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Abstract

The group signature with message dependent opening (GS-MDO) is a variant of the group
signature in the sense that the opening authority is split into two parties called the opener and
the admitter. Most known constructions of GS-MDO consider the static model. The only scheme
using the dynamic model by Sun and Liu has a problem of the anonymity against the admitter
in the real-world usage because the signing process requires the interaction between the signer
and the admitter. In this paper, we restart the line of research of GS-MDO in the dynamic
setting. We introduce the definition of the dynamic group signature with message dependent
opening (DGS-MDO) with the security requirements and propose a generic construction. By
instantiating our construction with appropriate primitives, we can obtain a DGS-MDO scheme
with the standard model security, constant signature size and non-interactive signing process.

Keywords: Dynamic Group Signature, Message Dependent Opening, Standard Model

1 Introduction

The group signature (GS) scheme [8] allows members of a group to sign messages on behalf of the
group. Although the actual signer is generally intended to be anonymous, the central authority,
such as the group manager, can identify the signer by using a trapdoor. Since the power of such an
authority is too strong in some applications, it should be restricted appropriately.
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Table 1: Comparison of GS-MDO schemes
GS model Signature Size Security model Assumption MDO Signing

[19] Static O(1) STD DLIN, SFP Bounded Non-interactive
[17] Static O(1) ROM DBDH, DLIN, q-SDH Unbounded Non-interactive
[15] Static O(logN) STD DLIN, D3DH Unbounded Non-interactive
[16] Static O(logN) ROM LWE, SIS Unbounded Non-interactive
[21] Fully dynamic O(logN) ROM LWE, SIS Unbounded Interactive
[ours] Dynamic O(1) STD DLIN, SFP Bounded Non-interactive

In the column Signature Size, N denotes the number of members of the group.

As a solution to the above problem, the notion of the group signature with message dependent
opening (GS-MDO) is proposed by Sakai et al. [19]. In GS-MDO, the opening functionality is
separated into two authorities called the opener and the admitter. On the opening operation, the
admitter first issues a message-specific token for the target message. The opener then opens the
signature corresponding to the message to identify the actual signer by using his secret key and
the message-specific token. Once the opener has received a message-specific token, it can open
all signatures corresponding to the same message by itself. Note that neither of them can open
signatures by itself.

Sakai et al. [19] proposed the first GS-MDO scheme with a generic construction from the identity-
based encryption (IBE), the tag-based encryption and the non-interactive zero knowledge proof
(NIZK). As an instantiation, they also presented the concrete construction from the bilinear group.
The security of their scheme is proven in the standard model and its signature size is independent of
the group size N . However, the scheme is restricted in the sense that there is a limit to the number
of tokens that the admitter can issue, that is, the MDO property is bounded. This is because the
scheme uses the Groth-Sahai proof [13] as NIZK, and the GS-proof-compatible IBE only satisfies a
slightly weaker security notion [14].

To address the above problem, Ohara et al. [17] proposed the GS-MDO scheme which has the
unbounded MDO property in the random oracle model (ROM) [4]. Libert and Joye [15] also proposed
the unbounded GS-MDO scheme whose security is proven in the standard model. However, the
signature size of their scheme is O(logN), where N is the size of the group. Note that all of
the above GS-MDO schemes use the bilinear map. For GS-MDO schemes without the bilinear map,
Libert, Mouhartemm and Nguyen [16] constructed the lattice-based GS-MDO scheme. Their scheme
is based on the LWE assumption and the SIS assumption, and the security is proven in the random
oracle model.

Another point of view is that the GS-MDO schemes above are constructed based on the model
of the static group signature [3], which fixes the group and its members when the scheme is set
up. On the other hand, there are more realistic group signature models, namely the dynamic group
signature (DGS) [5] and the fully dynamic group signature (FDGS) [7]. The DGS allows a group
to add members and the FDGS allows a group to add and remove members, respectively, while the
static GS cannot change the group.

For the dynamic-type scheme of GS-MDO, Sun and Liu [21] proposed the fully dynamic GS-
MDO scheme. Their scheme is a lattice-based scheme and the security is proven under the LWE
assumption and the SIS assumption in the random oracle model. While the scheme of [21] achieves
the provable security, especially including the anonymity, there is a problem in real-world usage.
This is because a signer must send a message to the admitter in the signing process. Then the
admitter can infer the actual signer from the pair of the message-signature pair. This means that
this GS-MDO scheme does not seem to have adequate anonymity against the admitter, even if the
anonymity defined in the model of [21] is attained. Thus it is considered that GS-MDO schemes in
the dynamic model are still open.

1.1 Contribution

In this paper, we restart the research line of GS-MDO in the dynamic setting. As the first step, we
focus on the dynamic group signature by [5]. We introduce the definition of the dynamic group sig-
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nature with message dependent opening (DGS-MDO) and the security requirements of DGS-MDO.
We also propose a generic construction of DGS-MDO. Our generic construction consists of stan-
dard cryptographic primitives such as the digital signature (DS), the key encapsulation mechanism
(KEM), the identity-based KEM (ID-KEM) and the non-interactive zero knowledge proof (NIZK).
By instantiating each primitive with an appropriate scheme, our construction has competitive prop-
erties over existing GS-MDO schemes, as shown in Table 1. Our construction can achieve the
standard model security, constant signature size and non-interactive signing process. However, same
as the scheme of [19], our scheme has one disadvantage, namely the bounded message opening. The
DGS-MDO scheme that supports unbounded message opening is an interesting open question.

1.2 Difference from the Conference Proceeding

The earlier version of this paper appeared in [2]. We refine the definitions of security notions and
add the full security proofs.

2 Preliminaries

For any algorithm A, we denote by y ← A(x) that A outputs y on input x. When A is probabilistic,
A(x) stands for the random variable of A’s output on input x, where the probability is taken over
the internal coin flips of A. In particular, we explicitly express that A outputs y on input x with the
random coin r by y ← A(x; r). We abbreviate the word ”probabilistic polynomial-time” as PPT.

For a finite set X, x
$←− X means that x is chosen from X uniformly at random. |x| and |X|

denotes the length of the element x and the size of the set X, respectively. ⟨·⟩ is some encoding
function which takes strings as input.

A positive function ϵ in λ is said to be negligible if for any positive polynomial p, there exists a
natural number λ0 such that for any λ ≥ λ0, ϵ(λ) < 1/p(λ).

3 Dynamic Group Signature with Message Dependent Open-
ing

We introduce the notion of the dynamic group signature with message dependent opening (DGS-
MDO). We first define the syntax of DGS-MDO and consider the security requirements with several
oracles which express the ability of adversaries.

3.1 Syntax

A DGS-MDO schemeDGS-MDO consists of a tuple (GKg,UKg, Join, Iss,GSig,Td,GVf,Open, Judge).
There are five parties on DGS-MDO: the trust, the issuer, the opener, the admitter and the user.
The syntax of DGS-MDO is defined based on the dynamic group signature [5] and the (static) group
signature with message dependent opening [11]. The formal description is as follows.

GKg(1λ)→ (gpk, ik, ok, ak):
GKg is the group-key generation algorithm performed by the trusted party. On input security
parameter 1λ, GKg generates the group public key gpk, the issuer key ik, the opener key ok and the
admitter key ak, respectively. ik, ok, ak are sent to the corresponding party via a secure channel,
and gpk is made public.

UKg(1λ, gpk)→ (upki, uski):
UKg is the user key generation algorithm performed by each user. On input security parameter 1λ

and gpk, the user i runs UKg and obtains the personal public and secret key pair (upki, uski). The
list upk = {upki} of public keys of all users is made public.

Join(gpk, upki, uski)→ gski and Iss(gpk, ik, reg)→ reg:
Join and Iss are the two-party interactive group-joining protocol between the user i and the issuer.
Join is performed by the user and Iss is performed by the issuer, respectively. After the interaction,
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Join outputs gski which is the group signing key for the user i if the protocol succeeds to the end.
On the other hand, Iss outputs the registration table reg which records the registration information
of legitimate users. Namely, reg is updated by Iss with the i-th entry reg[i] of reg if the issuer
accepts the user i.

GSig(gpk, gski,m)→ σ:
GSig is the group signing algorithm performed by each user. On input gpk, gski and the message
m, GSig generates the group signature σ.

Td(gpk, ak,m)→ tm:
Td is themessage-specific token generation algorithm performed by the admitter. On input (gpk, ak,m),
Td generates the token tm for the message m.

GVf(gpk,m, σ)→ 1/0:
GVf is the deterministic group signature verification algorithm. We say that the signature σ is valid
for m under gpk when GVf outputs 1.

Open(gpk, ok, reg,m, σ, tm)→ (i, π):
Open is the deterministic opening algorithm performed by the opener. The output i identifies the
signer of the group signature σ and π is the proof for the fact, respectively. Note that when i = 0,
it means that there is no legitimate group member which produces σ.

Judge(gpk, i, upki,m, σ, π)→ 1/0:
Judge is the deterministic judgement algorithm. It checks whether or not π is a valid proof that the
user i generates σ for m.

3.2 Security Definitions

We first introduce oracles which is used in the security definitions. These oracles give adversaries
various capabilities and functionalities. We can represent various attack scenarios by combining
them. The definitions of oracles and securities are based on [5] and [21]. In the descriptions of
oracles below, HU is the set of honest users, CU is the set of corrupted users, RU is the set
of users which are revealed with their signing keys, QLgs is the set of signing queries, TL is the
set of messages whose corresponding tokens are generated, CL is the set of challenge signatures,
respectively.

AddU(i): AddU adds the user i as an honest user. AddU adds i into the set HU, generates (upki, uski)
and then gski, updates reg[i], respectively, via operating Join and Iss internally. Finally, AddU
returns upki.

CrptU(i, upk): The adversary corrupts the user i by calling this oracle. CrptU updates upki of the
user i as upk, and adds i into the set CU.

SndToI(i): The adversary calls this oracle to run the group-joining protocol on behalf of the corrupted
user i with the honest issuer. When the oracle accepts the protocol, it updates reg[i] as Iss does.

SndToU(i): The adversary calls this oracle to run the group-joining protocol on behalf of the cor-
rupted issuer with the honest user i. When the oracle accepts the protocol, it updates the user i’s
signing key gski.

USK(i): USK returns the signing key gski and secret key uski of the user i, and adds i into the set
RU.

RReg(i): RReg returns the registration information reg[i] of the user i.

WReg(i, ρ): WReg writes/changes the registration information reg[i] of the user i into ρ.

GSig(i,m): GSig returns the signature σ on the message m with respect to the signing key gski, and
adds (i,m) into the set QLgs.

Chb(i0, i1.m): Chb returns the challenge signature σ on the message m with respect to the signing
key of the user ib for b ∈ {0, 1}. Chb adds (m,σ) into the set CL.

Td(m): Td returns the message-specific token tm for the message m. If m is not in TL, Td adds m
into in TL.
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Open(m,σ): Open returns the identity i of the signer of σ with the proof π when the input (m,σ)
is not in CL.

We now define the security notions of DGS-MDO.
Correctness: The correctness states that honestly generated signatures are always valid, opened
to the correct signers, and the proofs produced by Open pass Judge. For a DGS-MDO scheme
DGS-MDO and any adversary A, let us consider the following experiment.

ExpcorrDGS-MDO,A(λ):

1. (gpk, ik, ok, ak)← GKg(1λ); HU = ∅;

2. (i,m)← AAddU,RReg(gpk);

3. If i /∈ HU then return 0; If gski = ϵ then return 0;

4. σ ← GSig(gpk, gski,m);
If GVf(gpk,m, σ) = 0 then return 1;

5. tm ← Td(gpk, ak,m); (j, π)← Open(gpk, ok, reg,m, σ, tm);
If i ̸= j then return 1;

6. If Judge(gpk, i, upki,m, σ, π) = 0 then return 1, else return 0

The advantage of A for the experiment is defined by

AdvcorrDGS-MDO,A(λ) = Pr[ExpcorrDGS-MDO,A(λ) = 1].

We say that a DGS-MDO scheme DGS-MDO is correct if AdvcorrDGS-MDO,A(λ) = 0 for any unbounded
adversary A and λ ∈ N.

On DGS-MDO scheme, we consider two types of anonymity, the opener anonymity and the
admitter anonymity. This is because identifying the signer of a group signature requires two steps:
generating a message-specific token by the admitter, and opening the identity by the opener. These
two notions imply that the anonymity cannot be broken by either the opener or the admitter alone.

Opener Anonymity : The opener anonymity states that a PPT adversary A cannot distinguish
signatures generated by two distinct legitimate users even though A knows the opener key ok and
the issuer key ik, corrupts any user and accesses the Td oracle. For a DGS-MDO scheme DGS-MDO
and any adversary A, let us consider the following experiment.

Expop-anon,bDGS-MDO,A(λ):

1. (gpk, ik, ok, ak)← GKg(1λ); HU,CU,RU,TL,CL = ∅;

2. b′ ← ACrptU,SndToU,USK,WReg,Td,Chb(gpk, ik, ok);

3. return b′

The advantage of A for the experiment is defined by

Advop-anonDGS-MDO,A(λ) = |Pr[Exp
op-anon,0
DGS-MDO,A(λ) = 1]− Pr[Expop-anon,1DGS-MDO,A(λ) = 1]|.

We say that a DGS-MDO scheme DGS-MDO has the opener anonymity if Advop-anonDGS-MDO,A(λ) is
negligible in λ for any PPT adversary A. When A calls Td oracle at most k times, we say that
DGS-MDO has the opener anonymity with k-bounded tokens.

Admitter Anonymity : The admitter anonymity states that a PPT adversary A cannot distinguish
signatures generated by two distinct legitimate users even though A knows the admitter key ak
and the issuer key ik, corrupts any user and accesses the Open oracle. For a DGS-MDO scheme
DGS-MDO and any adversary A, let us consider the following experiment.

Expad-anon,bDGS-MDO,A(λ):
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1. (gpk, ik, ok, ak)← GKg(1λ); HU,CU,RU,CL = ∅;

2. b′ ← ACrptU,SndToU,USK,WReg,Open,Chb(gpk, ik, ak);

3. return b′

The advantage of A for the experiment is defined by

Advad-anonDGS-MDO,A(λ) = |Pr[Exp
ad-anon,0
DGS-MDO,A(λ) = 1]− Pr[Expad-anon,1DGS-MDO,A(λ) = 1]|.

We say that a DGS-MDO scheme DGS-MDO has the admitter anonymity if Advad-anonDGS-MDO,A(λ) is
negligible in λ for any PPT adversary A.

We note that AddU oracle does not appear in the two definitions of anonymity. This is because
A is given the issuer key ik and then A can add a user to the group arbitrarily by itself.

Traceability : The traceability states that a PPT adversary A cannot generate a valid signature
which is traced to an illicit user even though A knows the opener key ok and the admitter key ak
and corrupts any user. For a DGS-MDO scheme DGS-MDO and any adversary A, let us consider
the following experiment.

ExptraceDGS-MDO,A(λ):

1. (gpk, ik, ok, ak)← GKg(1λ); HU,CU,RU = ∅;

2. (m,σ)← AAddU,CrptU,SndToI,USK,RReg(gpk, ok, ak);

3. If GVf(gpk,m, σ) = 0 then return 0;

4. tm ← Td(gpk, ak,m); (i, π)← Open(gpk, ok, reg,m, σ, tm);

5. If i = 0 or Judge(gpk, i, upki,m, σ, π) = 0 then return 1, else return 0

The advantage of A for the experiment is defined by

AdvtraceDGS-MDO,A(λ) = Pr[ExptraceDGS-MDO,A(λ) = 1].

We say that a DGS-MDO scheme DGS-MDO has the traceability if AdvtraceDGS-MDO,A(λ) is negligible
in λ for any PPT adversary A.
Non-Frameability : The non-frameability states that a PPT adversary A cannot generate a valid
signature which is traced to a legitimate user even though A knows the opener key ok, the admitter
key ak and the issuer key ik and corrupts any user. For a DGS-MDO scheme DGS-MDO and any
adversary A, let us consider the following experiment.

ExpnfDGS-MDO,A(λ):

1. (gpk, ik, ok, ak)← GKg(1λ); HU,CU,RU,QLgs = ∅;

2. (m,σ, i, π)← ACrptU,SndToU,USK,WReg,GSig(gpk, ok, ak, ik);

3. If GVf(gpk,m, σ) = 0 then return 0;

4. If all following conditions are satisfied then return 1;

(a) i ∈ HU and i /∈ RU;

(b) Judge(gpk, i, upki,m, σ, π) = 1;

(c) (i,m) /∈ QLgs;

5. Else return 0

The advantage of A for the experiment is defined by

AdvnfDGS-MDO,A(λ) = Pr[ExpnfDGS-MDO,A(λ) = 1].

We say that a DGS-MDO scheme DGS-MDO has the non-frameability if AdvnfDGS-MDO,A(λ) is
negligible in λ for any PPT adversary A.
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4 Generic Construction of DGS-MDO

We propose a generic construction of DGS-MDO in this section. Before describing our construction,
we introduce several primitives which are required in the construction.

4.1 Building Blocks

Digital Signature: The digital signature scheme DS consists of three algorithms (SKg,Sig,Vf) defined
as follows.

SKg(1λ)→ (pks, sks):
SKg is the key generation algorithm that takes a security parameter 1λ as input and outputs a pair
of a public key pks and a secret key sks.

Sig(sks,m)→ σ:
Sig is the signing algorithm that takes a secret key sks and a message m as input and outputs a
signature σ.

Vf(pks,m, σ)→ 1/0:
Vf is the deterministic verification algorithm that takes a public key pks, a messagem and a signature
σ as input and outputs 1 or 0.

As the security of digital signatures, we consider the ordinary existential unforgeability against
the chosen message attack (EUF-CMA) [12] defined by the following experiment. Let Sig be the
signing oracle provided to an adversary. Sig returns a signature σ ← Sig(sks,m) for a queried
message m. Let QLs be the set of signing queries.

Expeuf-cma
DS,A (λ):

1. (pks, sks)← SKg(1λ); QLs = ∅;

2. (m∗, σ∗)← ASig(pks);

3. If all following conditions are satisfied then return 1;

(a) Vf(pks,m
∗, σ∗) = 1;

(b) m∗ /∈ QLs;

4. Else return 0

The advantage of A for the experiment is defined by

Adveuf-cma
DS,A (λ) = Pr[Expeuf-cma

DS,A (λ) = 1].

We say that a digital signature scheme DS is EUF-CMA if Adveuf-cma
DS,A (λ) is negligible in λ for any

PPT adversary A.

Key Encapsulation Mechanism: The key encapsulation mechanism (KEM) KEM consists of three
algorithms (EKg,Enc,Dec) defined as follows.

EKg(1λ)→ (pke, ske):
EKg is the key generation algorithm that takes a security parameter 1λ as input and outputs a pair
of a public key pke and a secret key ske.

Enc(pke)→ (C,K):
Enc is the encapsulation algorithm that takes a public key pke as input and outputs a ciphertext C
and a session key K ∈ KKEM, where KKEM is the space of session keys associated with the scheme.

Dec(ske, C)→ K/⊥:
Dec is the deterministic decapsulation algorithm that takes a secret key ske and a ciphertext C as
input and outputs a session key K or a special symbol ⊥ which indicates that the ciphertext is
invalid.
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As the security of KEM, we consider the indistinguishability against the chosen ciphertext attack
(IND-CCA) [10] defined by the following experiment. Let Dec be the decapsulation oracle provided
to an adversary. Dec returns a session key K ← Dec(ske, C) for a queried ciphertext C. Let QLc

be the set of queried ciphertexts.

Expind-cca,bKEM,A(λ):

1. (pke, ske)← EKg(1λ); QLc = ∅;

2. b′ ← ADec,ChKEM,b(pke);

3. If C∗ /∈ QLc then return b′ else return ⊥

ChKEM,b(pke):

1. (C∗,K0)← Enc(pke);

2. K1
$←− KKEM;

3. return (C∗,Kb)

The advantage of A for the experiment is defined by

Advind-ccaKEM,A(λ) = |Pr[Exp
ind-cca,0
KEM,A(λ) = 1]− Pr[Expind-cca,1KEM,A(λ) = 1]|.

We say that a KEM KEM is IND-CCA if Advind-ccaKEM,A(λ) is negligible in λ for any PPT adversary A.

ID-based KEM : The identity-based key encapsulation mechanism (ID-based KEM) [6] ID-KEM
consists of four algorithms (ISetup, IExt, IEnc, IDec) defined as follows.

ISetup(1λ)→ (pp,msk):
ISetup is the parameter setup algorithm that takes a security parameter 1λ as input and outputs a
public parameter pp and a master secret key msk.

IExt(msk, ID)→ (skID):
IExt is the user key generation algorithm that takes a master secret key msk and a user’s identity
ID as input and outputs a user’s secret key skID.

IEnc(pp, ID)→ (C,K):
IEnc is the encapsulation algorithm that takes a public parameter pp and an identity ID as input
and outputs a ciphertext C and a session key K ∈ KIDKEM, where KIDKEM is the space of session
keys associated with the scheme.

IDec(skID, C, ID)→ K/⊥:
IDec is the deterministic decapsulation algorithm that takes a user’s secret key skID, a ciphertext
C and an identity ID as input and outputs a session key K or a special symbol ⊥ which indicates
that the ciphertext is invalid.

As the security of ID-based KEM, we consider the k-resilient security [14] defined by the following
experiment. Let IExt be the key extraction oracle provided to an adversary. IExt returns a user’s
secret key skID ← IExt(msk, ID) for a queried identity ID. Let QLid be the set of queried identities.

Expk-resi,bID-KEM,A(λ):

1. (pp,msk)← ISetup(1λ); QLid = ∅;

2. b′ ← AIExt,ChID-KEM,b(pp);

3. If ID∗ /∈ QLid and |QLid| ≤ k then return b′ else return ⊥

ChID-KEM,b(ID
∗):

1. (C∗,K0)← IEnc(pp, ID∗);
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2. K1
$←− KIDKEM;

3. return (C∗,Kb)

The advantage of A for the experiment is defined by

Advk-resiID-KEM,A(λ) = |Pr[Exp
k-resi,0
ID-KEM,A(λ) = 1]− Pr[Expk-resi,1ID-KEM,A(λ) = 1]|.

We say that an ID-based KEM ID-KEM is k-resilient if Advk-resiID-KEM,A(λ) is negligible in λ for any
PPT adversary A. When k is a polynomial in λ, we say that ID-KEM is IND-ID-CPA.

Non-Interactive Zero Knowledge Proof : Let R ⊆ {0, 1}∗ × {0, 1}∗ be a polynomial-time verifiable
relation. Namely we can check whether or not (x,w) ∈ R in polynomial time. Note that we
estimate the time efficiency in the length of the first component x. We consider a non-interactive
zero-knowledge proof in the common reference string model.

The non-interactive proof system Π consists of the three algorithm (Kcrs,P,V) defined as follows.

Kcrs(1
λ)→ crs:

Kcrs is the common reference string (CRS) generation algorithm that takes a security parameter 1λ

as input and outputs a CRS crs.

P(crs, (x,w))→ τ :
P is the prover algorithm that takes a CRS crs, a pair (x,w) of a statement and a witness such that
(x,w) ∈ R as input and outputs a proof τ .

V(crs, x, τ)→ 1/0:
V is the verifier algorithm that takes a CRS crs, a statement x and a proof τ as input and outputs
1 or 0.

We say that Π = (Kcrs,P,V) is a non-interactive zero knowledge proof (NIZK) for the relation R
if Π satisfies the following three properties.

Completeness: Let p be a polynomial. For all λ ∈ N and (x,w) ∈ R such that |x| ≤ p(λ),

Pr[crs← Kcrs(1
λ); τ ← P(crs, (x,w));V(crs, x, τ)→ 1] = 1.

Soundness: Let L̄R be the set of all x that has no corresponding witness. For all λ ∈ N, x ∈ L̄R and
any polynomial-time algorithm P̄, the probability

Pr[crs← Kcrs(1
λ); τ ← P̄(crs, x);V(crs, x, τ)→ 1]

is negligible in λ.

Computational Zero Knowledge: Let Sim = (S1, S2) be a simulator algorithm. S1 outputs a simulated
CRS for the input security parameter, and S2 outputs a simulated proof for the input statement
and simulated CRS. Then we consider the following experiments.

ExpzkΠ,Sim,D(λ):

1. b
$←− {0, 1};

2. crs0 ← Kcrs(1
λ); (crs1, st)← S1(1

λ); crs = crsb;

3. b′ ← DPOb(crs);

4. If b = b′ then return 1 else return 0

PO0(x,w):

1. τ ← P(crs, x, w);

2. Return τ

PO1(x,w):
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1. τ ← S2(crs, st, x);

2. Return τ

The advantage of D for the experiment is defined by

AdvzkΠ,Sim,D(λ) = |Pr[Exp
zk
Π,Sim,D(λ) = 1]− 1/2|.

We say that Π is computational zero knowledge if there exists a PPT simulator Sim such that
AdvzkΠ,Sim,D(λ) is negligible in λ for any PPT algorithm D.

We consider additional property for a NIZK Π, called the simulation-soundness [18] defined by
the following experiment.

ExpssΠ,Sim,A(λ):

1. (crs, st)← S1(1
λ);

2. (x, τ)← AS2(st)(crs);

3. If all following conditions are satisfied then return 1;

(a) x ∈ L̄R;

(b) τ is not returned from the oracle when A queries x;

(c) A calls S2 oracle exactly one time;

(d) V(crs, x, τ) = 1;

4. Else return 0

The advantage of A for the experiment is defined by

AdvssΠ,Sim,A(λ) = Pr[ExpssΠ,Sim,A(λ) = 1].

We say that Π is simulation-sound if AdvssΠ,Sim,A(λ) is negligible in λ for any PPT adversary A.

4.2 Construction

We describe our generic construction. LetDS = (SKg,Sig,Vf) be a digital signature scheme, KEM =
(EKg,Enc,Dec) be a KEM, ID-KEM = (ISetup, IExt, IEnc, IDec) be an ID-based KEM, respectively.
Assume that KKEM and KIDKEM are the same group with the operation ⊙. We employ a polynomial-
time computable and invertible encoding function ⟨·⟩ which maps strings to elements in KKEM =
KIDKEM.

Let pks, pki be public keys of DS, certi and si be signatures by DS, m be a message, i be a user
index, (pke, ske) be a pair of a public key and a secret key of KEM, (CKEM,KKEM) be an output
of Enc, pp be a public parameter of ID-KEM, (CIDKEM,KIDKEM) be an output of IEnc, tm be an
output of IExt, κ, re, rKEM, rIDKEM be strings in {0, 1}λ, respectively.

Let x = (pks, pke, pp,m,CKEM, CIDKEM, κ) and w = (i, pki, certi, si, rKEM, rIDKEM). Then let R1 be
the relation such that (x,w) ∈ R1 if and only if Vf(pks, ⟨i, pki⟩, certi) = 1 and Vf(pki,m, si) = 1 and
Enc(pke; rKEM) = (CKEM,KKEM) and IEnc(pp,m; rIDKEM) = (CIDKEM,KIDKEM) and κ = ⟨i, pki, certi, si⟩⊙
KKEM ⊙KIDKEM.

Let x = (pke, CKEM, CIDKEM,m, κ, i, pki, certi, si) and w = (ske, re, tm). Then let R2 be the
relation such that (x,w) ∈ R2 if and only if EKg(1λ; re) = (pke, ske) and Dec(ske, CKEM) → KKEM

and IDec(tm, CIDKEM,m)→ KIDKEM and κ = ⟨i, pki, certi, si⟩ ⊙KKEM ⊙KIDKEM.
Let Π1 = (K(crs,1),P1,V1) and Π2 = (K(crs,2),P2,V2) be the proof systems for R1 and R2, respec-

tively.
The DGS-MDO scheme DGS-MDO consists of (GKg,UKg, Join, Iss,GSig,Td,GVf,Open, Judge)

defined as follows.

GKg(1λ)→ (gpk, ik, ok, ak):
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1. (pks, sks)← SKg(1λ);

2. re
$←− {0, 1}λ; (pke, ske)← EKg(1λ; re);

3. (pp,msk)← ISetup(1λ);

4. crs1 ← K(crs,1)(1
λ); crs2 ← K(crs,2)(1

λ)

5. gpk = (pks, pke, pp, crs1, crs2);

6. ik = sks; ok = (ske, re); ak = msk;

7. Return (gpk, ik, ok, ak)

UKg(1λ, gpk)→ (upki, uski):

1. (upki, uski)← SKg(1λ);

2. Return (upki, uski)

Join(gpk, upki, uski)→ gski and Iss(gpk, ik, reg)→ reg:
Join and Iss are the three round interactive protocol between the user i and the issuer operated as
follows.

Round1: Join(gpk, upki, uski) by the user i:

1. (pki, ski)← SKg(1λ);

2. σi ← Sig(uski, pki);

3. send (pki, σi) to the issuer.

Round2: Iss(gpk, ik, reg) by the issuer:

1. If Vf(upki, pki, σi) = 1 then certi ← Sig(sks, ⟨i, pki⟩) and reg[i]← (pki, σi);

2. Else certi = ϵ;

3. send certi to the user i.

4. Return reg

Round3: Join(gpk, upki, uski) by the user i:

1. gski ← (i, pki, ski, certi);

2. Return gski

GSig(gpk, gski,m)→ σ:

1. si ← Sig(ski,m);

2. rKEM
$←− {0, 1}λ; (CKEM,KKEM)← Enc(pke; rKEM);

3. rIDKEM
$←− {0, 1}λ; (CIDKEM,KIDKEM)← IEnc(pp,m; rIDKEM);

4. κ = ⟨i, pki, certi, si⟩ ⊙KKEM ⊙KIDKEM;

5. x1 = (pks, pke, pp,m,CKEM, CIDKEM, κ);

6. w1 = (i, pki, certi, si, rKEM, rIDKEM);

7. τ1 = P1(crs1, x1, w1);
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8. Return σ = (CKEM, CIDKEM, κ, τ1)

Td(gpk, ak,m)→ tm:

1. tm ← IExt(msk,m);

2. Return tm

GVf(gpk,m, σ)→ 1/0:

1. x1 = (pks, pke, pp,m,CKEM, CIDKEM, κ);

2. If V1(crs1, x1, τ1) = 1 then return 1, else return 0

Open(gpk, ok, reg,m, σ, tm)→ (i, π):

1. KKEM ← Dec(ske, CKEM);

2. KIDKEM ← IDec(tm, CIDKEM,m);

3. If KKEM = ⊥ or KIDKEM = ⊥ then return (0, ϵ);

4. ⟨i, pki, certi, si⟩ = κ⊙K−1
KEM ⊙K−1

IDKEM;

5. x1 = (pks, pke, pp,m,CKEM, CIDKEM, κ);

6. If V1(crs1, x1, τ1) = 0 then return (0, ϵ);

7. x2 = (pke, CKEM, CIDKEM,m, κ, i, pki, certi, si);

8. w2 = (ske, re, tm);

9. τ2 = P2(crs2, x2, w2);

10. π = (σi, i, pki, certi, si, τ2);

11. Return (i, π)

Judge(gpk, i, upki,m, σ, π)→ 1/0:

1. x1 = (pks, pke, pp,m,CKEM, CIDKEM, κ);

2. If (i, π) = (0, ϵ) then return 1− V1(crs1, x1, τ1);

3. Parse π = (σ′, i′, pk′, cert′, s′, τ2);

4. x′
2 = (pke, CKEM, CIDKEM,m, κ, i′, pk′, cert′, s′);

5. If V2(crs2, x
′
2, τ2) = 0 return 0;

6. If all following conditions are satisfied then return 1;

(a) i = i′;

(b) pki = pk′;

(c) Vf(upki, pk
′, σ′) = 1;

7. Else return 0
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4.3 Security

For the security of the proposed DGS-MDO scheme DGS-MDO, we have the following theorems.

Theorem 1. DGS-MDO is correct.

Proof. Let σ = (CKEM, CIDKEM, κ, τ1) be a group signature generated by a legitimate user i with
honestly generated parameters.

Then V1(crs1, x1, τ1) = 1 always follows with x1 = (pks, pke, pp,m,CKEM, CIDKEM, κ) by the
completeness of Π1. Namely GVf(gpk,m, σ)→ 1 always holds.

Let tm be a token for the message m. tm is computed by tm ← IExt(msk,m). Then the opener
can decrypt CKEM to KKEM and CIDKEM to KIDKEM by using the opener key ok = (ske, re) and the
token tm. Thus the opener can retrieve the signer from ⟨i, pki, certi, s⟩ = κ ⊙ K−1

KEM ⊙ K−1
IDKEM.

V2(crs2, x2, τ2) also always outputs 1 by the completeness of Π2.

Theorem 2. Assume that ID-KEM is k-resilient and Π1 is an NIZK. Then DGS-MDO has the
opener anonymity with k-bounded tokens.

Proof. We consider the sequence of games Game between the challenger Cop and the adversary Aop.
For each 0 ≤ ℓ ≤ 3, let Winℓ be the probability of the event where Cop outputs 1 in Gameℓ.

Game0.
Game0 coincides with the experiment Expop-anon,0DGS-MDO,Aop

(λ). Thus we have

Win0 = Pr[Expop-anon,0DGS-MDO,Aop
(λ) = 1].

Game1.
Game1 coincides with Game0 except that the proof τ1 generated in GSig is computed by the

simulator Sim1 = (S1,1, S1,2) for the proof system Π1. Since Π1 is an NIZK, the difference between
Game0 and Game1 is bounded by some negligible function neglop,01.

|Win1−Win0 | ≤ neglop,01(λ).

Game2.
Game2 coincides with Game1 except that the challenge oracle Ch0 is replaced with Ch1. For the

difference between Win1 and Win2, we have the following lemma.

Lemma 1.

|Win2−Win1 | ≤ neglop,12(λ),

for some negligible function neglop,12.

Proof. Let A(op,12) be an adversary which participates in Game1 or Game2. We aim to construct a
PPT algorithm B(op,12) such that if B(op,12) breaks the k-resilience of ID-KEM with A(op,12), the
difference between Win1 and Win2 can be non-negligible. The description of the algorithm B(op,12)
is given in Figure 1.

Let pp∗ be an instance given to the k-resilience adversary B(op,12). Then B(op,12) invokes Game1+b

for b ∈ {0, 1} with the adversary A(op,12). B(op,12) generates public and secret keys (pks, sks) and
(pke, ske), a simulated CRS crs1, and a honestly generated CRS crs2. Then B(op,12) sets gpk =
(pks, pke, pp

∗, crs1, crs2), ik = sks, ok = (sk, re), and gives (gpk, ok, ik) to A(op,12) as input.
For oracle queries from A(op,12), B(op,12) can answer queries honestly except Chb oracle and

Td oracle. For a challenge oracle query, B(op,12) calls its challenge oracle ChID-KEM,b to obtain
(C∗

IDKEM,K
∗
IDKEM) and then computes a group signature. Note that B(op,12) does not know the

master secret key corresponding to pp∗. Thus B(op,12) uses the simulator for the proof system Π1 to
compute the proof τ∗1 .
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BOID-KEM,IExt

(op,12),b (pp∗)

1 : HU,CU,RU,TL,MTL,CL = ∅
2 : count = 0

3 : (pks, sks)← SKg(1λ)

4 : re
$←− {0, 1}λ, (pke, ske)← EKg(1λ; re)

5 : (crs1, st1)← S1,1(1
λ), crs2 ← K(crs,2)(1

λ)

6 : gpk = (pks, pke, pp
∗, crs1, crs2)

7 : ik = sks, ok = (ske, re)

8 : b′ ← ACrptU,SndToU,USK,WReg,Td,Chb
(op,12) (gpk, ok, ik)

9 : return b′

Chb(m, i0, i1)

1 : sib ← Sig(skib ,m)

2 : (C∗
IDKEM,K

∗
IDKEM)← ChID-KEM,b(m)

3 : rKEM
$←− {0, 1}λ

4 : (C∗
KEM,K

∗
KEM)← Enc(pke; rKEM)

5 : κ∗ = ⟨ib, pkib , certib , sib⟩ ⊙K∗
KEM ⊙K∗

IDKEM

6 : x∗
1 = (pks, pke, pp

∗,m,C∗
KEM, C

∗
IDKEM, κ

∗)

7 : τ∗
1 = S1,2(crs1, st1, x

∗
1)

8 : CL← CL ∪ {(m,σ∗)}
9 : return σ∗ = (C∗

KEM, C
∗
IDKEM, κ

∗, τ∗
1 )

Td(m)

1 : if m ∈ TL then return tm s.t. (m, tm) ∈MTL

2 : if count ≥ k then return ⊥
3 : count← count+ 1

4 : tm ← OID-KEM,IExt(m)

5 : TL← TL ∪ {m},MTL←MTL ∪ {(m, tm)}
6 : return tm

Figure 1: The k-resilient adversary B(op,12) with A(op,12)

For a queried messagem to Td oracle, B(op,12) computes the message-specific token tm by querying
m to the key extraction oracle IExt provided to a k-resilient attacker B(op,12). Namely the message-
specific token tm is a user’s secret key of ID-KEM when the message is considered as an ID.

By the description of B(op,12) and the explanation above, the game between B(op,12) and A(op,12)

coincides with Game1 when b = 0 (Ch0 is given), and it also coincides with Game2 when b = 1 (Ch1
is given).

Then it follows that

Win1 = Pr[B(op,12) outputs 1|b = 0] and Win2 = Pr[B(op,12) outputs 1|b = 1].

Moreover, we have

Pr[B(op,12) outputs 1|b = 0] = Pr[Expk-resi,0KEM,B(op,12)
(λ) = 1],

Pr[B(op,12) outputs 1|b = 1] = Pr[Expk-resi,1KEM,B(op,12)
(λ) = 1].

Then,

Advk-resiID-KEM,B(op,12)
(λ) = |Pr[Expk-resi,0ID-KEM,B(op,12)

(λ) = 1]− Pr[Expk-resi,1ID-KEM,B(op,12)
(λ) = 1]|

= |Win1−Win2 |,

follows. Since ID-KEM is k-resilient by the assumption on the theorem, the statement holds.

Game3.
Game3 coincides with Game2 except that the proof τ1 in GSig is generated honestly. Since Π1 is

an NIZK, the difference between Game3 and Game2 is bounded by some negligible function neglop,23.

|Win3−Win2 | ≤ neglop,23(λ).
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Game3 is equivalent with Expop-anon,1DGS-MDO,Aop
(λ) by its description. Thus we have

Win3 = Pr[Expop-anon,1DGS-MDO,Aop
(λ) = 1].

Finally, we have

|Pr[Expop-anon,0DGS-MDO,Aop
(λ) = 1]− Pr[Expop-anon,1DGS-MDO,Aop

(λ) = 1]| ≤ neglop(λ),

for a negligible function neglop and the statement holds.

Corollary 1. Assume that ID-KEM is IND-ID-CPA and Π1 is an NIZK. Then DGS-MDO has
the opener anonymity.

Theorem 3. Assume that KEM is IND-CCA, Π1 is a simulation-sound NIZK and Π2 is an NIZK.
Then DGS-MDO has the admitter anonymity.

Proof. We consider the sequence of games Game between the challenger Cad and the adversary Aad.
For each 0 ≤ ℓ ≤ 3, let Winℓ be the probability of the event where Cad outputs 1 in Gameℓ.

Game0.
Game0 coincides with the experiment Expad-anon,0DGS-MDO,Aad

(λ). Thus we have

Win0 = Pr[Expad-anon,0DGS-MDO,Aad
(λ) = 1].

Game1.
Game1 coincides with Game0 except that the proof τ1 generated in GSig and the proof τ2 generated

in Open are computed by the simulator Sim1 = (S1,1, S1,2) for the proof system Π1 and the simulator
Sim2 = (S2,1, S2,2) for the proof system Π2, respectively. Since Π1 and Π2 are NIZKs, the difference
between Game0 and Game1 is bounded by some negligible function neglad,01.

|Win1−Win0 | ≤ neglad,01(λ).

Game2.
Game2 coincides with Game1 except that the challenge oracle Ch0 is replaced with Ch1. For the

difference between Win1 and Win2, we have the following lemma.

Lemma 2.

|Win2−Win1 | ≤ neglad,12(λ),

for some negligible function neglad,12.

Proof. Let A(ad,12) be an adversary which participates in Game1 or Game2. We aim to construct
a PPT algorithm B(ad,12) such that if B(ad,12) breaks the IND-CCA of KEM with A(ad,12), the
difference between Win1 and Win2 can be non-negligible. The description of the algorithm A(ad,12)

is given in Figure 2.
Let pk∗e be an instance given to the IND-CCA adversary B(ad,12). Then B(ad,12) invokes Game1+b

for b ∈ {0, 1} with the adversary A(ad,12). B(ad,12) generates public and secret keys (pks, sks) and
(pp,msk), simulated CRSs crs1 and crs2. Then B(ad,12) sets gpk = (pks, pk

∗
e, pp, crs1, crs2), ik = sks,

ak = msk, and gives (gpk, ak, ik) to A(ad,12) as input.
For oracle queries from A(ad,12), B(ad,12) can answer queries honestly except Chb oracle and

Open oracle. For a challenge oracle query, B(ad,12) calls its challenge oracle ChKEM,b to obtain
(C∗

KEM,K
∗
KEM) and then computes a group signature. Note that B(ad,12) does not know the secret

key corresponding to pk∗e. Thus B(ad,12) uses the simulator for the proof system Π1 to compute the
proof τ∗1 .

For queries to Open oracle, B(ad,12) uses its decryption oracle OKEM,Dec to decapsulate CKEM

since B(ad,12) is now a CCA adversary. Then B(ad,12) computes the proof τ2 by using the simulator
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BOKEM,Dec

(ad,12),b (pk∗e)

1 : HU,CU,RU,CL,CT = ∅

2 : (pks, sks)← SKg(1λ), (pp,msk)← ISetup(1λ)

3 : (crs1, st1)← S1,1(1
λ), (crs2, st2)← S2,1(1

λ)

4 : gpk = (pks, pk
∗
e , pp, crs1, crs2), ik = sks, ak = msk

5 : b′ ← ACrptU,SndToU,USK,WReg,Open,Chb
(ad,12) (gpk, ak, ik)

6 : return b′

Chb(m, i0, i1)

1 : sib ← Sig(skib ,m)

2 : (C∗
KEM,K

∗
KEM)← ChKEM,b(pk

∗
e)

3 : CT← CT ∪ {C∗
KEM}

4 : rIDKEM
$←− {0, 1}λ

5 : (C∗
IDKEM,K

∗
IDKEM)← IEnc(pp,m; rIDKEM)

6 : κ∗ = ⟨ib, pkib , certib , sib⟩ ⊙K∗
KEM ⊙K∗

IDKEM

7 : x∗
1 = (pks, pk

∗
e , pp,m,C∗

KEM, C
∗
IDKEM, κ

∗)

8 : τ∗
1 = S1,2(crs1, st1, x

∗
1)

9 : CL← CL ∪ {(m,σ∗)}
10 : return σ∗ = (C∗

KEM, C
∗
IDKEM, κ

∗, τ∗
1 )

Open(m,σ)

1 : if (m,σ) ∈ CL then return ⊥
2 : x1 = (pks, pk

∗
e , pp,m,CKEM, CIDKEM, κ)

3 : if V1(crs1, x1, τ1) = 0 then return (0, ϵ)

4 : KKEM ← OKEM,Dec(CKEM),CT← CT ∪ {CKEM}
5 : tm ← IExt(msk,m),KIDKEM ← IDec(tm, CIDKEM,m)

6 : if KKEM = ⊥ orKIDKEM = ⊥ then return (0, ϵ)

7 : ⟨i, pki, certi, si⟩ = κ⊙K−1
KEM ⊙K−1

IDKEM

8 : x2 = (pk∗e , CKEM, CIDKEM,m, κ, i, pki, certi, si)

9 : τ2 = S2,2(crs2, st2, x2)

10 : π = (σi, i, pki, certi, si, τ2)

11 : return (i, π)

Figure 2: The IND-CCA adversary B(ad,12) with A(ad,12)

for the proof system Π2. We note the case where A(ad,12) queries a group signature σ′ which is the
same as the challenged signature σ∗ except for the attached proof. Namely A(ad,12) aims to obtain
the user index ib of the challenge group signature by queried it to Open oracle with another proof τ ′1.
According to the definition of games, such σ′ is not considered as the challenged group signature σ∗

since the proof part τ1 of the group signature differs. However, A(ad,12) cannot make such τ ′1 which
passes the verification of V1 because Π1 is assumed to have the simulation-soundness. Thus B(ad,12)
correctly simulates Open oracle.

By the description of B(ad,12) and the explanation above, the game between B(ad,12) and A(ad,12)

coincides with Game1 when b = 0 (Ch0 is given), and it also coincides with Game2 when b = 1 (Ch1
is given).

Then it follows that

Win1 = Pr[B(ad,12) outputs 1|b = 0] and Win2 = Pr[B(ad,12) outputs 1|b = 1].

Moreover, we have

Pr[B(ad,12) outputs 1|b = 0] = Pr[Expind-cca,0KEM,B(ad,12)
(λ) = 1],

Pr[B(ad,12) outputs 1|b = 1] = Pr[Expind-cca,1KEM,B(ad,12)
(λ) = 1].

Then,

Advind-ccaKEM,B(ad,12)
(λ) = |Pr[Expind-cca,0KEM,B(ad,12)

(λ) = 1]− Pr[Expind-cca,1KEM,B(ad,12)
(λ) = 1]|

= |Win1−Win2 |,
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BODS,Sig

trace (pk∗s)

1 : HU,CU,RU = ∅

2 : ((pks, pke, pp, crs1, crs2), sks, (ske, re),msk)← GKg(1λ)

3 : gpk = (pk∗s , pke, pp, crs1, crs2), ok = (ske, re), ak = msk

4 : (m∗, σ∗)← AAddU,CrptU,SndToI,USK,RReg
trace (gpk, ok, ak)

5 : if GVf(gpk,m∗, σ∗) = 0 then return 0

6 : tm∗ ← Td(gpk, ak,m∗)

7 : (i∗, π∗)← Open(gpk, ok, reg,m∗, σ∗, tm∗)

8 : if i ̸= 0 then return 0

9 : K∗
KEM ← Dec(ske, C

∗
KEM),K

∗
IDKEM ← IDec(tm∗ , C∗

IDKEM,m
∗)

10 : ⟨0, pk0, cert0, s0⟩ = κ∗ ⊙K∗
KEM

−1 ⊙K∗
IDKEM

−1

11 : return (⟨0, pk0⟩, cert0)

CrptU(i, upk)

1 : CU← CU ∪ {i}
2 : upki ← upk

3 : return 1

USK(i)

1 : RU← RU ∪ {i}
2 : return (uski, gski)

RReg(i)

1 : return reg[i]

AddU(i)

1 : HU← HU ∪ {i}

2 : (upki, uski)← UKg(1λ, gpk)

3 : gski ← Join(gpk, upki, uski) with SndToI

4 : return upki

SndToI(i, pki, σi)

1 : certi ← ODS,Sig(⟨i, pki⟩)
2 : reg[i]← (pki, σi)

3 : return certi

Figure 3: The EUF-CMA adversary Btrace with the traceablity adversary Atrace

follows. Since KEM is IND-CCA by the assumption on the theorem, the statement holds.

Game3.
Game3 coincides with Game2 except that the proof τ1 in GSig and the proof τ2 generated in Open

are generated honestly. Since Π1 and Π2 are NIZKs, the difference between Game3 and Game2 is
bounded by some negligible function neglad,23.

|Win3−Win2 | ≤ neglad,23(λ).

Game3 is equivalent with Expad-anon,1DGS-MDO,Aad
(λ) by its description. Thus we have

Win3 = Pr[Expad-anon,1DGS-MDO,Aad
(λ) = 1].

Finally, we have

|Pr[Expad-anon,0DGS-MDO,Aad
(λ) = 1]− Pr[Expad-anon,1DGS-MDO,Aad

(λ) = 1]| ≤ neglad(λ),

for a negligible function neglad and the statement holds.

Theorem 4. Assume that DS is EUF-CMA and Π1 and Π2 are NIZKs. Then DGS-MDO has the
traceability.

Proof. Let Atrace be an adversary which breaks the traceability of DGS-MDO with non-negligible
probability. We aim to construct a PPT algorithm Btrace which breaks the EUF-CMA of DS with
non-negligible probability with the help of Atrace. The description of the algorithm Btrace is given in
Figure 3.

Let pk∗s be an instance given to Btrace in the EUF-CMA experiment Expeuf-cma
DS,Btrace

. Then Btrace
invokes the traceability experiment ExptraceDGS-MDO,Atrace

(λ) with the adversary Atrace. Btrace performs
the group-key generation algorithm GKg and obtain ((pks, pke, pp, crs1, crs2), sks, (ske, re),msk). Then
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Btrace sets gpk = (pk∗s, pke, pp, crs1, crs2), ok = (ske, re), ak = msk, and gives (gpk, ok, ak) to Atrace as
input.
Btrace can answer all oracle queries from Atrace honestly except queries to AddU oracle and SndToI

oracle. This is because Btrace embeds pk∗s into gpk and hence Btrace does not know the corresponding
secret key. However, Btrace is required to sign ⟨i, pki⟩ to create the certification certi which is verifiable
with pk∗s, to answer AddU or SndToI oracle queries. To address this problem, Btrace uses the provided
signing oracle ODS,Sig since Btrace is now an EUF-CMA adversary. Btrace queries ⟨i, pki⟩ to the oracle
ODS,Sig and obtains certi ← Sig(sk∗s, ⟨i, pki⟩). Thus Btrace can answer all oracle queries from Atrace

correctly.
Let (m∗, σ∗) = (m∗, (C∗

KEM, C
∗
IDKEM, κ

∗, τ∗1 )) be an output of Atrace. By the assumption, Atrace

wins the experiment with the output (m∗, σ∗) with the non-negligible probability. Then we have
GVf outputs 1, and (i) Open outputs i∗ = 0 or (ii) Open outputs i∗ ̸= 0 and Judge outputs 0.

We first consider the case (i). In this case Open(gpk, ok, reg,m∗, σ∗,Td(gpk, ak,m∗)) outputs
(0, π∗). This means that the group signature σ∗ is not issued on behalf of legitimate users although
(m∗, σ∗) passes the verification algorithm GVf. Now, GVf(gpk,m∗, σ∗) = 1 implies V1(crs1, x

∗
1, τ

∗
1 ) =

1 with x∗
1 = (pk∗s, pke, pp,m

∗, C∗
KEM, C

∗
IDKEM, κ

∗). τ∗1 is a proof generated by the proof system Π1

which proves the honest executions of GSig. Since Π1 is an NIZK by the statement, we can decrypt
C∗

KEM and C∗
IDKEM correctly, and then can retrieve ⟨0, pk0, cert0, s0⟩ from κ∗. In this case (i), pk0 is

not recorded to the registration table reg since i∗ = 0 means an illicit user. Namely AddU oracle or
SndToI oracle does not invoked for this user, and hence ⟨0, pk0⟩ is not queried to the CMA oracle.
Then (⟨0, pk0⟩, cert0) can be a valid forgery of DS and Btrace wins the EUF-CMA experiment by the
forgery (⟨0, pk0⟩, cert0) with the non-negligible probability.

We next consider the case (ii). In this case, Open(gpk, ok, reg,m∗, σ∗,Td(gpk, ak,m∗)) outputs
(i∗, π∗) for some i∗ ̸= 0 and Judge(gpk, i, upki∗ ,m

∗, σ∗, π∗) = 0. Since GVf(gpk,m∗, σ∗) = 1 as
in the case (i), it is ensured that the signing procedure is honestly done by the soundness of Π1.
Then C∗

KEM and C∗
IDKEM can be decrypted correctly and ⟨i∗, pki∗ , certi∗ , si∗⟩ is recovered from κ∗.

i∗ ̸= 0 means that the user i∗ is a legitimate user, hence Btrace can obtain reg[i∗] = (pki∗ , σi∗).
Therefore, if Btrace honestly generates π∗ = (σi∗ , i

∗, pki∗ , certi∗ , si∗ , τ
∗
2 ) with τ∗2 = P2(crs2, x

∗
2, w

∗
2) for

x∗
2 = (pke, C

∗
KEM, C

∗
IDKEM,m

∗, κ∗, i∗, pki∗ , certi∗ , si∗) and w∗
2 = (ske, re, tm∗), V2(crs2, x

∗
2, τ

∗
2 ) always

outputs 1 by the completeness of Π2 and then Judge(gpk, i, upki∗ ,m
∗, σ∗, π∗) = 1 always holds. This

means that the case (ii) never occurs.
The case (i) is the only case when Atrace breaks the traceability of DGS-MDO by the discussion

above. Thus if Atrace breaks the traceability of DGS-MDO with non-negligible probability, Btrace
breaks the EUF-CMA of DS with non-negligible probability.

Theorem 5. Assume that DS is EUF-CMA and Π1 and Π2 are NIZKs. Then DGS-MDO has the
non-frameability.

Proof. Let Anf be an adversary which breaks the non-frameability of DGS-MDO with non-negligible
probability. We aim to construct a PPT algorithm Bnf which breaks the EUF-CMA of DS with non-
negligible probability with the help of Anf. The description of the algorithm Bnf is given in Figure
4.

Let pk∗s be an instance given to Bnf in the EUF-CMA experiment Expeuf-cma
DS,Bnf

. Then Bnf invokes
the non-frameability experiment ExpnfDGS-MDO,Anf

(λ) with the adversary Anf. We suppose that the
adversary Anf creates n(λ) users for a polynomial n. The fundamental strategy of Bnf is as follows.
Bnf guesses the user u with which Anf outputs a forgery. When Anf register the user u via the
SndToU oracle, Bnf embeds the instance public key pk∗s into registration information reg[u]. For
group signature queries with respect to the user u, Bnf answers queries by using the provided signing
oracle ODS,Sig since Bnf is now an EUF-CMA adversary. If Anf wins the non-frameability experiment
by an output with respect to the user u, Bnf can extract a valid signature with respect to pk∗s and
it can be regarded as a valid forgery of DS.

However, we must note that Anf may not use the registration information which is recorded via
SndToU oracle. Namely Anf can change the registration table reg via the WReg oracle. In this case,
the Bnf’s strategy above does not work and Bnf should take another approach. If Bnf guesses that
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Anf will change reg[u], Bnf signs the public key when it is recorded to reg[u] under the instance
public key pk∗s by using the oracle ODS,Sig. Since the output of Anf must pass Judge, Bnf can extract
a valid signature with respect to pk∗s and it can be regarded as a valid forgery of DS. Of course Bnf
does not know whether or not Anf uses WReg. Thus Bnf first guess the behavior of Anf and Bnf wins
the EUF-CMA experiment if the guess is right.

Let (m∗, σ∗) = (m∗, (C∗
KEM, C

∗
IDKEM, κ

∗, τ∗1 )) be an output of Anf. By the assumption, Anf wins
the experiment with the output (m∗, σ∗) with the non-negligible probability. Then we have GVf
outputs 1. According to the guess on the behavior of Anf, Bnf extracts different parts as his forgery
from Anf’s outputs. The details are as follows.

We first consider the case where Anf uses the public key stored in reg without any change when it
generates the forgery. Such a case corresponds to the case b = 0 in Figure 4. In this case, the public
key recorded in the registration table reg[u] for the user u is pk∗s. If Anf wins the non-frameability
experiment, π∗ output by Anf passes Judge. Then the signature σi∗ included in π∗ can be verified
for the output message m∗ under the public key pk∗s. Now, this (i∗,m∗) is not queried to GSig by the
winning condition of the non-frameability. This means that m∗ is not queried to the signing oracle
of the EUF-CMA experiment and (m∗, σi∗) is a valid forgery for DS. Then Bnf wins the EUF-CMA
experiment with the forgery (m∗, σi∗) if Anf wins the non-frameability experiment.

We next consider the another case, namely Anf uses a different public key pk′i∗ in group signing
than pki∗ which is first recorded to reg via SndToU. This case corresponds to the case b = 1 in
Figure 4. In this case, Bnf cannot embed the public key pk∗s into the oracle GSig since Anf change
the registration table via calling WReg. Hence Bnf aims to embed pk∗s elsewhere. Note that Anf

is assumed to win the non-frameability experiment, especially the output of Anf must pass Judge.
This means that pki∗ and σi∗ included in π∗ must be verified by upki∗ by the description of Judge.
Thus Bnf sets pk∗s as upku on t-th invocation of SndToU oracle. By the winning condition of Anf on
the non-frameability experiment, (pki∗ , σi∗) must be accepted by Vf with respect to the public key
upki∗ = pk∗s. Moreover, pki∗ is not queried the signing oracle ODS,Sig since we now suppose that Anf

change the registration information reg[u] via WReg. Hence (pki∗ , σi∗) is a valid forgery for DS and
Bnf wins the EUF-CMA experiment.

From these discussion above, ifAnf breaks the non-frameability ofDGS-MDO with non-negligible
probability, Bnf breaks the EUF-CMA of DS with non-negligible probability.

Remark. Our construction can be converted to the DGS-MDO scheme which is identical to the GS-
MDO scheme presented in [11] by replacing the KEM part in our scheme with a tag-based KEM.
Moreover, the security proofs for our scheme can also be applied to the converted scheme as well.

4.4 Instantiation

We present concrete cryptographic primitives to instantiate our generic construction.
First, we employ the Groth-Sahai (GS) proof [13] which is based on the bilinear group as NIZK

proof. Its security, including the simulation soundness, is proven in the standard model and it is
known as one of the most efficient NIZK proofs.

Since we use the GS proof, we should choose other primitives as structure-preserving. This is
because the verification formulas of the GS proof are pairing equations. From this viewpoint, we
use the structure-preserving signature by Abe et al. [1] which is EUF-CMA in the standard model
under the SFP assumption.

We require the partially structure-preserving property [15] for KEM and ID-KEM, which means
that ciphertexts are in the source group G of the bilinear map e : G × G → GT , not in the target
group GT to fit these primitives into the GS proof. Thus we choose the DLIN variant [20] of the
Cramer-Shoup (CS) encryption [9] as KEM. It is partially structure-preserving and IND-CCA KEM
in the standard model under the DLIN assumption.

As ID-KEM, we consider the DLIN variant [11] of the Heng-Kurosawa (HK) ID-KEM [14] which
is partially structure-preserving and k-resilient in the standard model under the DLIN assumption.

By using these cryptographic schemes above, we can obtain a DGS-MDO scheme from our
generic construction, which is secure in the standard model under the DLIN assumption and the
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SFP assumption. However, it has only the opener anonymity with k-bounded tokens due to the
k-resilience of the ID-KEM. It is an open question to find an ID-KEM which is partially structure-
preserving and IND-ID-CPA in the standard model, and then to find a DGS-MDO scheme whose
opener anonymity is satisfied with unbounded tokens.

5 Concluding Remarks

In this paper, We have introduced the definition of the dynamic group signature with message
dependent opening (DGS-MDO) with the associated security requirements. We have also proposed
a generic construction of DGS-MDO. from standard cryptographic primitives. Our construction can
achieve the standard model security, constant signature size and non-interactive signing process.
However, like the the scheme of [19], our scheme has one disadvantage, namely the bounded message
opening. The DGS-MDO scheme that supports unbounded message opening is an interesting open
question.
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BODS,Sig

nf (pk∗s)

1 : HU,CU,RU,QLgs = ∅

2 : b
$←− {0, 1}, t $←− {1, . . . , n(λ)}, count = 0, u = ⊥

3 : ((pks, pke, pp, crs1, crs2), sks, (ske, re),msk)← GKg(1λ)

4 : gpk = (pks, pke, pp, crs1, crs2)

5 : ik = sks, ok = (ske, re), ak = msk

6 : (m∗, σ∗, i∗, π∗)← ACrptU,SndToU,USK,WReg,GSig
nf (gpk, ok, ak, ik)

7 : if GVf(gpk,m∗, σ∗) = 0 then return 0

8 : if Judge(gpk, i∗, upki∗ ,m
∗, σ∗, π∗) = 0 then return 0

9 : if (i∗,m∗) ∈ QLgs then return 0

10 : if i∗ ̸= u then return 0

11 : parse π∗ = (σi∗ , i
∗, pki∗ , certi∗ , si∗ , τ

∗
2 )

12 : if b = 0

13 : return (m∗, si∗)

14 : else b = 1

15 : return (pki∗ , σi∗)

GSig(i,m)

1 : QLgs ← QLgs ∪ {(i,m)}
2 : if (b = 0) & (i = u) then

3 : si ← ODS,Sig(m)

4 : else

5 : si ← Sig(ski,m)

6 : rKEM
$←− {0, 1}λ, rIDKEM

$←− {0, 1}λ

7 : (CKEM,KKEM)← Enc(pke; rKEM)

8 : (CIDKEM,KIDKEM)← IEnc(pp,m; rIDKEM)

9 : κ = ⟨i, pki, certi, si⟩ ⊙KKEM ⊙KIDKEM

10 : x1 = (pks, pke, pp,m,CKEM, CIDKEM, κ)

11 : w1 = (i, pki, certi, si, rKEM, rIDKEM)

12 : τ1 ← P1(crs1, x1, w1)

13 : return σ = (CKEM, CIDKEM, κ, τ1)

CrptU(i, upk)

1 : CU← CU ∪ {i}
2 : upki ← upk

3 : return 1

USK(i)

1 : if i = u then return 0

2 : RU← RU ∪ {i}
3 : return (uski, gski)

WReg(i, ρ)

1 : reg[i]← ρ

2 : return 1

SndToU(i) (b = 0)

1 : HU← HU ∪ {i},
2 : count← count+ 1

3 : (upki, uski)← UKg(1λ, gpk)

4 : if count = t then

5 : u← i, pki ← pk∗s , ski ← ⊥
6 : else

7 : (pki, ski)← SKg(1λ)

8 : σi ← Sig(uski, pki)

9 : return (pki, σi)

10 : gski ← (i, pki, ski, certi)

SndToU(i) (b = 1)

1 : HU← HU ∪ {i},
2 : count← count+ 1

3 : (pki, ski)← SKg(1λ)

4 : if count = t then

5 : u← i, upki ← pk∗s , uski ← ⊥
6 : σi ← ODS,Sig(pki)

7 : else

8 : (upki, uski)← UKg(1λ, gpk)

9 : σi ← Sig(uski, pki)

10 : return (pki, σi)

11 : gski ← (i, pki, ski, certi)

Figure 4: The EUF-CMA adversary Bnf with the non-frameability adversary Anf
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