close to the expected value, and the larger the number of trials, the closer to the expected
value.”

In the normal distribution, as LLN, the error in the 95% confidence interval (CI) between the
sample proportion and the population proportion gets smaller in many samples as the following
relationship [3].

p̂− 1.96

√
p̂q̂

n
< p < p̂+ 1.96

√
p̂q̂

n
(7)

where n is number of samples, p̂ is the sample proportion, q̂ = 1 − p̂ , and p is the population
proportion.
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4 Publisher’s process model

4.1 Target people group data set

As shown in Fig. 3 left side, the publisher selects the target people group. The target people group
data set D0 contains n people’s data with m binary categorical values. The n people’s data are
denoted as r1, . . . , rn, and the m categories are denoted as C1, . . . , Cm. And i th person’s data
ri contains m binary categorical values, so ri is expressed by a row vector containing m matrix
elements as ri = (ric1, . . . , ricm). If the person has category Cj attribute, we express it as ricj = 1,
and if not, ricj = 0.

Definition 5. (Target people group data set): Let D0 be a target people group data set consisting
of n rows and m columns matrix with 0 or 1 value on each matrix component. Let ri be i th row of
D0. D0 and ri are expressed as follows.

D0 = (r1, . . . , rn)

= (d0ij)[n×m] (d0ij ∈ {0, 1})

ri = (ric1, . . . , ricm)

(8)

Figure 3: Model of the publisher. D0 (n×m matrix) is the target people group data set, which con-
tains n people’sm categorical binary values. n = 9 and m = 2 in this figure. D1 = {Drs1, . . . , Drst}
is the data set created by sampling t times from D0 with the o row random sampling operator RS.
t = 2 and o = 4 in this figure. The dataset D2 = {Drspc1, . . . , Drspct} is the result of applying the
patient characteristics converter Apc to each element of the dataset D1.

4.2 Random sampling

As shown in Fig. 3 middle, the publisher does random sampling with a sample size of o individuals
t times from n people containing D0 and gets random sampled data set D1.

Definition 6. (Random sampling): A random sampling operator RS converts Rn × Rm matrix to
Ro × Rm matrix by choosing o rows from Rn × Rm matrix with uniformly random.

Definition 7. (Random sampling on target population data set): Let D1 be t times random sampled
data set from target population group D0. Let RSi be i th random sampling operation. Let rRSij
be j th person with m categorical values in RSi(D0). D1, RSi(D0), and rRSij are expressed as
follows.
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D1 = {Drs1, . . . , Drst}
= {RS1(D0), . . . , RSt(D0)}

RSi(D0) = {rRSi1, . . . , rRSio}
rRSij = {rRSijc1, . . . , rRSijcm}

(9)

4.3 Convert to patient characteristics format

As shown in Fig. 3 right side, the publisher makes patient characteristics data set D2 from D1.
Patient characteristics are the statistics of categories ratio, so the publisher makes statistics of
categories ratio on each RSi(D0).

Definition 8. (Convert to patient characteristics from data set): Let D be the data set with o rows
and m columns.

D = (dij)[o×m] (dij ∈ {0, 1}) (10)

A patient characteristics operator Apc converts Rm×Ro matrix to R1×Ro matrix by column-wise
averaging. Let PPCCi be i th Apc(D) column. Apc(D) and PPCCj are expressed as follows.

Apc(D) = (PPCC1, . . . , PPCCm)

PPCCj = (d1j + . . .+ doj) /o
(11)

Definition 9. (patient characteristics conversion on randomly sampled data set): Let D2 be the
patient characteristics data set with t elements of 1 × m matrix, which are converted by Apc from
randomly sampled data set D1’s components. Let Drspc i be i th element of D2. Let PRSPCiCj be
the j th element of Drspci. D2 and Drspc i are expressed as follows.

D2 = {Drspc1, . . . , Drspct}
= {Apc(RS1(D0)), . . . , Apc(RSt(D0))}

Drspci = {PRSPCiC1, . . . , PRSPCiCm}
(12)

5 Analyst’s estimation example

5.1 Analyst’s situation and goal

As shown in Fig. 4 left side, the analyst has D2 containing many patient characteristics with two
categories, category 1 and category 2. Table. 5 is the category 1 vs. category 2 cross-tabulation
table of D0. On Table. 5, A, B, C, D are the ratio of “category 1 and category 2,” “category 1 and
non-category 2,” “non-category 1 and category 2,” “non-category 1 and non-category 2” respectively.
The analyst’s goal is to estimate A, B, C, D. A, B, C, D can be expressed as follows.

A = (A/(A+B))× (A+B)/(A+B + C +D)

B = (1−A/(A+B))× (A+B)/(A+B + C +D)

C = C/(C +D)× (1− (A+B)/(A+B + C +D))

D = (1− C/(C +D))× (1− (A+B)/(A+B + C +D))

(13)

5.2 Estimate category 1 population ratio

As shown in Fig. 4 approximation 1O, the average value of category 1 in D2 gets close to the
population ratio of category 1 in D0 (= (A + B)/(A + B + C + D)) by LLN [18], as the patient
characteristics are increased through random sampling. Then, if the average value of category 1 in
D2 is 25%, the analyst can estimate as follows.

(A+B)/(A+B + C +D) ≈ 0.25 (14)
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Figure 4: Example of the analyst’s estimation. The analyst has patient characteristics data set D2
containing two categories of statistics. The analyst has selected 50% and 60% of category 1’s patient
characteristics from data set D2 and has denoted them as D50 and D60, respectively. The analyst
makes three approximations by the Law of Large Numbers (LLN) [18]. First is “average value of
category 1 in D2 gets close to the population ratio of category 1 in D0 (= (A+B)/(A+B+C+D)).”
The second and third approximations are “average value of category2 in D50 gets close to the
population ratio of category 2 in D0 when category1 is 50%,” and “average value of category 2 in
D60 gets close to the population ratio of category 2 in D0 when category 1 is 60% .” Then by
three approximation equations, the analyst estimates the cross-tabulation table contains A, B, C,
D category ratios.

Table 5: Cross-tabulation table of category 1 vs category 2 created from D0. A, B, C, D are each
category’s ratio.

Category 1 Non-Category 1
Category 2 A C

Non-Category 2 B D

5.3 Estimate category 2 population ratio on two percentage cases of cat-
egory 1

As shown in Fig. 4 middle, the analyst selects category 1 value is 50% patient characteristics from
D2 and denotes this data set as D50. And the analyst also selects category 1 value is 60% patient
characteristics from D2 and denotes this data set as D60.

As shown in Fig. 4 approximation 2O and approximation 3O, if the people in D0 are chosen as
the category 1 population is 50%, the population rate of category 2 becomes 0.5×A/(A+B)+0.5×
C/(C + D). D50 gets close to the value by LLN [18] as more patient characteristics are collected
through random sampling. Similarly, D60 get close to 0.6 × A/(A + B) + 0.4 × C/(C + D) by
LLN [18]. If D50 is 0.55 and D60 is 0.5, the approximations are as follows.

0.5×A/(A+B) + 0.5× C/(C +D) ≈ 0.55

0.6×A/(A+B) + 0.4× C/(C +D) ≈ 0.50
(15)

By solving this simultaneous equation,

A/(A+B) ≈ 0.3, C/(C +D) ≈ 0.8 (16)
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5.4 Estimate cross-tabulation table

As Fig. 4 right side, at last, the analyst calculates estimated A, B, C, D by (13), (14), (16).

(A,B,C,D) ≈ (0.075, 0.175, 0.6, 0.15) (17)

6 Analyst’s estimation model

Fig. 5 is the analyst’s estimation model. The analyst has D2 containing t patient characteristics
with two categories, C1 and C2. Table 6 is the cross-tabulation table of C1 vs. C2 created from D0
containing A, B, C, D. Let AA,BB,CC,DD be the replaced values of A,B,C,D in the approximate
formulas described below by LLN. Let EE,AA′, CC ′ as follows.

EE = (AA+BB)/(AA+BB + CC +DD), AA′ = AA/(AA+BB), CC ′ = CC/(CC +DD)
(18)

By (18), AA, BB, CC, DD can be expressed as follows.

AA = AA′ × EE,BB = (1−AA′)× EE

CC = CC ′ × (1− EE), DD = (1− CC ′)× (1− EE)
(19)

From (19), the values of AA, BB, CC, and DD are obtained from EE, AA′, and CC ′.
Let Pr[C1 in D2] be the average ratio of C1 in D2. Let Pr[C1 in D0] be the population ratio

of C1 in D0. As Fig. 5 approximation 1O, Pr[C1 in D2] gets close to Pr[C1 in D0].

Figure 5: Analyst’s estimation model using three approximations by the Law of Large Numbers
(LLN) [18]. D2 is the collected patient characteristics data set. Dps1 is selected from D2 with
C1 ratio is ps1. Dps2 is selected from D2 with C1 ratio is ps2. First approximation is “average
value of category 1 in D2 (= Pr[C1 in D2]) gets close to the population ratio of C1 in D0 (=
(A + B)/(A + B + C +D)).” Second and third approximations are “average value of C2 in Dps1
(= Pr[C2 in Dps1]) gets close to the population ratio of C2 in D0 when the population ratio
of C1 is ps1 (= ps1 × A/(A + B) + (1 − ps1) × C/(C + D))” and “average value of C2 in Dps2
(= Pr[C2 in Dps2]) gets close to the population ratio of C2 in D0 when the population ratio of C1
is ps2 (= ps2 × A/(A + B) + (1 − ps2) × C/(C +D)).” By three approximation, the analyst gets
AA, BB, CC, DD.
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Table 6: Cross-tabulation table created from D0.

C1 Non-C1
C2 A C

Non-C2 B D

Pr[C1 in D2] ≈ Pr[C1 in D0] = (A+B)/(A+B + C +D) (20)

LLN converts A, B, C, D to AA, BB, CC, DD because the patient characteristics are random
sampled data.

Pr[C1 in D2] = (AA+BB)/(AA+BB + CC +DD) = EE (21)

From (21), the analyst gets the value of EE because the analyst can know Pr[C1 in D2].
Let Dps1 be the data set of selected data from D2 with a ratio of C1 is ps1. Let Dps2 be the

data set of selected data from D2 with a ratio of C1 is ps2. Let Pr[C2 in Dps1] be the average
ratio of C2 in Dps1. Let Pr[C2 in D0 when C1 is ps1] be the population ratio of C2 in D0 when
the population ratio of C1 is ps1. Let Pr[C2 in Dps2] be the average ratio of C2 in Dps2. Let
Pr[C2 in D0 when C1 is ps2] be the population ratio of C2 in D0 when the population ratio of C1
is ps2. As shown in Fig. 5 approximation 2O and approximation 3O, Pr[C2 in Dps1] gets close to
Pr[C2 in D0 when C1 is ps1], and Pr[C2 in Dps2] gets close to Pr[C2 in D0 when C1 is ps2].

Pr[C2 in Dps1] ≈ Pr[C2 in D0 when C1 is ps1] = ps1×A/(A+B) + (1− ps1)× C/(C +D)

Pr[C2 in Dps2] ≈ Pr[C2 in D0 when C1 is ps2] = ps2×A/(A+B) + (1− ps2)× C/(C +D)
(22)

The conversion of A, B, C, D into AA, BB, CC, DD is achieved through the application of
LLN on the randomly sampled patient characteristics data.

Pr[C2 in Dps1] = ps1×AA/(AA+BB) + (1− ps1)× CC/(CC +DD)

= ps1×AA′ + (1− ps1)× CC ′,

P r[C2 in Dps2] = ps2×AA/(AA+BB) + (1− ps2)× CC/(CC +DD)

= ps2×AA′ + (1− ps2)× CC ′

(23)

By (23), AA′ and CC ′ can be expressed as follows.

AA′ = Pr[C2 in Dps1]× (ps2− 1)/(ps2− ps1)− Pr[C2 in Dps2]× (ps1− 1)/(ps2− ps1),

CC ′ = Pr[C2 inDps1]× ps2/(ps2− ps1)− Pr[C2 in Dps2])× ps1/(ps2− ps1)
(24)

From (24), the analyst gets the value ofAA′ and CC ′ because the analyst can know Pr[C2 in Dps1],
Pr[C2 in Dps2], ps1 and ps2 values.

In conclusion, by (21) and (24), the analyst gets EE, AA′, CC ′ values. Then, the analyst gets
AA, BB, CC and DD values by (19) as Fig. 5 right side.

7 Theoretical estimation error and anonymity evaluation

7.1 Theoretical estimation error equation

For numerical analysis, we derive the theoretical formula for estimating error. As Fig. 5 approxima-
tion 1O, EE is estimated from D2, while AA′ and CC ′ are estimated from Dps1 and Dps2 extracted
from D2. Therefore, the error in EE is negligible compared to the error in AA′ and CC ′. As Fig. 5
approximation 2O and approximation 3O, the analyst estimates Pr[C2 in D0 when C1 is ps1]
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and Pr[C2 in D0 when C1 is ps2]. Let p̂1 = Pr[C2 in Dps1], p̂2 = Pr[C2 in Dps2], p1 =
Pr[C2 in D0 when C1 is ps1], p2 = Pr[C2 in D0 when C1 is ps2]. Let the estimation errors of p1
and p2 be ε1 and ε2. Then, p̂1 = p1 + ε1, p̂2 = p2 + ε2. By (24) and (19), AA is as follows.

AA = EE × (−p1 + p2 + ps2× p1− ps1× p2)/(ps2− ps1)

+ EE × (−ε1 + ε2 + ps2× ε1− ps1× ε2) /(ps2− ps1)
(25)

The terms including ε1 and ε2 in (25) are errors as follows.

EE × (−ε1 + ε2 + ps2× ε1− ps1× ε2)/(ps2− ps1) ≑ EE × (−ε1 + ε2)/(ps2− ps1) (26)

Let p3 = p2−p1, and let p̂3 be the observed value of an event with probability p3 when observed
with the same number of observations as p̂1 or p̂2. Let ε3 is the error of p3. Then, we can denote
as p̂3 = p3 + ε3, and we can get the following equation.

ε3 = p̂3− p3 (27)

From p̂1 = p1 + ε1 and p̂2 = p2 + ε2, we can denote ε2− ε1 as follows.

ε2− ε1 = p̂2− p2− (p̂1− p1) = p̂2− p̂1− (p2− p1) (28)

By (27), (28) and p3 = p2− p1, we can calculate as follows.

ε3− (ε2− ε1) = p̂3− p3− (p̂2− p̂1) + (p2− p1) = p̂3− (p̂2− p̂1) (29)

In many samples, p̂3 gets close to (p̂2− p̂1) and (29) gets close to 0. This results in the following.

ε3 ≈ (ε2− ε1) (30)

In conclusion, (26) can be approximated as follows.

EE × (−ε1 + ε2)/(ps2− ps1) ≑ EE × (ε3)/(ps2− ps1) (31)

7.2 Theoretical estimation error evaluation

To know the theoretical range of estimation error, we examine the range of values that (31) could
potentially take. From the (31), EE, ε3 and (ps2− ps1) determine the error of AA.

Regarding EE, it is reasonable to assume that EE = 0.1 ∼ 0.9. That is because EE is a
population ratio of a particular category of patient characteristics and the value should not be
extremely low or high for estimation in a reasonable sample size to adapt LLN. Regarding (ps2−ps1),
it can be arbitrarily chosen for each EE, thus it can be fixed at ps2− ps1 = 0.08.

Regarding ε3, we can consider the p3 95% CI as the theoretical range of ε3 values, and the 95%
CI is determined by (7). From (7), we can calculate the ε3 as follows.

ε3 = 1.96

√
p3 (1− p3)

n3
(32)

Where n3 is p3 sample size in (32).
Regarding p3(= p2− p1) in (32), we can assume that the value is small. This is because p1 and

p2 are the ratios of C2 corresponding to C1 at ps1 and ps2, respectively. With ps2 − ps1 = 0.08,
it is expected that p2− p1 would be a small value. We can consider the case when p3 = p2− p1 =
0.01 ∼ 0.03. Regarding n3 in (32), if p2 − p1(= p3) is 0.01 ∼ 0.03 and 10, 000 ∼ 100, 000 patient
characteristics with 50 people are collected by the analyst, the size of p2 or p1 is about 1, 000 ∼ 10, 00
based on a normal distribution. Then, we can consider n3 = 1, 000 ∼ 10, 000.

Fig. 6 shows the theoretical range of ε3 values on p3 = p2− p1 = 0.01 ∼ 0.03 and n3 = 1, 000 ∼
10, 000 for (32). From Fig. 6, the reasonable theoretical range of ε3 values is about 0.002 ∼ 0.010.
Fig. 7 shows the theoretical error on EE = 0.1 ∼ 0.9, ε3 = 0.002 ∼ 0.010, and ps2− ps1 = 0.08 for
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(31). As shown in Fig. 6, by taking n3 to be around 10,000, 0.002 ≦ ε3 ≦ 0.004 can be obtained.
This indicates that with 0.1 ≦ EE ≦ 0.9, the theoretical error can be kept below 0.05 (5%) as shown
in Fig. 7. Additionally, to keep the theoretical error below 0.02 (2%), EE must be EE ≦ 0.4.

Figure 6: Theoretical effect of sample size of p3 on ε3 for p3 levels of 0.01, 0.02, and 0.03.

Figure 7: Theoretical estimation error for EE ranging from 0.1 to 0.9 and ε3 levels of 0.002, 0.004,
0.006, 0.008, and 0.010.

7.3 Theoretical anonymity equation

In the field of PPDM, it is important to quantify and evaluate anonymity. The risk of anonymity
violations from the PFDOC attack can arise from the analyst collecting a large number of patient
characteristics because there could be low PFDOC entropy patient characteristics. Particularly,
when a patient characteristic with PFDOC entropy = 0 is included in the multiple patient charac-
teristics collected by the analyst, the risk of anonymity violation is maximized. Therefore, the aim
is to investigate how many patient characteristics with PFDOC entropy = 0 are contained in the
multiple patient characteristics collected by the analyst. The anonymity of patient characteristics
is affected by the ratio of categories in the target population, the number of patients in the patient
characteristics, and the number of patient characteristics collected by the analyst. Let p be the ratio
of individuals with a certain category, q be the number of patients in the patient characteristics,
and R be the number of patient characteristics collected by the analyst. The probability that all
q patients in a patient characteristics belong to a specific category is pq, while the probability that
no individual belongs to that category is (1− p)q. In this case, when all the patient characteristics
given belong or do not belong to a specific category, the PFDOC entropy becomes zero. Therefore,
when the analyst collects R patient characteristics, the number of PFDOC entropy = 0 patient
characteristics is approximated as follows.

R× pq or R× (1− p)q (33)

7.4 Theoretical anonymity evaluation

We aim to consider the impact of the criteria set by the analyst for collecting patient characteristics
on the level of anonymity. Therefore, first, we aim to identify the variables that the analyst can
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control and those that cannot be controlled. In (33), the analyst has control over the number of pa-
tient characteristics R, as well as the number of individuals q included in each patient characteristic.
However, the population ratio of categories p included in the patient characteristics is determined
by the publisher’s selection of categories contained in the patient characteristics and cannot be con-
trolled by the analyst. Based on the discussion above, our objective can be rephrased to evaluate the
level of anonymity that is preserved when the analyst chooses the criteria by R and q for collecting
the patient characteristics. Therefore, we calculate the theoretical number of PFDOC entropy = 0
patient characteristics assuming R = 10, 000 and q = 50, which are within the control of the analyst.
In other words, we examine the values of 10000p50 or 10000(1− p)50 for each p.

Fig. 8 shows the PFDOC entropy = 0 patient characteristics in 10,000 patient characteristics
with 50 individuals by each p. Fig. 9 a, b, c, and d are expanded Fig. 8 for 0.00 ≦ p ≦ 0.10,
0.10 ≦ p ≦ 0.25, 0.75 ≦ p ≦ 0.90, and 0.90 ≦ p ≦ 1.00 respectively. Note that, in 0.25 ≦ p ≦ 0.75, the
analyst acquires almost zero PFDOC entropy = 0 patient characteristics. From Fig. 8 observation,
if the publisher uses 0.25 ≦ p ≦ 0.75 categories, the anonymity is safe for the PFDOC attack, and if
the publisher uses 0.20 ≦ p ≦ 0.25 and 0.70 ≦ p ≦ 0.75 categories, the anonymity is approximately
safe for the PFDOC attack. But if the publisher uses 0 ≦ p ≦ 0.20 and 0.80 ≦ p ≦ 1.00 categories,
the anonymity is not safe because the PFDOC attack could succeed.

Figure 8: Theoretical Patient Family Detect on Overall Category (PFDOC) entropy = 0 patient
characteristics occurrence number in 10,000 patient characteristics for category’s population ratio p.
Note that each patient characteristics contains 50 patients’ data.

Figure 9: Magnified Fig. 8. a, population ratio 0.00 to 0.10. b, population ratio 0.10 to 0.25. c,
population ratio 0.75 to 0.90. d, population ratio 0.90 to 1.00.
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8 Experimental estimation error and anonymity evaluation

8.1 Experimental method

Fig. 10 shows the experiment overview. The notation of variables follows sections 4 and 6. We use
20,000 US Census [9] data as target people group data set D0. We use the data set’s categories of
fin flag as C1 and age, education or marital-status as C2 and convert to binary data as Table 7. As the
publisher’s process, we do random sampling with sample size o = 50 and do t = 10, 000 times. Ran-
dom sampled data set is D1 = {RS1(D0), . . . , RS10000(D0)} and RSi(D0) = {rRSi1, . . . , rRSi50}.
D1 is converted to patient characteristics as D2 = {Apc(RS1(D0)), . . . , Apc(RS10000(D0))}. As
the analyst’s process, we make three approximated equations by ps1 = 0.2, ps2 = 0.28, and estimate
the cross-tabulation table. We compare the estimated cross-tabulation table from D2 with the true
cross-tabulation table created from D0. To evaluate the standard deviation of the estimated error
and the PFDOC entropy-based anonymity, we perform n = 100 experiments.

Figure 10: Experiment overview. The target people group data set D0 is US Census [9] 20,000 data,
where C1 is fin flag, and C2 is age, education, or marital-status. The publisher’s processes are 10,000
random samplings with a size of 50 and conversion to patient characteristics formatted data. The
analyst’s process is making three approximated equations from D2 and calculating the equations to
get the estimated cross-tabulation table. The estimated cross-tabulation table is compared with the
true cross-tabulation table created from D0. The notation of variables follows sections 4 and 6.

Table 7: Binary allocation for variables of US Census [9].

1 0
fin flag >50K <= 50K
age >38 <= 38

education

Bachelors, Masters,
Some-college, Assoc-acdm,

Assoc-voc, Doctorate,
Prof-schoo

11th, HS-grad, 9th,
7th-8th, 12th,1st-4th,

10th,5th-6th,
Preschoo

marital-status
Married-civ-spouse,

Married-spouse-absent,
Married-AF-spouse

Divorced,
Never-married,

Separated, Widowed
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8.2 Experimental estimation error evaluation

Fig. 11 shows the true value and the experimental estimation result. We can compare this exper-
imental result with theoretical value by applying experimental value on (31). EE is the sample
ratio of fin flag and EE = 0.24. ps2 − ps1 is ps2 − ps1 = 0.28 − 0.20 = 0.08. Furthermore, in
fin flag vs. age case, p2− p1 ≑ 0.01 and the sample size of ps1 or ps2 (= n3) is about 1,000 patient
characteristics, leading to ε3 ≑ 0.006(95%CI) according to (32). Then, the theoretical estimation
error is EE × (ε3)/(ps2− ps1) = 1.8%(95%CI). The experimental values were within 1.5% (2SD,
n = 100) and were found to fall within the 95%CI of the theoretical value. This result indicates
consistency between the experimental and theoretical results.

Figure 11: True cross-tabulation tables created from raw data and estimated cross-tabulation tables
(average ± 2 standard deviations (SD) (n = 100)).

Fig. 12 shows the absolute error distributions for fin flag vs. age, fin flag vs. education, and
fin flag vs. marital-status estimations in n = 100 experiments. The results of fin flag vs. age and
fin flag vs. education do not contain over 2.0 % absolute error result, and the results of fin flag vs.
marital-status contain one over 2.0 % absolute error result (n = 100). No significant deviation from
the theoretical value of 1.8%(95%CI) was observed in the collected data.

Figure 12: Number of results within the absolute estimation error range for fin flag vs. age, fin flag
vs. education, fin flag vs. marital-status (n = 100).
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8.3 Experimental anonymity evaluation

Fig. 13 shows the experimental values of how many PFDOC entropy = 0 patient characteristics occur
if the analyst gets 10,000 patient characteristics that contain 50 people in 100 experiments. Age
has a 46.2% population rate and the proportion of having zero patient characteristics with PFDOC
entropy = 0 is 100%. Education has a 16.6% population ratio and the results of 100 experiments
showed that the analyst obtained 0 PFDOC entropy = 0 patient characteristics in 28% of cases, 1
in 39% of cases, 2 in 21% of cases, 3 in 9% of cases, 4 in 3% of cases. No cases were recorded with 5
or more PFDOC entropy = 0 patient characteristics. The average number of PFDOC entropy = 0
patient characteristics obtained by the analyst was 1.2. Marital-status has a 45.7% population rate
and the proportion of having zero patient characteristics with PFDOC entropy = 0 is 100%. fin flag
has a 23.8% population rate and the proportion of having zero patient characteristics with PFDOC
entropy = 0 is 100%.

We can compare this experimental value with the theoretical value shown in Fig. 8. Theoretically,
the occurrence of patient characteristics with PFDOC entropy = 0 is rare when 0.25 ≦ p ≦ 0.75.
0.20 ≦ p ≦ 0.25 and 0.70 ≦ p ≦ 0.75 are considered to be approximately safe. Furthermore,
0 ≦ p ≦ 0.20 and 0.80 ≦ p ≦ 1.00 are vulnerable to a successful PFDOC attack. This theoretical
conclusion was also confirmed through the experiment.

Figure 13: Experimental number of Patient Family Detect on Overall Category (PFDOC) entropy =
0 patient characteristics out of 10,000 patient characteristics with 50 patients each for age, education,
marital-status, and fin flag category. Age (46.2% population ratio), marital-status (45.7% population
ratio), and fin flag (23.8% population ratio) have 100% results of 0 PFDOC entropy = 0 patient
characteristics out of 10,000 patient characteristics in 100 experiments. Education (16.6% population
ratio) has an average of 1.2 PFDOC entropy = 0 patient characteristics out of 10,000 patient
characteristics in 100 experiments.

9 Discussion

First, we confirm that our estimation method can reduce the 95%CI estimation error by any desired
amount. As seen from (31) and (32), the estimation error decreases as the size of n3 increases. This
indicates that obtaining additional patient characteristics will enable the analyst to minimize the
estimation error to an arbitrarily small value.

Second, we evaluate experimental estimation error as a medical study. The experimental esti-
mation error in section 8 is within 1.5% (2SD). In traditional medical research, an error of 1.5%
(2SD = 95% CI [22]) in a normal distribution is an error of about 1,000 cases. Since there are
four categories in the cross-tabulation table, the 1.5% error (2SD) is equivalent to an error of 4,000
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cases in traditional medical research. Medical analysis cases using cross-tabulation tables range from
less than 100 cases to tens of thousands of cases [13] [15]. The estimation error of our method is
equivalent to that of medical research methods, which guarantees the usefulness of the proposed
estimation.

Third, we discuss anonymity when adopting our proposal estimation method. From the anonymity
result of Fig. 8 and Fig. 9, the category’s population ratio p which has 0 ≦ p ≦ 0.25 or 0.75 ≦ p ≦ 1.00
is vulnerable to the PFDOC attack. However, Table 2 also shows that some of the patient character-
istics categories can fall within these ranges. This means that some categories in Table 2 have the risk
of anonymity violation. Therefore, it is recommended to choose categories within 0.25 ≦ p ≦ 0.75
when applying the proposed estimation method to ensure anonymity protection.

Fourth, we consider the impact of extreme probability categories that could be included in the
patient characteristics. In the experiment, we could observe the effect of errors on the true value of
3.5 to 66.4%. However, extreme probability cases can also be included in the patient characteristics,
such as when the true value is less than 3.5%. In such instances, additional random samples of
patient characteristics may be required in order to reach the desired statistical probability before
applying LLN in the proposal estimation method.

10 Conclusion and future work

We proposed to use patient characteristics, medical statistics that would not be concerned by the
GDPR, to estimate the cross-tabulation table, which is usually generated from personal information
in medical research and widely used for the analysis of medical variables. To quantify the pro-
posed method, we modeled a publisher of randomly sampled patient characteristics and the analyst
estimating cross-tabulation tables. In this model, we theoretically evaluated the effectiveness of
estimating multiple patient characteristics. For quantitative PPDM, we also theoretically evaluated
anonymity as a vulnerability to the PFDOC attack by PFDOC entropy = 0 patient characteristics
occurrence rate in multiple patient characteristics. Furthermore, we confirmed that the effective-
ness and anonymity of the estimation method are consistent with the theoretical evaluation. For
effectiveness, we confirmed in the experiment that the estimation can be made with an error of
1.8% (95% CI) using 10,000 patient characteristics with 50 patients each. For anonymity, though
the analyst can get patient characteristics as our model without legal problems, we showed that
using categories within the range of 25% to 75% population ratio in our proposal estimation method
ensures safety from the risk of the PFDOC entropy = 0 patient characteristics occurrence.

As future work, we need to create a more efficient model, examine whether the method can be
extended to general privacy-preserving data mining fields, and find methods to mitigate the impact
of large amounts of statistical information on anonymity.
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