
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 13, Number 2, pages 131–148, July 2023

An asynchronous P system with the Bron-Kerbosch algorithm for solving the maximum clique

Takuya Noguchi Akihiro Fujiwara

Graduate School of Computer Science and Systems Engineering
Kyushu Institute of Technology
Iizuka, Fukuoka, 820-8502, Japan

Received: February 9, 2023
Revised: April 14, 2023
Accepted: May 25, 2023

Communicated by Sayaka Kamei and Fukuhito Ooshita

Abstract

Membrane computing, which is also known as a P system, is a computational model inspired
by the activity of living cells. Several P systems, which work in a polynomial number of steps,
have been proposed for solving computationally hard problems. However, most of the proposed
algorithms use an exponential number of membranes, and reduction of the number of membranes
must be considered in order to make a P system a more realistic model.

In the present paper, we propose asynchronous P systems based on the Bron-Kerbosch
algorithm for solving the maximum clique problem with fewer membranes. The proposed P
systems solve the maximum clique with n vertices in O(n2) parallel steps or O(n22n) sequential
steps.

We evaluate the number of membranes used in the proposed P systems by comparing with
the numbers of membranes used in known P systems. Our experimental results demonstrate
the validity and efficiency of the proposed P systems.

Keywords: membrane computing, asynchronous P system, maximum clique, Bron-Kerbosch al-
gorithm

1 Introduction

Membrane computing, which was introduced in [7] in terms of P systems, is a computational model
inspired by the activity of living cells. A P system is with respect to membranes and objects which
represent computing cells and data storage, respectively. In a P system, each object evolves according
to certain evolution rules associated with the membrane.

An exponential number of membranes can be created in a polynomial number of steps using a
division rule on a P system, allowing a computationally hard problem to be solved in a polynomial
number of steps. Using this feature, a number of P systems have been proposed for solving com-
putationally hard problems [4, 6, 8, 12]. This exponential number of membranes corresponds to the
number of living cells, which must be reduced when implementing a P system because living cells
cannot be created in exponential numbers.

Recently, various P systems [2, 5, 10, 11] have been proposed for reducing the number of mem-
branes. For example, a P system for the maximum independent set [11] using branch and bound,
which is a well-known optimization technique, has been proposed. In this P system, only adjacent

131

An asynchronous P system with the Bron-Kerbosch algorithm for solving the maximum clique

vertices are checked for partial assignment. The experimental results with this P system show that
the number of membranes used is reduced by at most 97 percent relative to the previous P system.

In the present paper, we propose two asynchronous P systems for solving the maximum clique
problem with the Bron-Kerbosch algorithm [1]. Bron-Kerbosch algorithm is a search algorithm for
finding all maximal cliques, and consists of recursive backtracking using three disjoint sets of vertices.
We show that the theoretical complexity of the proposed P systems is O(n22n) sequential steps or
O(n2) parallel steps using O(n3) kinds of objects.

We evaluate the number of membranes in the proposed P systems and compare it to the numbers
of membranes in known P systems. The experimental results show that the number of membranes
is smaller in the proposed systems.

The remainder of the paper is organized as follows. In Section 2, we describe the computational
model for the membrane computing and an outline of the Bron-Kerbosch algorithm. In Section
3, we propose P systems with the Bron-Kerbosch algorithm for solving maximum clique and show
examples of executions of the P systems. Then, we consider a complexity of the proposed P systems.
In Section 4, we show experimental results for the previous P systems and proposed P systems.
Finally, Section 5 concludes the paper.

2 Preliminaries

2.1 Computational model for membrane computing

A P system consists mainly of membranes and objects. A membrane is a computing cell in the P
system and may contain objects and other membranes. Each membrane is initially labeled with a
distinct integer. An object represents a memory cell that stores data in the P system. According to
the evolution rules for the corresponding membrane, objects may evolve into other objects or pass
through membranes. Objects may also divide or dissolve the membranes in which the objects are
stored. We assume that each object is a finite string over a given set of alphabetic characters.

As an example of membranes and objects, the following expression defines a membrane structure
comprising two membranes and three objects.

[[α]2 [β γ]3]1

In this example, the membrane labeled 1 contains two membranes, labeled 2 and 3, which contain
sets of objects {α} and {β, γ}, respectively.

The computation of P systems is governed by a number of evolution rules. Each evolution rule is
a rule for updating the membranes and objects. According to the applicable evolution rules, objects
and membranes are transformed in parallel in every step of the computation. The system stops the
computation if there is no applicable evolution rule for the objects.

Various types of evolution rules are assumed in membrane computing. In the present paper, we
assume the following five rules as in [3]:

(1) Object evolution rule: [α]h → [β]h

Object α is transformed into object β.

(2) Send-in communication rule: α []h → [β]h

Object α is moved into inner membrane h and is transformed into object β.

(3) Send-out communication rule: [α]h → []h β

Object α is sent out from membrane h and is transformed into object β.

(4) Dissolution rule: [α]h → β

The membrane that contains object α is dissolved, and object α is transformed into object β.
(Note that the outermost membrane cannot be dissolved.)

132

International Journal of Networking and Computing

(5) Division rule: [α]h → [β]h[γ]h

The membrane that contains object α is divided into two membranes with the same label, and
object α is transformed into other objects, β and γ, each in one of the created membranes.

The P system consists of the following six components:

O: the set of objects used in the system,

µ: the structure of the membrane,

ωi: the set of objects initially contained in the membrane labeled i,

Ri: the set of evolution rules for the membrane labeled i,

iin: the label of the input membrane, and

iout: the label of the output membrane

Using the above components, a P system Π with m membranes is defined as follows:

Π = (O,µ, ω1, ω2, · · · , ωm, R1, R2, · · · , Rm, iin, iout)

Under the assumption that each of the evolution rules can be applied in a single step in the
computational model, the complexity of the P system is defined as the number of steps executed.

In the present paper, we consider asynchronous parallelism [8] in the P system. Under the
assumption of asynchronous parallelism, any number of applicable evolution rules are applied in
parallel. In other words, all objects, for which there are applicable evolution rules, can be transformed
in parallel, or only one of the applicable evolution rules is applied in each step of the computation.
We refer to the numbers of steps in the former and latter cases as the numbers of parallel and
sequential steps, respectively. The number of parallel steps is the complexity of the P system in the
best case, and the number of sequential steps is the complexity in the worst case.

2.2 Bron-Kerbosch algorithm for maximum clique

I assume undirected graph G = (V,E), where V = {1, 2, ..., n} is the vertex set of G, and E is the
edge set of G. A clique C is a set of vertices with the property that every pair of vertices in the set
are adjacent such that G(C) is complete. A maximal clique is a clique that cannot be extended by
including one more adjacent vertex. A maximum clique is a maximal clique that has the maximum
cardinality. The clique number of G, denoted by ω(G), is the size of the maximum clique.

The maximum clique problem, which is a well-known computationally hard problem, is the
problem of finding the ω(G) in a given graph:

ω(G) = max{|S| : S is a clique in G}

Note that the maximum clique and the maximum independent set are complementary. An
independent set is a subset of V , whose elements are pairwise nonadjacent. In other words, the
maximum clique of a graph G is an independent set of a complement graph of G, and vice versa.

In this paper, we propose P systems based on the Bron-Kerbosch algorithm [1] for the maximum
clique problem. The Bron-Kerbosch algorithm is a recursive backtracking algorithm and is easily
implemented. Using the Bron-Kerbosch algorithm, all maximal cliques are found, from which the
maximum clique can be determined.

Two versions of the Bron-Kerbosch algorithm are a basic version and a pivoting version.

133

An asynchronous P system with the Bron-Kerbosch algorithm for solving the maximum clique

2.2.1 Basic

We first explain a basic Bron-Kerbosch algorithm, which is shown as Algorithm 1. The basic Bron-
Kerbosch algorithm maintains three disjoint sets of vertices as input parameters P , X, and R, which
are given as follows.

� P is the set of vertices that have not been considered yet.

� X is the set of vertices that have already been considered as options.

� R is the set of vertices in a clique.

In the algorithm, R and X are initially set as empty, and P is defined as the set of all vertices in
an input graph. For each recursive call, the algorithm checks whether the given clique R is maximal.
A recursive procedure is called for each vertex v in P . Recursive function are executed using three
arguments, R ∪ {v}, P ∩ N(v), and X ∩ N(v), where N(v) is a set of neighbors of v. Then, v is
moved from P to X to exclude v from consideration of the clique. If both P and X are empty, there
is no vertex that can be added to R, which means that R is the maximal clique.

2.2.2 Pivoting

We introduce pivoting as an optimization technique in the Bron-Kerbosch algorithm shown in Algo-
rithm. 2. In this algorithm, a pivot vertex is chosen to decrease the number of recursive calls. The
idea of pivoting is based on the logic that any maximal clique must include either vertex u, which
is chosen as the pivot, or one of the non-neighbors of u. If neither u nor any of the non-neighbors of
u are included in R, then the clique cannot be maximal because R consists of only neighbors of u,
and u can be added to R. Therefore, checks for neighbors of an arbitrary pivot u can be omitted,
and the number of recursive calls is decreased by the number of omitted vertices.

3 Asynchronous P system with Bron-Kerbosch algorithm

3.1 Input and output for proposed P system

We first show an encoding for the input and output for the P system. We assume that the input
for the maximum clique problem is an undirected graph G = (V,E) with n vertices. An output of
the problem is the maximum subset of vertices such that every pair of the vertices are adjacent. For
example, we assume that the graph in Figure 1 is the input. Then, both subsets V ′ = {v1, v2, v3}
and V ′′ = {v3, v4} are maximal cliques, and V ′ is the maximum clique.

The above input is given by the following set of objects OE in the P system:

OE = {⟨ei,j ,W ⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}

In the above set of input objects, an edge (vi, vj) is represented by the objects ⟨ei,j ,W ⟩. If edge
(vi, vj) is in the graph, object W is set to T , otherwise set to F . For example, the following set of
objects is given as an input of the P system, OE , for the graph in Figure 1:

OE ={⟨e1,1, F ⟩, ⟨e1,2, T ⟩, ⟨e1,3, T ⟩, ⟨e1,4, F ⟩,
⟨e2,1, T ⟩, ⟨e2,2, F ⟩, ⟨e2,3, T ⟩, ⟨e2,4, F ⟩,
⟨e3,1, T ⟩, ⟨e3,2, T ⟩, ⟨e3,3, F ⟩, ⟨e3,4, T ⟩,
⟨e4,1, F ⟩, ⟨e4,2, F ⟩, ⟨e4,3, T ⟩, ⟨e4,4, F ⟩}

We assume that a computation on the P system starts if the above OE is given as input from
the outside region into the outermost membrane. The output of the P system is the following set of
objects, which represents a subset of vertices:

OC = {⟨Ri,W ⟩ | 1 ≤ i ≤ n,W ∈ {T, F}}

134

International Journal of Networking and Computing

Algorithm 1: A basic Bron-Kerbosch algorithm

R={}, P=V, X={}

BK(R, P, X){

if P and X are both empty:

return R

for each vertex v in P:

BK(R∪{v}, P∩N(v), X∩N(v))
P = P-{v}

X = X∪{v}
}

Algorithm 2: A pivoting Bron-Kerbosch algorithm

R={}, P=V, X={}

BK -Pivot(R, P, X){

if P and X are both empty:

return R

choose a pivot vertex u in P∪X
for each vertex v in P-N(u):

BK -Pivot(R∪{v}, P∩N(v), X∩N(v))
P = P-{v}

X = X∪{v}
}

Object Ri in ⟨Ri,W ⟩ indicates the i-th vertex, and the object W is set to T when the i-th vertex
is included in the maximum clique, otherwise set to F .

For example, the following is an output of the P system, which represents the maximum clique
for the graph in Figure 1:

OC = {⟨R1, T ⟩, ⟨R2, T ⟩, ⟨R3, T ⟩, ⟨R4, F ⟩}

3.2 Outline of the P system with basic Bron-Kerbosch algorithm

We first explain an outline of a P system based on a basic Bron-Kerbosch algorithm. The proposed
P system consists of two membranes [[]2]1, i.e., an inner membrane labeled 2 contained in an outer
membrane labeled 1. The P system consists of the following 6 steps:

Step 1: Move a set of input objects into an inner membrane and create objects denoting R, P
and X.

Step 2: In the inner membrane, choose a candidate vertex in P . The inner membrane is divided
into two membranes in case that the vertex is included in the clique or not included.

Step 3: In the inner membrane that a new vertex is added to the clique, an objects that represent
P , R and X are updated. In the other membrane, objects that representing P and X are
updated.

Step 4: In each inner membrane, check whether the vertex are remained in P . In case that no
vertex is in P , determine whether the clique is maximal or not by checking objects denoting
X. In the other case, the above procedure is repeated from Step 2.

135

An asynchronous P system with the Bron-Kerbosch algorithm for solving the maximum clique

Figure 1: Example of an input undirected graph

Step 5: In each inner membrane that contains the maximal clique, send out objects that denote
the clique size to the outer membrane. Dissolve the other inner membranes, which contains
no maximal clique.

Step 6: Send out objects that denote the maximum clique from the outer membrane after results
are sent out from all inner membranes.

3.3 Details of P system with the basic Bron-Kerbosh algorithm

We now explain the details of each step of the P system with the basic Bron-Kerbosch algorithm.
In the following description, Ri,j,k denotes a set of evolution rules applied to membrane i in Step j.
k is a number to distinguish each operation. OE , which denotes an input formula, is given to the
outer membrane.

Step 1: A set of input objects is moved into an inner membrane and generate objects denoting R,
P and X. This step is executed using the following evolution rules.

(Evolution rules for outer membrane)

R1,1 = {⟨e1,1, F ⟩[]2 → [⟨M1,2⟩⟨e1,1, F ⟩]2}
∪{⟨ei,j ,W ⟩⟨Mi,j⟩[]2 → [⟨ei,j ,W ⟩⟨Mi,j+1⟩]2 | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}

(Evolution rules for inner membranes)

R2,1,1 = {[⟨M1,j⟩]2 → []2⟨M1,j⟩⟨CR, j, 0⟩ | 2 ≤ j ≤ n}
∪{[⟨Mi,j⟩]2 → []2⟨Mi,j⟩ | 2 ≤ i ≤ n, 1 ≤ j ≤ n}
∪{⟨Mi,n+1⟩ → ⟨Mi+1,1⟩ | 1 ≤ i ≤ n}
∪{⟨Mn+1,1⟩ → ⟨MakR⟩}

R2,1,2 = {⟨MakR⟩ → ⟨R1, F ⟩⟨R2⟩}
∪{⟨Ri⟩ → ⟨Ri, F ⟩⟨Ri+1⟩ | 2 ≤ i ≤ n}
∪{⟨Rn+1⟩ → ⟨MakP ⟩}

R2,1,3 = {⟨MakP ⟩ → ⟨P1, T ⟩⟨P2⟩}
∪{⟨Pi⟩ → ⟨Pi, T ⟩⟨Pi+1⟩ | 2 ≤ i ≤ n}
∪{⟨Pn+1⟩ → ⟨MakX⟩}

R2,1,4 = {⟨MakX⟩ → ⟨X1, F ⟩⟨X2⟩}
∪{⟨Xi⟩ → ⟨Xi, F ⟩⟨Xi+1⟩ | 2 ≤ i ≤ n}
∪{⟨Xn+1⟩ → ⟨MakC⟩}

R2,1,5 = {⟨MakC⟩ → ⟨CP , n⟩⟨CX , 0⟩⟨k, n⟩⟨ChoP ⟩}

The computation using the above evolution rules is executed as follows. All input objects in
the outer membrane are moved into the inner membrane using object ⟨Mi,j⟩ according to evolution
rules in R1,1 and R2,1,1. After objects representing edges of the first vertex are moved, the objects
⟨CR, j, 0⟩, which constitute a counter giving the size and number of maximal cliques in R, are

136

International Journal of Networking and Computing

generated. For example, object ⟨CR, 4, 2⟩ indicates 2 maximal cliques of size 4 are in the membrane.
The objects are used in Step 6.

After all input objects are moved, objects ⟨Ri, F ⟩, ⟨Pi, T ⟩, and ⟨Xi, F ⟩ are created according to
evolution rules in R2,1,2, R2,1,3 and R2,1,4. These objects represent R, P , and X in the P system.
For example, object ⟨R2, T ⟩ represents that the second vertex is in R.

At the end of Step 1, objects ⟨CP , n⟩ and ⟨CX , 0⟩ are created for counting the numbers of vertices
in P and X according to evolution rules in R2,1,5. Object ⟨CP , n⟩ indicates that n vertices are in P .

Step 2: A candidate vertex in P is chosen in the inner membrane for adding to the clique. Then,
the inner membrane is divided into two membranes. The candidate vertex is included in the clique
in one membrane, and the vertex is not included in the clique in the other membrane.

This step is executed using the following evolution rules.

(Evolution rules for inner membranes)

R2,2,1 = {⟨ChoP ⟩⟨CP , i⟩⟨P1, T ⟩ → ⟨Set, 1⟩⟨CP , i⟩⟨P1, T ⟩⟨Div⟩ | 2 ≤ i ≤ n}
∪{⟨ChoP ⟩⟨CP , 1⟩⟨P1, T ⟩ → ⟨Set, 1⟩⟨CP , 1⟩⟨P1, T ⟩⟨NoDiv⟩}
∪{⟨ChoP ⟩⟨P1, F ⟩ → ⟨P1, F ⟩⟨ChoP, 2⟩}
∪{⟨ChoP, j⟩⟨CP , i⟩⟨Pj , T ⟩ → ⟨Set, j⟩⟨CP , i⟩⟨Pj , T ⟩⟨Div⟩ | 2 ≤ i ≤ n, 2 ≤ j ≤ n}
∪{⟨ChoP, j⟩⟨CP , 1⟩⟨Pj , T ⟩ → ⟨Set, j⟩⟨CP , 1⟩⟨Pj , T ⟩⟨NoDiv⟩ | 2 ≤ j ≤ n}
∪{⟨ChoP, j⟩⟨Pj , F ⟩ → ⟨Pj , F ⟩⟨ChoP, j + 1⟩ | 2 ≤ j ≤ n}

R2,2,2 = {[⟨Div⟩⟨k, i⟩]2 → [⟨k, i− 1⟩⟨SV ⟩]2[⟨k, i− 1⟩⟨NoSV ⟩]2 | 1 ≤ i ≤ n}
∪{⟨NoDiv⟩ → ⟨SV ⟩}

The computation using the above evolution rules is executed as follows. First, a vertex in P is
chosen using the objects ⟨ChoP, j⟩ and ⟨Pj , T ⟩, and then a trigger object ⟨Div⟩ and a object ⟨Set, j⟩
is generated according to evolution rules in R2,2,1. The object ⟨Set, j⟩ means j-th vertex is selected
from the set P . In the exceptional case that the count of P (j of ⟨CP , j⟩) is 1, that is, only one
vertex can be selected, division is not executed for the membrane, and the vertex must be contained
in a maximal clique.

The membrane is divided into two membranes according to evolution rules in R2,2,2. In the
membrane containing the selected vertex, a trigger object ⟨SV ⟩ is generated. In the other membrane,
the trigger object ⟨NoSV ⟩ is generated. The object ⟨k, i⟩ represents the number of unchecked
vertices, e.g., three vertices have not been checked if the object is ⟨k, 3⟩.

Step 3: The objects that represent P , R, and X are updated in the membrane such that a new
vertex is added to the clique. The new vertex v is added to R. In addition, P and X are updated
such that P ∩ N(v) and X ∩ N(v). In the other membrane, the objects that represent the sets P
and X are updated. Vertex v is removed from P and added to set X.

This step is executed using the following evolution rules.

(Evolution rules for inner membranes)

R2,3,1 = {⟨SV ⟩ → ⟨AltR⟩}
∪{⟨AltR⟩⟨Set, i⟩⟨Ri, F ⟩ → ⟨Set, i⟩⟨Ri, T ⟩⟨AltP ⟩ | 1 ≤ i ≤ n}
∪{⟨AltP ⟩⟨Set, i⟩⟨ei,1, T ⟩⟨P1, T ⟩⟨CP ,m⟩ → ⟨Set, i⟩⟨ei,1, T ⟩⟨P1, T ⟩⟨CP , 1⟩⟨AltP, 2⟩

| 1 ≤ i ≤ n, 1 ≤ m ≤ n}
∪{⟨AltP ⟩⟨Set, i⟩⟨ei,1,W ⟩⟨P1, X⟩⟨CP ,m⟩ → ⟨Set, i⟩⟨ei,1,W ⟩⟨P1, F ⟩⟨CP , 0⟩⟨AltP, 2⟩

| 1 ≤ i ≤ n, 1 ≤ m ≤ n,W,X ∈ {T, F},W ∧X ̸= T}
∪{⟨AltP, j⟩⟨Set, i⟩⟨ei,j , T ⟩⟨Pj , T ⟩⟨CP ,m⟩ → ⟨Set, i⟩⟨ei,j , T ⟩⟨Pj , T ⟩⟨CP ,m+ 1⟩⟨AltP, j + 1⟩

| 1 ≤ i ≤ n, 2 ≤ j ≤ n, 1 ≤ m ≤ n}
∪{⟨AltP, j⟩⟨Set, i⟩⟨ei,j ,W ⟩⟨Pj , X⟩ → ⟨Set, i⟩⟨ei,j ,W ⟩⟨Pj , F ⟩⟨AltP, j + 1⟩

| 1 ≤ i ≤ n, 2 ≤ j ≤ n, 1 ≤ m ≤ n,W,X ∈ {T, F},W ∧X ̸= T}
∪{⟨AltP, n+ 1⟩ → ⟨AltX⟩}

137

An asynchronous P system with the Bron-Kerbosch algorithm for solving the maximum clique

R2,3,2 = {⟨AltX⟩⟨Set, i⟩⟨ei,1, T ⟩⟨X1, T ⟩⟨CX ,m⟩ → ⟨Set, i⟩⟨ei,1, T ⟩⟨X1, T ⟩⟨CX , 1⟩⟨AltX, 2⟩
| 1 ≤ i ≤ n, 1 ≤ m ≤ n}

∪{⟨AltX⟩⟨Set, i⟩⟨ei,1,W ⟩⟨X1, X⟩⟨CX ,m⟩ → ⟨Set, i⟩⟨ei,1,W ⟩⟨X1, F ⟩⟨CX , 0⟩⟨AltX, 2⟩
| 1 ≤ i ≤ n, 1 ≤ m ≤ n,W,X ∈ {T, F},W ∧X ̸= T}

∪{⟨AltX, j⟩⟨Set, i⟩⟨ei,j , T ⟩⟨Xj , T ⟩⟨CX ,m⟩ → ⟨Set, i⟩⟨ei,j , T ⟩⟨Xj , T ⟩⟨CX ,m+ 1⟩⟨AltX, j + 1⟩
| 1 ≤ i ≤ n, 2 ≤ j ≤ n, 1 ≤ m ≤ n}

∪{⟨AltX, j⟩⟨Set, i⟩⟨ei,j ,W ⟩⟨Xj , X⟩ → ⟨Set, i⟩⟨ei,j ,W ⟩⟨Xj , F ⟩⟨AltX, j + 1⟩
| 1 ≤ i ≤ n, 2 ≤ j ≤ n, 1 ≤ m ≤ n,W,X ∈ {T, F},W ∧X ̸= T}

∪{⟨AltX, n+ 1⟩⟨Set, i⟩ → ⟨CheCPX⟩ | 1 ≤ i ≤ n}
R2,3,3 = {⟨NoSV ⟩⟨Set, i⟩⟨Pi, T ⟩⟨Xi, F ⟩ → ⟨Pi, F ⟩⟨Xi, T ⟩⟨– CP ⟩ | 1 ≤ i ≤ n}

∪{⟨– CP ⟩⟨CP , i⟩ → ⟨CP , i− 1⟩⟨CheCP ⟩ | 1 ≤ i ≤ n}

The computation using the above evolution rules is executed as follows. In the membrane that
a new vertex is added, an object ⟨SV ⟩ must be included. First, an object ⟨AltR⟩ is generated
from object ⟨SV ⟩. Object ⟨Ri, F ⟩ is turned into ⟨Ri, T ⟩ using objects ⟨Set, i⟩ and ⟨AltR⟩, which
means that the i-th vertex is added to set R. Second, the set P is updated using loop counter
objects ⟨AltP ⟩ and ⟨AltP, j⟩. Object ⟨Pj , T ⟩ remains TRUE only when both ⟨Pj , T ⟩ and ⟨ei,j , T ⟩
are TRUE, otherwise FALSE, according to evolution rules in R2,3,1. The counter of P are initialized
when the loop counter is 1. The Set X is updated similarly according to evolution rules in R2,3,2.

In the other membrane, i.e., the vertex selected from the set P is not included, object ⟨NoSV ⟩
must be included. The i-th vertex is removed from P and added to X using objects ⟨NoSV ⟩ and
⟨Set, i⟩ according to evolution rules in R2,3,3. Then, the count of P is decremented. (The counter
of X does not need to be updated.)

Step 4: Existence of the vertex in P is checked in each inner membrane. If P contains no vertices,
then confirming that the clique is maximal by checking the objects representing X. Otherwise, the
procedure is repeated from Step 2.

This step is executed using the following evolution rules.

(Evolution rules for inner membranes)

R2,4,1 = {⟨CheCP ⟩⟨CP , 0⟩ → ⟨CP , 0⟩⟨DelR⟩}
∪{⟨CheCP ⟩⟨CP , i⟩ → ⟨CP , i⟩⟨ChoP ⟩ | 1 ≤ i ≤ n}

R2,4,2 = {⟨CheCPX⟩⟨CP , 0⟩⟨CX , 0⟩ → ⟨MakCR⟩}
∪{⟨CheCPX⟩⟨CP , i⟩⟨CX , j⟩ → ⟨CP , i⟩⟨CX , j⟩⟨CheCP ⟩ | 0 ≤ i ≤ n, 0 ≤ j ≤ n, 1 ≤ i+ j}

In the above set of evolution rules, object ⟨CheCP ⟩ executes a check of the number of elements
in P according to evolution rules in R2,4,1. If the number of elements in P is 0, then object ⟨DelR⟩
is generated for dissolution of the membrane. Otherwise, another trigger object, ⟨ChoP ⟩ described
in Step 2, is generated and the procedure returns to Step 2. Object ⟨CheCPX⟩ executes a check of
the numbers of elements in P and X according to evolution rules in R2,4,2. When these numbers
are both 0, object ⟨MakCR⟩ is generated for counting the number of elements in R.

Step 5: Objects that representing clique size are sent out from the inner membrane that contains
the maximal clique to the outer membrane. The other membranes, which contain no maximal clique,
are dissolved.

This step is executed using the following evolution rules.

(Evolution rules for inner membranes)

R2,5,1 = {⟨MakCR⟩⟨R1, T ⟩ → ⟨R1, T ⟩⟨CR, 1⟩⟨MakCR, 2⟩}
∪{⟨MakCR⟩⟨R1, F ⟩ → ⟨R1, F ⟩⟨CR, 0⟩⟨MakCR, 2⟩}
∪{⟨CR, j⟩⟨MakCR, i⟩⟨Ri, T ⟩ → ⟨CR, j + 1⟩⟨MakCR, i+ 1⟩⟨Ri, T ⟩

| 2 ≤ i ≤ n, 0 ≤ j ≤ n− 1}

138

International Journal of Networking and Computing

∪{⟨CR, j⟩⟨MakCR, i⟩⟨Ri, F ⟩ → ⟨CR, j⟩⟨MakCR, i+ 1⟩⟨Ri, F ⟩ | 2 ≤ i ≤ n, 0 ≤ j ≤ n− 1}
∪{⟨MakCR, n+ 1⟩ → ⟨DupCR⟩}

R2,5,2 = {⟨DupCR⟩⟨CR, j⟩ → ⟨CR, j⟩⟨CR, j⟩⟨StBy⟩⟨SenCR⟩ | 1 ≤ j ≤ n}
∪{[⟨SenCR⟩⟨CR, j⟩⟨k, i⟩]2 → []2⟨Che, 2i⟩⟨++CR, j⟩ | 0 ≤ i ≤ n, 1 ≤ j ≤ n}

R2,5,3 = {⟨DelR⟩⟨R1,W ⟩ → ⟨DelR, 2⟩ | W ∈ {T, F}}
∪{⟨DelR, i⟩⟨Ri,W ⟩ → ⟨DelR, i+ 1⟩ | 2 ≤ i ≤ n,W ∈ {T, F}}
∪{⟨DelR, n+ 1⟩ → ⟨Dis⟩}

R2,5,4 = {[⟨Dis⟩⟨k, i⟩⟨e1,1, F ⟩]2 → ⟨Che, 2i⟩ | 0 ≤ i ≤ n}

R2,5,1 and R2,5,2 are executed in the membrane that contains the maximal clique. First, the
number of elements in R is counted using loop counter object ⟨MakCR⟩ and ⟨MakCR, i⟩ according
to evolution rules in R2,5,1. Then, the counter object ⟨CR, j⟩ is duplicated according to evolution
rules in R2,5,2. One of the duplicated objects is sent to the outer membrane with a object ⟨Che, 2i⟩
and the other is left in the membrane. Object ⟨Che, 2i⟩ is used in Step 6 to check whether all inner
membranes has finished up to Step 5.

R2,5,3 and R2,5,4 are executed in the membrane that does not contain a maximal clique. Set
R is deleted by the object ⟨DelR⟩, otherwise set R from various membranes is send to the outer
membrane, which causes the procedure to be stopped. Then, object ⟨e1,1, F ⟩ is deleted for the same
reason and the inner membranes are dissolved using object ⟨Dis⟩ according to evolution rules in
R2,5,4.

Step 6: After the results are sent out from all the inner membranes, objects that represent the
maximum clique are sent out from the outer membrane.

This step is executed using the following evolution rules.

(Evolution rules for outer membrane)

R1,6,1 = {⟨++CR, j⟩⟨CR, j, i⟩ → ⟨CR, j, i+ 1⟩ | 0 ≤ i ≤ n− 1, 2 ≤ j ≤ n}
∪{⟨Che, 2i⟩⟨Che, 2i⟩ → ⟨Che, 2i+1⟩ | 0 ≤ i ≤ n− 1}
∪{⟨Che, 2n⟩ → ⟨StaRes⟩}

R1,6,2 = {⟨StaRes⟩ → ⟨CheMax, n⟩}
∪{⟨CheMax, j⟩⟨CR, j, i⟩ → ⟨MaxCR, j⟩ | 1 ≤ i ≤ n, 2 ≤ j ≤ n}
∪{⟨CheMax, j⟩⟨CR, j, 0⟩ → ⟨CheMax, j − 1⟩ | 2 ≤ j ≤ n}
∪{[]2⟨MaxCR, j⟩ → [⟨MaxCR, j⟩]2 | 2 ≤ j ≤ n}

R1,6,3 = {⟨SenCli⟩⟨R1,W ⟩ → ⟨SenR1,W ⟩⟨SenCli, 2⟩ | W ∈ T, F}
∪{⟨SenCli, i⟩⟨Ri,W ⟩ → ⟨SenRi,W ⟩⟨SenCli, i+ 1⟩ | 2 ≤ i ≤ n,W ∈ T, F}
∪{[⟨SenRi,W ⟩]1 → []1⟨Ri,W ⟩ | 2 ≤ i ≤ n,W ∈ T, F}
∪{⟨SenCli, n+ 1⟩ → ⟨END⟩}

(Evolution rules for inner membranes)

R2,6,1 = {⟨StBy⟩⟨MaxCR, j⟩⟨CR, i⟩ → ⟨SenCli⟩ | 1 ≤ i ≤ n, 2 ≤ j ≤ n, i = j}
∪⟨StBy⟩⟨MaxCR, j⟩⟨CR, i⟩ → ⟨StBy⟩⟨CR, i⟩⟨SenMaxCR, j⟩ | 1 ≤ i ≤ n, 2 ≤ j ≤ n, i ̸= j}
∪{[⟨SenCli⟩⟨e1,1, F ⟩]2 → ⟨SenCli⟩}
∪{[⟨SenMaxCR, j⟩]2 → []2⟨MaxCR, j⟩ | 2 ≤ j ≤ n}

R1,6,1 is executed to total the object submitted by each inner membrane. ⟨CR, j, i⟩ of i are incre-
mented and the addition of ⟨Che, 2i⟩ is performed aiming at ⟨Che, 2n⟩, which means that all inner
membranes finish their execution up to Step 5.

The size of the maximum clique is checked using object ⟨CheMax, j⟩ according to evolution rules
in R1,6,2. Since the outer membrane do not know which number is the largest, ⟨CR, j, i⟩ is checked
from the case j is n. If i of the object ⟨CR, j, i⟩ is not 0, then a maximal clique of size j exists in
the membrane, and the maximum clique size is determined uniquely.

139

An asynchronous P system with the Bron-Kerbosch algorithm for solving the maximum clique

To execute the check, object ⟨MaxCR, j⟩ is sent into a random inner membrane according to
evolution rules in R1,6,2. In the randomly selected inner membrane, the clique size in the membrane
is verified. If the clique size in the membrane is not equal to the determined clique size, then
object ⟨MaxCR, j⟩ is sent out to the outer membrane to redo selection using object ⟨SenMaxCR, j⟩
according to evolution rules in R2,6,1. Otherwise, the inner membrane is dissolved using objects
⟨SenCli⟩ and ⟨e1,1, F ⟩; that is, the set R representing maximum clique is sent out to the outer
membrane according to evolution rules in R2,6,1. Set R represents the maximum clique and the
result is sent out using objects ⟨SenCli, i⟩ and ⟨SenRi,W ⟩ according to evolution rules in R1,6,3.

We now summarizes the asynchronous P system ΠBK-basic.

ΠBK-basic = (Omeaning, Ostate, µ, ω1, ω2, R1, R2, iin, iout)

Omeaning = {⟨ei,j ,W ⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}
∪{⟨Ri,W ⟩⟨Pi,W ⟩⟨Xi,W ⟩⟨CR, i, j⟩ | 1 ≤ i ≤ n, , 0 ≤ j ≤ n,W ∈ {T, F}}
∪{⟨CR, i⟩⟨CP , i⟩⟨CX , i⟩ | 0 ≤ i ≤ n}
∪{⟨k, i⟩ | 0 ≤ i ≤ n} ∪ {⟨Set, i⟩ | 0 ≤ i ≤ n}
∪{⟨CHECK, 2i⟩ | 0 ≤ i ≤ n} ∪ {⟨maxCR, i⟩ | 0 ≤ i ≤ n}

Ostate = {⟨Mi,j⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
∪{⟨MakeR⟩⟨Ri⟩⟨MakeP ⟩⟨Pi⟩⟨MakeX⟩⟨Xi⟩ | 1 ≤ i ≤ n} ∪ {⟨MakeCounter⟩}
∪{⟨ChooseP ⟩⟨ChooseP, i⟩ | 1 ≤ i ≤ n}
∪{⟨Div⟩⟨NoDiv⟩} ∪ {⟨SV ⟩⟨NoSV ⟩}
∪{⟨AlterR⟩⟨AlterP ⟩⟨AlterP, i⟩⟨AlterX⟩⟨AlterX, i⟩ | 1 ≤ i ≤ n}
∪{⟨CheckCountPX⟩} ∪ {⟨CheckCountP ⟩⟨– CountP ⟩}
∪{⟨MakeCountR⟩⟨makeCR, i⟩⟨DuplicateCR⟩ | 1 ≤ i ≤ n}
∪{⟨Standby⟩ ∪ {⟨DeleteR⟩} ∪ {⟨Dissolution⟩} ∪ {⟨StaRes⟩}
∪{⟨++CR, i⟩ | 1 ≤ i ≤ n} ∪ {⟨maxcheck, i⟩ | 1 ≤ i ≤ n}
∪{⟨sendbackmaxCR, i⟩ | 1 ≤ i ≤ n}
∪{⟨SendClique⟩⟨sendRi,W ⟩⟨sendresult, i⟩ | 1 ≤ i ≤ n,W ∈ {T, F}}
∪{⟨END⟩}

µ = [[]2]1

ω1 = ω2 = ϕ

R1 = R1,1 ∪R1,6,1 ∪R1,6,2 ∪R1,6,3

R2 = R2,1,1 ∪R2,1,2 ∪R2,1,3 ∪R2,1,4 ∪R2,1,5 ∪R2,2,1 ∪R2,2,2 ∪R2,3,1 ∪R2,3,2

∪R2,3,3 ∪R2,4,1 ∪R2,4,2 ∪R2,5,1 ∪R2,5,2 ∪R2,5,3 ∪R2,5,4 ∪R2,6,1

iin = iout = 1

3.4 Details of P system with the pivoting Bron-Kerbosch algorithm

We next explain a P system based on a pivoting Bron-Kerbosch algorithm. Since only Step 1 and Step 2
mainly differ from the P system with ΠBK-basic, we explain these two steps in detail below.

Step 1: A set of input is moved into an inner membrane and objects for the sets R, P , X, and Piv are
generated.

This step is executed using the following additional evolution rules. (R2,1,4 and R2,1,5 are replaced with
R′

2,1,4 and R′
2,1,5 from ΠBK-basic.)

(Evolution rules for inner membranes)

R′
2,1,4 = {⟨MakX⟩ → ⟨X1, F ⟩⟨X2⟩}

∪{⟨Xi⟩ → ⟨Xi, F ⟩⟨Xi+1⟩ | 1 ≤ i ≤ n}
∪{⟨Xn+1⟩ → ⟨MakPiv⟩}

R2,1,6 = {⟨MakPiv⟩ → ⟨Piv1, T ⟩⟨u, 1⟩⟨Piv, 2⟩}

140

International Journal of Networking and Computing

∪{⟨Piv, i⟩ → ⟨Pivi, T ⟩⟨Piv, i+ 1⟩ | 2 ≤ i ≤ n}
∪{⟨Piv, n+ 1⟩ → ⟨MakC⟩}

R′
2,1,5 = {⟨MakC⟩ → ⟨CP , n⟩⟨CX , 0⟩⟨k, n⟩⟨ChoP ⟩⟨CPiv, n⟩⟨ChoPiv⟩}

After the objects representing R, P , and X are generated, objects ⟨u, 1⟩ and ⟨Pivi, T ⟩ are
generated according to evolution rules in R2,1,6. Object ⟨u, 1⟩ indicates that the first vertex is a
pivot, and object ⟨Pivi, T ⟩ represents an element of the set P −N(u), which is used in Step 2.

Step 2: In the inner membrane, a pivot vertex u is chosen from P or X. Then, a vertex from a
set Piv = P − N(u) is chosen. The inner membrane is divided into two membranes depending on
whether the vertex is included in the maximal clique.

This step is executed using the following additional evolution rules. (R2,2,1 is replaced with
R′

2,2,1.)

(Evolution rules for inner membranes)

R2,2,3 = {⟨ChoPiv⟩⟨P1, T ⟩⟨u, i⟩ → ⟨P1, T ⟩⟨u, 1⟩⟨UpdPiv⟩ | 1 ≤ i ≤ n}
∪{⟨ChoPiv⟩⟨P1, F ⟩ → ⟨P1, F ⟩⟨ChoPiv, 2⟩
∪{⟨ChoPiv, j⟩⟨Pj , T ⟩⟨u, i⟩ → ⟨Pj , T ⟩⟨u, i⟩⟨UpdPiv⟩ | 1 ≤ i ≤ n, 2 ≤ j ≤ n}
∪{⟨ChoPiv, j⟩⟨Pj , F ⟩ → ⟨Pj , F ⟩⟨ChoPiv, j + 1⟩ | 2 ≤ j ≤ n}
∪{⟨ChoPiv, n+ 1⟩ → ⟨ChoPivX, 1⟩}
∪{⟨ChoPivX, j⟩⟨Xj , T ⟩⟨u, i⟩ → ⟨Xj , T ⟩⟨u, i⟩⟨UpdPiv⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n}
∪{⟨ChoPivX, j⟩⟨Xj , F ⟩ → ⟨Xj , F ⟩⟨ChoPivX, j + 1⟩ | 1 ≤ j ≤ n}

R2,2,4 = {⟨UpdPiv⟩⟨P1, T ⟩⟨u, i⟩⟨ei,1, F ⟩⟨Piv1,W ⟩ → ⟨P1, T ⟩⟨u, i⟩⟨ei,1, F ⟩⟨Piv1, T ⟩⟨UpdPiv, 2⟩
| 1 ≤ i ≤ n,W ∈ {T, F}}

∪{⟨UpdPiv⟩⟨P1,W
′⟩⟨u, i⟩⟨ei,1,W ′′⟩⟨Piv1,W ⟩ → ⟨P1, T ⟩⟨u, i⟩⟨ei,1,W ′′⟩⟨Piv1, F ⟩⟨UpdPiv, 2⟩

| 1 ≤ i ≤ n,W,W ′,W ′′ ∈ {T, F}, (W ′,W ′′) ̸= (T, F)}
∪{⟨UpdPiv, j⟩⟨Pj , T ⟩⟨u, i⟩⟨ei,j , F ⟩⟨Pivj ,W ⟩ → ⟨Pj , T ⟩⟨u, i⟩⟨ei,j , F ⟩⟨Pivj , T ⟩⟨UpdPiv, j + 1⟩

| 1 ≤ i ≤ n, 2 ≤ j ≤ n,W ∈ {T, F}}
∪{⟨UpdPiv, j⟩⟨Pj ,W

′⟩⟨u, i⟩⟨ei,j ,W ′′⟩⟨Pivj ,W ⟩ → ⟨Pj , T ⟩⟨u, i⟩⟨ei,j ,W ′′⟩⟨Pivj , F ⟩⟨UpdPiv, j + 1⟩
| 1 ≤ i ≤ n, 2 ≤ j ≤ n,W,W ′,W ′′ ∈ {T, F}, (W ′,W ′′) ̸= (T, F)}

∪{⟨UpdPiv, n+ 1⟩ → ⟨UpdCPiv⟩
R2,2,5 = {⟨UpdCPiv⟩⟨Piv1, T ⟩⟨CPiv, i⟩ → ⟨Piv1, T ⟩⟨CPiv, 1⟩⟨UpdCPiv, 2⟩ | 1 ≤ i ≤ n}

∪{⟨UpdCPiv⟩⟨Piv1, F ⟩⟨CPiv, i⟩ → ⟨Piv1, F ⟩⟨CPiv, 0⟩⟨UpdCPiv, 2⟩ | 0 ≤ i ≤ n}
∪{⟨UpdCPiv, j⟩⟨Pivj , T ⟩⟨CPiv, i⟩ → ⟨Pivj , T ⟩⟨CPiv, i+ 1⟩⟨UpdCPiv, j + 1⟩
| 0 ≤ i ≤ n, 2 ≤ j ≤ n}
∪{⟨UpdCPiv, j⟩⟨Pivj , F ⟩⟨CPiv, i⟩ → ⟨Pivj , F ⟩⟨CPiv, i⟩⟨UpdCPiv, j + 1⟩ | 0 ≤ i ≤ n, 2 ≤ j ≤ n}
∪{⟨UpdCPiv, n+ 1⟩ → ⟨CheCPiv⟩}

R′
2,2,1 = {⟨ChoP ⟩⟨Piv1, T ⟩⟨CPiv, j⟩ → ⟨Piv1, F ⟩⟨Set, 1⟩⟨CPiv, j − 1⟩⟨Div⟩ | 2 ≤ j ≤ n}

∪{⟨ChoP ⟩⟨Piv1, T ⟩⟨CPiv, 1⟩ → ⟨Piv1, F ⟩⟨Set, 1⟩⟨CPiv, 0⟩⟨NoDiv⟩}
∪{⟨ChoP ⟩⟨Piv1, F ⟩ → ⟨Piv1, F ⟩⟨ChoP, 2⟩}
∪{⟨ChoP, i⟩⟨Pivi, T ⟩⟨CPiv, j⟩ → ⟨Pivi, F ⟩⟨Set, i⟩⟨CPiv, j − 1⟩⟨Div⟩ | 2 ≤ i ≤ n, 2 ≤ j ≤ n}
∪{⟨ChoP, i⟩⟨Pivi, T ⟩⟨CPiv, 1⟩ → ⟨Pivi, F ⟩⟨Set, i⟩⟨CPiv, 0⟩⟨NoDiv⟩ | 2 ≤ i ≤ n}
∪{⟨ChoP, i⟩⟨Pivi, F ⟩ → ⟨Pivi, F ⟩⟨ChoP, i+ 1⟩} | 2 ≤ i ≤ n}

A pivot vertex is selected from P using loop counter object ⟨ChoPiv, i⟩ according to evolution
rules in R2,2,3. When object ⟨Pj , T ⟩ is discovered, the vertex is selected as a pivot. Then, set Piv is
updated according to evolution rules in R2,2,4. Since set Piv equals P −N(u), the adjacent vertices
of u are removed from P . In other words, object ⟨Pj , T ⟩ remains ⟨Pj , T ⟩ only when Pj is TRUE
and object ei,j is FALSE. Object CPiv is also updated according to the update of Piv according to
evolution rules in R2,2,5.

141

An asynchronous P system with the Bron-Kerbosch algorithm for solving the maximum clique

A vertex to add to the solution is selected from Piv using object ⟨ChoP, i⟩ according to evolution
rules in R′

2,2,1. If object CPiv indicates 1, then the membrane is not divided because the remaining
vertex is in the maximal clique.

In addition to the above modifications for Step 1 and Step 2, the following minor modifications
are applied to Step 3 and Step 4. (The following sets of evolution rules are replacements of the
evolution rules for Step 3 and Step 4.)

Step 3

(Evolution rules for inner membranes)

R′
2,3,3 = {⟨NoSV ⟩⟨Set, i⟩⟨Pi, T ⟩⟨Xi, F ⟩ → ⟨Pi, F ⟩⟨Xi, T ⟩⟨– CP ⟩⟨++ CX⟩ | 1 ≤ i ≤ n}

∪{⟨– CP ⟩⟨++CX⟩⟨CP , i⟩⟨CX , j⟩ → ⟨CP , i− 1⟩⟨CX , j + 1⟩⟨CheCPiv⟩ | 1 ≤ i ≤ n, 0 ≤ j ≤ n− 1}

Step 4

(Evolution rules for inner membranes)

R′
2,4,1 = {⟨CheCPiv⟩⟨CPiv, 0⟩ → ⟨CPiv, 0⟩⟨DelR⟩}

∪{⟨CheCPiv⟩⟨CPiv, i⟩ → ⟨CPiv, i⟩⟨ChoP ⟩ | 1 ≤ i ≤ n}
R′

2,4,2 = {⟨CheCPX⟩⟨CP , 0⟩⟨CX , 0⟩ → ⟨MakCR⟩}
∪{⟨CheCPX⟩⟨CP , i⟩⟨CX , j⟩ → ⟨CP , i⟩⟨CX , j⟩⟨ChoPiv⟩ | 0 ≤ i ≤ n, 0 ≤ j ≤ n, 1 ≤ i+ j}

We now summarize the asynchronous P system ΠBK-pivot.

ΠBK-pivot = (Omeaning, Ostate, µ, ω1, ω2, R1, R2, iin, iout)

Omeaning = {⟨ei,j ,W ⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}
∪{⟨Ri,W ⟩⟨Pi,W ⟩⟨Xi,W ⟩⟨CR, i, j⟩ | 1 ≤ i ≤ n, , 0 ≤ j ≤ n,W ∈ {T, F}}
∪{⟨CR, i⟩⟨CP , i⟩⟨CX , i⟩ | 0 ≤ i ≤ n}
∪{⟨k, i⟩ | 0 ≤ i ≤ n} ∪ {⟨Set, i⟩ | 0 ≤ i ≤ n}
∪{⟨CHECK, 2i⟩ | 0 ≤ i ≤ n} ∪ {⟨maxCR, i⟩ | 0 ≤ i ≤ n}

Ostate = {⟨Mi,j⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
∪{⟨MakeR⟩⟨Ri⟩⟨MakeP ⟩⟨Pi⟩⟨MakeX⟩⟨Xi⟩ | 1 ≤ i ≤ n} ∪ {⟨MakeCounter⟩}
∪{⟨ChooseP ⟩⟨ChooseP, i⟩ | 1 ≤ i ≤ n}
∪{⟨Div⟩⟨NoDiv⟩} ∪ {⟨SV ⟩⟨NoSV ⟩}
∪{⟨AlterR⟩⟨AlterP ⟩⟨AlterP, i⟩⟨AlterX⟩⟨AlterX, i⟩ | 1 ≤ i ≤ n}
∪{⟨CheckCountPX⟩} ∪ {⟨CheckCountP ivot⟩⟨– CountP++CountX⟩}
∪{⟨MakeCountR⟩⟨makeCR, i⟩⟨DuplicateCR⟩ | 1 ≤ i ≤ n}
∪{⟨Standby⟩ ∪ {⟨DeleteR⟩} ∪ {⟨Dissolution⟩} ∪ {⟨StaRes⟩}
∪{⟨++CR, i⟩ | 1 ≤ i ≤ n} ∪ {⟨maxcheck, i⟩ | 1 ≤ i ≤ n}
∪{⟨sendbackmaxCR, i⟩ | 1 ≤ i ≤ n}
∪{⟨SendClique⟩⟨sendRi,W ⟩⟨sendresult, i⟩ | 1 ≤ i ≤ n,W ∈ {T, F}}
∪{⟨UpdateP ivot⟩⟨updateP ivot, i⟩ | 1 ≤ i ≤ n}
∪{⟨UpdateCountP ivot⟩⟨updatecountpivot, i⟩ | 1 ≤ i ≤ n}
∪{⟨END⟩}

µ = [[]2]1

ω1 = ω2 = ϕ

R1 = R1,1 ∪R1,6,1 ∪R1,6,2 ∪R1,6,3

R2 = R2,1,1 ∪R2,1,2 ∪R2,1,3 ∪R′
2,1,4 ∪R′

2,1,5 ∪R2,1,6 ∪R′
2,2,1 ∪R2,2,2

142

International Journal of Networking and Computing

∪R2,2,3 ∪R2,2,4 ∪R2,2,5 ∪R2,3,1 ∪R2,3,2 ∪R′
2,3,3 ∪R′

2,4,1 ∪R′
2,4,2

∪R2,5,1 ∪R2,5,2 ∪R2,5,3 ∪R2,5,4 ∪R2,6,1

iin = iout = 1

3.5 Examples of executions of the proposed P systems

We show examples of executions of ΠBK-basic and ΠBK-pivot. First, we show an example for ΠBK-basic.
The behaviors for an input graph in Figure 1 are shown in Figure 2 to Figure 3.

Figure 2 (a) shows the initial state. The input object set OE is given in membrane 1. Figure 2
(b) shows the state at the end of Step 1. In this step, OE is moved into the membrane 2 and OR,
OP and OX are created. Figure 2 (c) shows the state at the end of Step 2. In this step, a vertex in
P is selected and the membrane division is executed.

Figure 2 (d) shows the state at the end of Step 3. In this step, vertex 1 is added to R, and the
set P and the counter of P are updated according to the number of P in the left membrane. In
addition, vertex 1 is added to X in the right membrane. Figure 2 (e) shows the state at the end
of Step 4. In this case, the value of counter of P are not zero, and both inner membranes generate
⟨ChoP ⟩, which is a trigger object to Step 2. After that, each membrane execute from Step 2 through
Step 4 until the number of P become zero.

Figure 3 (a) shows the case all membranes become the set P is empty. Next, the membranes
execute from Step 4 through Step 5. Figure 3 (b) shows the state at the end of Step 5. In this
step, the membrane that X is empty sends out counter of R. The membrane that X is not empty
is dissolved after deleting the set R. Figure 3 (c) shows the state at the end of Step 6. In this step,
the membrane with maximum clique are dissolved with OR and the result are sent out from the the
outer membrane.

Second, we show the example with pivoting method. The behavior given the graph in Figure 1
is shown in Figure 4. Figure 4 (a) shows the state at the end of Step 1. In this step, the object
OPiv and counter of pivot are added compared to ΠBK-basic. Figure 4 (b) shows the state at the
end of Step 2. In this step, vertex 1 is selected as a pivot and OPiv is updated to the pivot and the
non-adjacent vertices of pivot. After that, the membrane execute Step 4 and backtrack to Step 2.
Figure 4 (c) shows the state at the end of the second Step 2. In this step, the membrane division is
executed after checking counter of pivot.

Figure 4 (d) shows the state at the end of Step 3. In this step, the execution is almost same as
one with ΠBK-basic. Figure 4 (e) shows the state at the end of Step 4. In this step, trigger object
that selects a new pivot is generated because OP is not empty in the left membrane. Trigger object
that selects a vertex to add the set R is generated because OPiv is not empty. After that, each
membrane executes from Step 2 through Step 4 until the number of P becomes zero.

Execution after Step 5 is the same as one with ΠBK-basic.

3.6 Complexity of P system

We now explain the complexities of P systems ΠBK-basic and ΠBK-pivot. Since these two P systems
mainly differ in Step 1 and Step 2, we explain the difference of the complexities in the two steps.
First of all, the number of membranes is O(2n) because the inner membrane is divided in case that
the vertex is included in the clique or not included in Step 2. Since 2n instances are obtained by the
division, the number of inner membranes is 2n in the worst case.

Next, we consider complexities for Steps 1 to 6. Step 1 of ΠBK-basic is executed in O(n2) parallel
steps or O(n2) sequential steps since O(n2) objects move sequentially. O(n2) kinds of objects and
O(n2) kinds of evolution rules are used in Step 1. The complexity, kinds of objects and kinds of
evolution rules of ΠBK-pivot are the same because similar movement is executed in ΠBK-pivot. Step 2
of ΠBK-basic is executed in O(n) parallel steps or O(n2n) sequential steps since the set P is checked
and the number of membranes is O(2n). O(n2) kinds of objects and O(n2) kinds of evolution rules
are used in Step 2. Step 2 of ΠBK-pivot is executed in O(n) parallel steps or O(n2n) sequential steps
since the set Pivot is checked. O(n2) kinds of objects and O(n2) kinds of evolution rules are used
in Step 2.

143

An asynchronous P system with the Bron-Kerbosch algorithm for solving the maximum clique

(a) Initial state (b) Step 1

(c) Step 2 (d) Step 3

(e) Step 4

Figure 2: An example of execution of ΠBK-basic (the first half)

144

International Journal of Networking and Computing

(a) Step 3

(b) Step 5

(c) Step 6

Figure 3: An example of execution of ΠBK-basic (the second half)

145

An asynchronous P system with the Bron-Kerbosch algorithm for solving the maximum clique

(a) Step 1 (b) Step 2

(c) The second Step 2 (d) Step 3

(e) Step 4

Figure 4: An example of execution of ΠBK-pivot

146

International Journal of Networking and Computing

0

100

200

300

400

500

600

4 5 6 7 8 9

N
u

m
b

e
r

o
f

m
e

m
b

ra
n

e
s

Number of vertices

exhaustive branch-and-bound
Bron-Kerbosch (basic) Bron-Kerbosch (pivot)

Figure 5: Number of membranes for different
methods

0

100

200

300

400

500

600

700

800

900

10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
r

o
f

m
e

m
b

ra
n

e
s

Number of vertices

branch-and-bound Bron-Kerbosch (basic) Bron-Kerbosch (pivot)

Figure 6: Number of membranes for larger num-
bers of vertices

Step 3 is executed in O(n) parallel steps or O(n2n) sequential steps since the set R and P are
updated in Step 3. O(n2) kinds of objects and O(n3) kinds of evolution rules are used in Step 3 and
the number of membranes is O(2n). Step 4 is executed in O(1) parallel steps or O(2n) sequential
steps since the counter is checked in Step 4 and the number of membranes is O(2n). O(n) kinds of
objects and O(n2) kinds of evolution rules are used in Step 4. Steps 2 through 4 are repeated at
worst n times.

Step 5 is executed in O(n) parallel steps or O(n2n) sequential steps since the set is checked in
Step 5 and the number of membranes is O(2n). O(n) kinds of objects and O(n2) kinds of evolution
rules are used in Step 5. Step 6 is executed in O(n) parallel steps or O(n) sequential steps since the
set R is moved in Step 6. O(n2) kinds of objects and O(n2) kinds of evolution rules are used in Step
6.

From the above, we obtain the following theorem regarding the complexity of the proposed two
asynchronous P systems, ΠBK-basic and ΠBK-pivot.

Theorem 1 Two asynchronous P systems, ΠBK-basic and ΠBK-pivot, solve the maximum clique prob-
lem with n vertices and operate in O(n2) parallel steps or O(n22n) sequential steps using O(n2) types
of objects, O(n3) kinds of evolution rules and O(2n) membranes. □

4 Experimental simulation

For evaluating the validity of the proposed P systems, we use our original simulator for the asyn-
chronous P system. The simulator is built using Python 3 and is executed on CentOS 7. The input
formula is randomly created for a given number of n vertices.

We compare number of membranes between the proposed P system and two existing P systems
[9, 11]. A P system in [9] executes an exhaustive search for finding the maximum independent set,
and a P system in [11] executes the same exhaustive search with branch and bound. Although the
two P systems were proposed for solving the maximum independent set problem, the maximal clique
can be reduced to the maximum independent set of the complementary graph, and we can compare
number of membranes using this reduction.

The first simulation is executed for a small number of vertices. Figure 5 shows the average
numbers of membranes with 10 trials for the first simulation. As shown, the numbers of membranes
obtained on the P system in [9] increase exponentially, whereas the numbers of membranes obtained
on the other P systems seem to be linear in the number of vertices.

Figure 6 shows the average numbers of membranes of the three P systems for larger numbers
of vertices. Although the complexities of the P systems are the same, it is verified that there
are differences between the numbers of membranes. (Note that the numbers are decreased for the
number of membranes in 17 ≤ n ≤ 19. We guess that the decreases are caused by the small number
of trials.)

147

An asynchronous P system with the Bron-Kerbosch algorithm for solving the maximum clique

5 Conclusions

In the present paper, we proposed an asynchronous P system for solving the maximum clique problem
using a Bron-Kerbosch algorithm. The results of simulations show that the number of membranes
used in the proposed P system is significantly smaller than the numbers of membranes used in
existing P systems.

In our future research, we intend to consider reducing the number of membranes for other com-
putationally hard problems.

Acknowledgment

This research was supported in part by JSPS KAKENHI through a Grant-in-Aid for Scientific Research (C)

(No. 20K11681).

References

[1] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph. Commu-
nications of the ACM, 16(9):575–577, 1973.

[2] Y. Jimen and A. Fujiwara. Asynchronous P systems for solving the satisfiability problem.
International Journal of Networking and Computing, 8(2):141–152, 2018.

[3] A. Leporati and C. Zandron. P systems with input in binary form. International Journal of
Foundations of Computer Science, 17:127–146, 2006.

[4] T. Murakawa and A. Fujiwara. Asynchronous P system for arithmetic operations and factor-
ization. Proceedings of 3rd International Workshop on Parallel and Distributed Algorithms and
Applications, 2011.

[5] Y. Nakano and A. Fujiwara. An asynchronous P system with branch and bound for solving
the knapsack problem. In Workshop on Parallel and Distributed Algorithms and Applications,
pages 242–248, 2020.

[6] L. Pan and A. Alhazov. Solving HPP and SAT by P systems with active membranes and
separation rules. Acta Informatica, 43(2):131–145, 2006.

[7] G. Păun. Computing with membranes. Journal of Computer and System Sciences, 61(1):108–
143, 2000.

[8] H. Tagawa and A. Fujiwara. Solving SAT and Hamiltonian cycle problem using asynchronous
p systems. IEICE Transactions on Information and Systems (Special section on Foundations
of Computer Science), E95-D(3), 2012.

[9] K. Tanaka and A. Fujiwara. Asynchronous P systems for hard graph problems. International
Journal of Networking and Computing, 4(1):2–22, 2014.

[10] K. Umetsu and A. Fujiwara. P systems with branch and bound for solving two hard graph
problems. International Journal of Networking and Computing, 10(2):159–173, 2020.

[11] K. Umetsu and A. Fujiwara. An asynchronous p system using branch and bound for maximum
independent set. Bulletin of Networking, Computing, Systems, and Software, 10(1):10–16, 2021.

[12] C. Zandron, G. Rozenberg, and G. Mauri. Solving NP-complete problems using P systems
with active membranes. Proceedings of the Second International Conference on Uncoventional
Models of Computation, pages 289–301, 2000.

148

