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Abstract

The application of approximate computing (AC) in optimizing tradeoffs among performance,
power consumption, and accuracy of computation results can be improved by adjusting data
precision in applications. The importance of AC has increased over the years as it is used to
maximize performance even with limited power budget and hardware resources in high perfor-
mance computing (HPC) systems that require more precise computations. To apply AC for
HPC applications effectively, we must consider the character of each message passing interface
(MPI) rank in an application and optimize it by adjusting its data precision. This rank-level
AC ensures that ranks and threads in an application run with data precision and perform data
transfer while converting the precision of target data. In this paper, we have proposed and
evaluated data pack/unpack application programming interfaces (APIs), which are applicable
for standard MPI programs run on HPC systems, for converting the precision of target data.
The proposed APIs enable us to express data transfer among ranks with different precisions. In
addition, we have also developed a reasonable performance model to select an appropriate data
transfer API for maximizing performance with rank-level AC based on performance evaluation
with various HPC systems.

Keywords: Approximate Computing, Data Transfer API, High Performance Computing Systems,
Performance Modeling
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1 Introduction

In recent years, we have encountered various limitations regarding the hardware resources in a
computer system, such as a limited number of processor cores, limited amount of memory, limited
network performance, and limited power budget available. In addition, we have also faced challenges
in extracting performance from various applications even with their limited parallelism and com-
plicated structures. However, the expectations from advanced scientific computation are high, and
the software technology must be improved to address the aforementioned limitations. Approximate
computing (AC), which changes/adjusts the precision of data used in an application, is a promis-
ing approach to improve computer systems’ and applications’ performance/effectiveness under such
limitations.

High performance computing (HPC) systems are particularly affected by such limitations be-
cause they must execute parallel applications that consist of multiple ranks/processes with varied
performances. To improve the effectiveness of the execution of such an application, we need to opti-
mize load balance among ranks by applying AC for each rank. However, ranks in HPC application
are executed while communicating with each other, and it is important to address the difference in
data precision among ranks. To solve such problems, we have developed a rank-level AC method for
HPC applications to optimize load balance and data transfer among ranks in an application simul-
taneously. Applications of HPC such as stencil calculation require data to be packed/unpacked for
data transfer. Therefore, we have proposed a prototype to implement data pack/unpack APIs with
precise data conversion. In addition, we evaluated its performance and quantified its overhead [10].
However, the performance degraded in its preliminary evaluation in contrast to our assumption.

The contributions of this paper are summarized as follows:

• We have clarified that fully simdization improves the performance of the proposed API.

• We have evaluated the performance of various strides during pack/unpack.

• We have created a performance model to clarify the criteria for converting data precision.

The rest of this paper is organized as follows: Section 2 presents a comprehensive review of related
research works. Section 3 describes the data transfer process for an AC-applied MPI application.
Section 4 explains the proposed model of data transfer APIs for converting the data precision of
target data. Section 5 evaluates the performance of the proposed APIs and their implementation.
Section 6 explains the performance model for selecting an effective data transfer method. Finally,
Section 7 presents the conclusion.

2 Related Works

AC can be applied on various levels in a system; that is, from hardware to application [4, 9].
Some applications, such as image processing and deep learning, are robust against degradation of

calculation precision; therefore, we can apply AC more efficiently for these applications. Chen et al.
proposed a network parameter compression method for deep learning to reduce the communication
overhead of distributed learning [5]. However, in terms of HPC system usage, AC must be applied
to various MPI applications.

Karakoy et al. proposed a slicing-based approach to reduce memory access while ensuring that
accuracy lies within the specified error bound [8]. Shafique et al. implemented open-source libraries
of AC-enabled arithmetic components to develop AC-enabled systems considering multiple system
layers (from logic to architecture) simultaneously [13]. Fujiki et al. proposed an approximate
interconnection network that ignores minor communication errors among compute nodes for HPC
systems [6].

Some research works utilize both hardware and software characteristics based on the target
applications. Hara and Hanawa utilized field programming gate array (FPGA) flexibility to offload

* A preliminary version of this paper was published in the 24th Workshop on Advances in Parallel and Distributed
Computational Models (APDCM), May 2022. [10]
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some tasks in an HPC application [7]. In addition, certain research works memorize the input/output
of repeated computations and reuse them while allowing some accuracy degradation [11, 12]. As a
result, AC can be applied to various applications; however, we still need to consider the characteristics
of each thread/rank in a parallel application.

Though the above-mentioned challenges are for HPC systems, we have encountered similar chal-
lenges during the design of the proposed model as well. [6] focuses on FPGA utilization for AC
but does not consider differences among ranks. [8] utilizes optical interconnect for lower latency by
allowing soft errors; however, it assumes error-tolerant applications only. To expand the scope of AC
techniques for HPC systems, it is important to consider characteristics of parallel threads/ranks and
communication among them. This paper proposes rank-level AC and data transfer APIs to optimize
the performance of each rank in various applications and develop a data transfer performance model
with the API.

3 Data Transfer in an MPI application with Rank-Level AC

This section summarizes the proposed rank-level AC and its challenges from the viewpoint of data
transfer.

3.1 Rank-Level AC

HPC application with MPI consists of multiple ranks and each rank is executed while transferring
data with other ranks. Depending on the application characteristics, load unbalance exists among
ranks, which degrades the execution performance. In this paper, we have proposed rank-level AC
to improve the application execution performance by reducing the load unbalance among ranks.
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Figure 1: Example of rank level AC with MPI application [10]

Fig. 1 shows an example of rank-level AC. Fig. 1 (a) shows the load unbalance between the
ranks i and j in an application. To detect such load unbalance among ranks, we can utilize compiler
analysis information, profiling results from test runs, and time measurement functions implanted in
the runtime libraries used for parallel computation. The execution performance of this application
can be improved by reducing the load unbalance. In addition, we can apply AC (change the data
precision from double to float) to the slower rank and shorten its execution time. Then, we can
reduce the wait time in the faster rank and obtain the performance gain (Fig. 1 (b)). However, to
apply this rank-level AC, we need to change the precision of data transferred between ranks. This
paper proposes and implements data transfer APIs that resolve this problem.
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3.2 Data Transfer Problem for Rank-Level AC

Fig. 2 shows the change in communication performance of double and float for the same count.
This figure shows that the communication improvement is around 200% when double is converted
to float in large messages with AC.
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Figure 2: Data transfer overhead comparison with float and double on Wisteria-O [3]/Cygnus
[2]/ITO [1]

The communication performance is relatively simple. For applications like stencil calculation, the
cost of estimating cast and pack/unpack data is essential for backward and forward communication.
However, this is complicated due to various factors.

4 Data Transfer APIs and Their Implementation for Rank-
Level AC

When applying AC to data transfer, shorter data transfer time implies reduced precision data.
However, we must cast the target data to lower precision while transferring it. In MPI applications
such as stencil calculation, it is necessary to pack/unpack the target data to the buffer before and
after transferring. Since the pack/unpack process copies the data independently, we can perform
the data cast and copy processes simultaneously.

4.1 Data Transfer API Definitions

Table 1: Pack/unpack interfaces

Interface abstract
inline static int aac pack d2f(
double *indata, float *outdata,
int ncount, int stride)

pack with
converting double to float

inline static int aac unpack d2f(
float *indata, double *outdata,
int ncount, int stride)

unpack with
converting float to double

inline static int aac pack(
double *indata, double *outdata,
int ncount, int stride)

pack without
converting the data precision

inline static int aac unpack(
double *indata, double *outdata,
int ncount, int stride)

unpack without
converting the data precision
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The pack/unpack APIs are summarized in Table 1. The aac pack/unpack d2f APIs are used
to pack/unpack APIs with converting the data precision, and acc pack/unpack APIs are without
converting the data precision. We have specified the inline expansion to prevent performance degra-
dation caused by dereferencing array during data cast in these APIs.

4.2 Data Transfer API Implementation

The proposed API is implemented using a simple array access. The implementations of pack and
unpack functions are described below.

Pack reads memory at stride interval specified in a single loop and writes to consecutive memory
addresses. In the case of converting the data precision, the read data is cast (double to float) into
write memory address.

However, unpack also reads data consecutively and writes each data into stride interval specified
in a single loop. In the case of converting the data precision, data is cast (float to double) when
writing it into each address.

Algorithm 1 Implementation of aac pack d2f() and aac unpack d2f()

1: function acc pack d2f(input, output, NCOUNT, stride)
2: for i = 0 . . . NCOUNT − 1 do
3: Output[i] = float(input[i*stride])
4: end for
5: end function

1: function acc unpack d2f(input, output, NCOUNT, stride)
2: for i = 0 . . . NCOUNT − 1 do
3: Output[i*stride] = double(input[i])
4: end for
5: end function

The pseudo code is shown in Algorithm 1. It is a simple loop; however, SIMD may not work for
some compilers. Therefore, it is necessary to manually optimize the loop by expanding it. However,
in this evaluation, we did not perform manual optimization, but we increased the optimization level
of the compiler.

5 Performance Evaluation of the Proposed API

In this evaluation, we have measured and compared two types of communication times, namely with
and without converting the data precision (double to float).

We have evaluated the performance of the proposed APIs with a ping-pong communication
program. This program executes data pack/unpack processes before and after each ping-pong com-
munication and repeats them according to the number of message counts to transfer. In this time,
we have measured the average communication time of each message count (changing from 1 to
16777216) and four types of stride intervals (1, 8, 256, 8192).

5.1 Evaluation Environments

We have employed Wisteria-O at the University of Tokyo, Cygnus at University of Tsukuba, and
ITO at Kyushu University for our performance evaluation.

Table 2 shows the specification of Wisteria-O, which is family of super computer “Fugaku.”
Table 3 shows the specification of Cygnus, which is Infiniband HDR100 system. Though each

node in Cygnus has four InfiniBand HDR100 ports, we have utilized only one port in this experiment
to eliminate the performance instability caused by link aggregation. We have restricted the number of
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Table 2: Specification of Wisteria-O

Computing node on Wisteria-O
Processor A64FX 48C 2.2GHz
Memory 32GB
Interconnect Tofu interconnect D
Topology 6D Mesh/torus
OS Red Hat Enterprise Linux
Compiler and MPI Library FUJITSU Software Technical Computing Suite V4.0
Compile option -O3 -Kfast -Ksimd packed promotion -fopenmp

available interconnection ports to one by setting the option “-x UCX MAX RNDV RAILS=1” for mpirun
with OpenMPI.

Table 3: Specification of Cygnus

Computing node on Cygnus
Processor Intel Xeon Gold 6125 x2
Memory 192GiB (DDR4)
Interconnect InfiniBand HDR100 x 4 port
Link speed 100Gpbs x4
Topology Fat-tree
Compiler gcc version 8.3.1
MPI Library Open MPI 4.0.3
Compile option -O3 -mavx2

Table 4 shows the specification of ITO, which is Infiniband EDR100 system.

Table 4: Specification of ITO

Computing node on ITO
Processor Intel Xeon Gold 6154 (3.0GHz 18 cores) x2
Memory 192 GB (DDR4)
Interconnect InfiniBand EDR100
Link speed 100Gpbs
Topology Fat-tree
Compiler Intel oneAPI 2021.3
MPI LIbrary Intel(R) MPI Library for Linux* OS, Version 2021.3
Compile option -O3 -mavx2

5.2 Evaluation Results

Fig. 3 shows the data transfer performance improvement with converting the data precision (from
double to float) on Wisteria-O/Cygnus/ITO. In this figure, y-axis shows the performance improve-
ment of data transfer with converting the data precision versus without converting the data precision
(from double to double). Then, 1.0 or higher means that converting the data precision improved the
performance. The average performance improvement of with data conversion versus without conver-
sion was approximately 41% on Wisteria-O, 31% on Cygnus, 35% on ITO, and the message count
of 32M on Wisteria-O gave us the maximum performance improvement, which was approximately
68%. The performance improvement of larger message sizes was approximately 50 − 60 %. This is
because the memory copy and communication bandwidth have a significant effect as the message
size increases. Upon converting data from double to float, the communication size and memory
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Figure 3: Data transfer and pack/unpack overhead comparison between with and without converting
the data precision on Wisteria-O/Cygnus/ITO

access size are halved. By reducing the amount of data, the overall performance was improved as in
this evaluation.
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Figure 4: Data transfer and pack/unpack overhead comparison between with and without converting
the data precision for each stride interval (1, 8, 256, 8192) on Wisteria-O

Fig. 4 shows the data transfer performance improvement with converting the data precision for
each stride interval (1, 8, 256, 8192) on Wisteria-O. As the stride increases, the rate of improvement
of performance decreases. This is because, when the stride increases, a cache miss occurs while
accessing the data owing to the fact that the penalty for cache miss is greater than cost of data
transfer. In all stride intervals of data transfer, 32 counts was local peak performance because
the effect of throughput is larger than latency cost. If the number of counts is the same, double
data types become twice the data size for approximately twice the data transfer time. The peak
performance of 2048 counts is assumed to be due to switching of Eager/Rendezvous. Stride 8192
does not improve performance above 128 counts. In these strides, the cost of pack/unpack was much
larger than the performance gain of data transfer.

Fig. 5 shows the pack/unpack overhead comparison of with and without converting the data
precision for each stride (1, 8, 256, 8192) on Wisteria-O. In sequential access, data copied between
doubles was 1.5 to 2 times higher performance for most message sizes. This may be because, SIMD is
not used efficiently. For this reason, the bandwidth is not fully used for float data. Stride 8 and 256
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Figure 5: Pack/unpack overhead comparison between with and without converting the data precision
for each stride interval (1, 8, 256, 8192) on Wisteria-O

were equivalent to the bandwidths of float data and double data at 1024 counts (stride 8) and 128
counts (stride 256), respectively. As a result, when transferring the same counts, the data transfer
can be performed in half the time. However, if the number of counts is higher, the performance may
improve even if the cache miss penalty for each data becomes larger than the communication cost
like stride 8. In contrast, stride 8192, for example, has no bandwidth at all. There is no performance
improvement in pack/unpack and memory copy dominates due to cache miss. Therefore, there is
no overall performance improvement.
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Figure 6: Data transfer and pack/unpack overhead comparison of with and without converting the
data precision for each stride interval (1, 8, 256, 8192) on Cygnus

Fig. 6 shows the data transfer performance improvement with converting the data precision for
each stride interval (1, 8, 256, 8192) on Cygnus. For Wisteria-O, the performance improvement rate
decreases as the stride increases. Thus, for stride interval of data transfer, 256 counts were used to
evaluate local peak performance due to effect of throughput that is larger than latency cost. If the
number of counts is same, double data types become twice the data size and data transfer time is
approximately twice. If the number of counts is same, double data types become twice the data size
and data transfer time is approximately twice. The performance of 2048 counts on stride 1 and 8
was peak. We believe this may be originated from switching of eager/rendezvous as like Wisteria-O.

Fig. 7 shows the pack/unpack overhead comparison of with and without converting the data
precision for each stride (1, 8, 256, 8192) on Cygnus. In sequential access, data copied between
doubles exhibited 1.6 times higher performance until 64K counts. All stride intervals are equal to
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Figure 7: Pack/unpack overhead comparison of with and without the converting the data precision
for each stride interval (1, 8, 256, 8192) on Cygnus

the bandwidths of float data and double data at 262144 counts (stride 1), 512 counts (stride 512),
and 16 counts (stride 256 and 8192). From this, performance was improved for medium message
sizes with stride 8 and 256, and for medium and large message sizes with stride 8192. However,
except for sequential copy, when the transfer counts were large, bandwidth was almost significantly
reduced. At this point, there was no performance improvement in pack/unpack and memory copy
dominates due to cache miss. Therefore, there was no overall performance improvement.
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Figure 8: Data transfer and pack/unpack overhead comparison of with and without converting the
data precision for each stride interval (1, 8, 256, 8192) on ITO

Fig. 8 shows the data transfer performance improvement with converting the data precision for
each stride interval (1, 8, 256, 8192) on ITO. For Wisteria-O/Cygnus, the rate of improvement of
performance decreases as the stride increases. In all stride counts of data transfer, 8 counts depicted
local peak performance due to the effect of throughput that was larger than latency cost. If the
number of counts is same, double data types become twice the data size and the data transfer time
approximately doubled. The performance of 2048 counts on stride 1 and 8 was at its peak because
preeager/rendezvous acts like two computer systems.

Fig. 9 shows the pack/unpack overhead comparison with and without converting the data preci-
sion for each stride interval (1, 8, 256, 8192) on ITO. All the stride intervals almost all the equivalent
the bandwidths of float data and double data to 262144 counts (stride 1), 512 counts (stride 512),
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Figure 9: Pack/unpack overhead comparison of with and without converting the data precision for
each stride interval (1, 8, 256, 8192) on ITO

and 32 counts (stride 256 and 8192). Thus, performance was improved for medium message sizes
with stride 8 and 256. However, except for sequential copy, when the transfer counts were large, the
bandwidth was almost significantly reduced. At this point, there is no performance improvement in
pack/unpack and memory copy dominates due to cache miss, which is the same as Cygnus.

Similar results were obtained in various experimental environments, indicating that the proposed
API can be widely used.

6 Performance Modeling to Select Effective Data Transfer
Method with Rank-Level AC

We have created a modeling of data transfer parallel computing to determine with/without convert-
ing the data precision.

First, the cast process that converts the data precision is CPU processing, which is faster than
memory transfer; therefore, we have not considered it.

Next, the model of data transfer between ranks is divided into a communication process and
pack/unpack process. This part of communication can be estimated by latency and communication
bandwidth, and the pack/unpack part can be estimated by memory bandwidth.

Eq. 1 shows the model equation of time Timef2d usec that transfers data with converting
the data precision. L usec is network latency, Messagesizedouble MB/s is the size of one double
data. Messagesizefloat MB/s is the size of one float data, CommBWf2f MB/s is the communi-
cation bandwidth of float data, MemBWfloat MB/s is the memory bandwidth of float data, and
MemBWdouble MB/s is the memory bandwidth of double data.

Timef2d = L +
Messagesizedouble
MemBWdouble

+
Messagesizefloat
MemBWfloat

+
Messagesizefloat
CommBWf2f

(1)

To estimate the performance gain with converting the data precision, we have also created a
model equation of Timef2d usec that converts without data precision. Eq. 2 shows the model
equation of time Timed2d usec that transfers data with converting the data precision. CommBWd2d

MB/s is the communication bandwidth of float data.

Timed2d = L + 2 × Messagesizedouble
MemBWdouble

+
Messagesizedouble

CommBWd2d
(2)

The accuracy of the model is determined by comparing the performance ratio between the es-
timated value and measured value, which is shown in the figure below. In this evaluation, the
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parameters were obtained from actual measurements of communication and pack/unpack message
counts. The parameters except for L use the maximum bandwidth of message count. The commu-
nication time of the minimum message size was applied for L.

To indicate the accuracy of the model, Fig. 10 shows the comparison between the measured and
estimated performance ratios on Wisteria-O. The parameters of the model are as follows.

L is 1.20 usec, and CommBWf2f is 5413 MB/s. Then, CommBWd2d is 5369 MB/s, MemBWfloat

is 17559 MB/s, and MemBWdouble is 30390 MB/s.
A large message count indicates that the performance ratio is accurately estimated by the pro-

posed model. There is a great deal of variability in the intermediate sizes; however, the average
accuracy was 11.8% for f2d data transfer and 12.7% for d2d data transfer.
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Figure 10: Comparison between estimation time ratio and execution time ratio on Wisteria-O

To indicate the accuracy of the model, Fig. 11 shows the comparison between the measured and
estimated performance ratios on Cygnus. The model parameters of Cygnus are as follows.

L is 1.59 usec, CommBWf2f is 11162 MB/s, CommBWd2d is 9511 MB/s, MemBWfloat is 11520
MB/s, and MemBW double is 11817 MB/s.

A large message count indicates that the performance ratio is accurately estimated by the pro-
posed model similar to Wisteria-O. The average accuracy was 7.6% for f2d data transfer and 7.8%
for d2d data transfer.
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Figure 11: Comparison between estimation time ratio and execution time ratio on Cygnus

To indicate the accuracy of the model, Fig. 12 shows the comparison between the measured and
estimated performance ratios on ITO. The model parameters of ITO are as follows.
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L is 1.20 usec, CommBWf2f is 11203 MB/s, CommBWd2d is 10987 MB/s, MemBWfloat is
12436 MB/s, and MemBWdouble is 13246 MB/s.

A large message count indicates that the performance ratio is accurately estimated by the pro-
posed model similar to the other two computer systems. The average accuracy was 1.9% for f2d
data transfer and 0.1% for d2d data transfer.
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Figure 12: Comparison between estimation time ratio and execution time ratio on ITO

The three model evaluations indicate that the accuracy of the proposed model was high when the
message size was large. The communication performance ratio deviated up and down for medium
level messages and below. The reason for this was probably the hierarchical memory. Since the
estimation time uses the main memory bandwidth for performance for all message sizes, the graph
showed a smooth performance transition. However, since there is a hierarchical memory in the
measurement with the real machine, the performance varies depending on the type of memory used.
Double data has twice the message size of float data; therefore, float data accesses faster memory
and double data accesses slower memory for some message counts. For example, ITO system had
up to L3 cache and its memory performance changed four times: line size, L1 cache, L2 cache, and
L3 cache; therefore, four major performance peaks could be seen in the measured performance ratio.
L2 cache of ITO system is 1024KB. In this measurement, when the count is 64K, 1024KB is used
for pack/unpack process due to which cache misses occurred. In contrast, the float data used half
of double data, that is, 512KB, due to which cache misses did not occur and the performance of the
proposed method was further improved and appeared as a performance peak. Our future work is to
investigate whether it is necessary to reflect the performance of hierarchical memory in the model
when applying AC.

7 Conclusions

AC is one of the promising techniques to improve the effectiveness of HPC systems under limited
resources. To apply rank-level AC for HPC applications, we need to convert the precision of the
target data while transferring data among ranks. In this paper, we proposed the implementation of
data transfer APIs . We successfully quantified data transfer overhead with the data pack/unpack
APIs through performance evaluation. We also created a performance model of the proposed API
for rank-level data transfer and showed that the model is accurate with large message sizes. In
the future, we plan to utilize the proposed APIs in MPI applications to realize rank-level AC on
HPC systems and improve our model’s accuracy of data transfer for rank-level AC considering real
applications.
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