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Abstract

Motivated by the manipulation of nanoscale materials, recent investigations have focused
on hybrid systems where passive elements incapable of movement, called tiles, are manipulated
by one or more mobile entities, called robots, with limited computational capabilities. Like in
most self-organizing systems, the fundamental concern is with the (geometric) shapes created
by the position of the tiles; among them, the line is perhaps the most important. The existing
investigations have focused on formation of the shape, but not on its reconfiguration following
the failure of some of the tiles. In this paper, we study the problem of maintaining a line
formation in presence of dynamic failures: any tile can stop functioning at any time. We show
how this problem can be solved by a group of very simple robots, with the computational power
of deterministic finite automata.

Keywords: Shape formation, fault-tolerance, hybrid programmable matter, line maintenance,
distributed algorithms, self-assembly

1Some of these results have been announced in [25, 26]

18



International Journal of Networking and Computing

1 Introduction

1.1 Framework and Background

The research goal of the interdisciplinary field of programmable matter is to formalize and investigate
the design and manipulation of micro- and nano-scale materials. Programmable matter consists of a
large collection of micro- or nano-sized elements (variously called particles, tiles, robots, etc.) which
are limited in terms of computation, communication, and motorial abilities; they might have the
ability to change their appearance and physical properties such as shape, density, or color based
on autonomous sensing or user input [33]. Although individual entities do not require any form of
central or external control or direction, they are collectively capable of performing global tasks such as
autonomous monitoring and repair, minimal invasive surgeries, and smart materials. A wide range of
theoretical models have been proposed, ranging from DNA self-assembly systems (e.g., [29, 30, 31]),
to metamorphic robots (e.g., [5, 34]), including models inspired by natural phenomena like insects
or micro-organisms (e.g., [14]).

The computational universe, or system, defined by these models varies greatly; however, with
respect to how they define the nature and capabilities of the entities, there are basically two types
of systems: passive and active.

In passive systems the individual entity has either no intelligence while it is able to move and
bond based on its structural properties as well as the chemical interactions with the environment,
or has limited computational capabilities but is not capable of controlling its locomotion. DNA
computing [1, 4, 10], population protocols [2], molecular computing and tile self-assembly models
[9, 15, 29], as well as slime molds [3, 23] are the well-known instances of passive systems.

On the other hand, active programmable matter systems are composed of a multitude of identical
autonomous entities, usually called particles or robots, provided with simple computational capabil-
ities (usually, finite-state machines), strictly local interaction and communication capabilities (only
with neighboring particles), and limited motorial capabilities. Typically, the entities are located on
a tassellation of the Euclidean space. Instances of this type of systems are modular robotic systems
[22], metamorphic robots [5, 32], Nubot model [35], and the more recent Amoebot model [7, 11, 13].

Since active elements are presumably more difficult to build, these systems might be far more
costly to realize than the systems based on passive elements [8]. This has led to the recent proposal
of a model of hybrid programmable matter that combines active and passive entities [8, 19, 20].
Specifically, the system is composed of a (large) set of passive hexagonal tiles and a (small) set of
active robots. Each tile occupies only one node of a finite triangular lattice and it is not capable of
performing any computation, communication, nor movement. The robots are able to lift, carry, or
place the tiles, and are responsible for managing the relative position of tiles so to achieve a desired
task; each robot has the computational power of a finite automaton, and is able to communicate with
neighbouring robots. The system is subject to a connectivity requirements of the tiles. On a node
there can be at most one robot at any time. It should be pointed out that similar models, where a set
of finite automata manipulates passive materials in a square grid, have been considered in [6, 17, 24]
under connectivity preservation requirements, and in [16] without connectivity constraints.

1.2 Shapes, Concurrency, and Faults

Like in most self-organizing systems, the fundamental concern in the Hybrid Programmable Matter
model is with the (geometric) shapes created by the position of the tiles. The existing investigations
have focused on the formation of a given shape by the robots (e.g., [8, 20, 21]) or the recognition of
the shape (e.g., [8, 19]). Among the basic shapes, the line is especially important, as it is utilized
as a foundation for constructing more complicated shapes or to perform more complex tasks (e.g.,
[20, 21]).

In these investigations, two important computational aspects are somehow neglected.
The first aspect is with regards to faults. In fact, in the existing investigations, it is assumed

that the system elements never fail [8, 19, 20, 21]. Removing this not realistic assumption brings to
light some (theoretically and practically) important problems that need to be addressed and solved.
This has been the case in some active models of programmable matter, where the possibility of
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faults has been considered. The focus of those investigations has been on the basic problem of line
reconfiguration: following the failure of some entities, all the non-faulty entities must self-organize
in a line that does not contain faulty entities. This task has been examined in the Amoebot [12, 27]
and Metamorphic Robot [28] models. These investigations have been however limited to the case
when all the faults have occurred before the execution of the algorithm (the static case) [12, 27, 28];
the dynamic case, where faults can occur at any time, has not yet been examined in the literature
for those models.

The other aspect, neglected in the existing investigations on hybrid programmable matter, is with
regards to handling the concurrency problems (e.g., collisions, deadlock) arising by the interaction
between the r ≥ 1 autonomous robots in the system. Indeed, with a single exception, these problems
are sidestepped by assuming that r = 1; i.e., there is only one robot and, hence, no concurrency [8,
19, 20, 21, 25]. The only exception is [20], where the case of more than one robots is also considered;
however, in that paper the concurrency problems due to simultaneous interaction between entities are
removed by assuming a sequential activation scheduler2: only one robot is active at any time. This
situation must be contrasted with those of the active models of robots where much more complex
levels of concurrent interaction are allowed, including the so-called semi-synchronous activation
scheduler3: an arbitrary number of robots is activated at each round, and those active in a round
operates concurrently and simultaneously.

1.3 Problem and Contributions

In this paper, we start the investigation of computing in the Hybrid Programmable Matter model in
presence of concurrency of the robots and of dynamic failures of the tiles.

We study the Dynamic Line Maintenance (DLM) problem in presence of dynamic failures:
any tile can stop functioning at any time. Robots can detect whether or not a tile present in the
same node or in a neighbouring node, as well as a tile they are carrying, is faulty.

Let us stress that there is no constraint on the number of tiles that will become faulty, nor on
the location and time of the occurrence of a fault; furthermore, more than one tile might become
faulty at the same time.

The DLM problem requires the r robots to collaboratively remove any faulty tile from the line
within finite time from it becoming faulty, subject to three constraints: (1) (Line Maintenance) all
non-faulty tiles eventually are on the nodes of the same line segment; (2) (Basic Connectivity) at
any time, in the sub-grid of the locations occupied by all robots and tiles, all non-faulty tiles are
connected, and (3) (Collisionless) at no time two robots occupy the same tile. In particular, the
Basic Connectivity restriction is an integral part of the Hybrid Programmable Matter model [8]; it
arises from applications where the overall structure formed by the robots and the tiles floats in a
liquid: it prevents the robot or parts of the tile structure from floating apart.

In this paper, we investigate the DLM problem when an arbitrary number r of robots cooperate
to maintain the line of non-faulty tiles in spite of dynamic failures of tiles; that is, 1 ≤ r ≤ n,
where n is the number of tiles, and faults can occur at any time and place. We study and solve the
problem under the difficult semi-synchronous activation scheduler: an arbitrary subset of the robots
is activated and concurrently operates in the same round. Our algorithm requires the robots to have
only minimal computational capabilities, those of finite state machines, and limited communication
power, sufficient to interact with neighbouring robots. At the basis of our solution are two algorithms,
designed for the special cases of r = 1 (i.e., when there is a single robot in the system) and r = n
(i.e., when all the initial tiles are occupied by a robot). We then devise a strategy that combines
elements of the solutions for r = 1 and for r = n, and show that it solves DLM in the general case,
in presence of dynamic failures, and regardless of the number of robots.

2In [20], the sequential scheduler is called asynchronous.
3Note that the semi-synchronous scheduler includes the sequential and fully synchronous ones as special cases.
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2 Model and Basic Limitations

2.1 Model and Terminology

In the Hybrid Programmable Matter model (see [8, 20]), the space is an infinite triangular lattice
G = (V,E). In this space, a set R = {R1, ..., Rr} of active agents, called robots, operate on a set
T = {b1, ..., bn} of n ≥ r passive hexagonal elements, called tiles.

Tiles are not able to move, communicate, or perform any computation.
Robots are identical mobile entities with limited computational and communication capabilities.

For our results, robots with the computational power of a finite automaton suffice; they can detect
only the status of their immediate neighbourhood, communicate only with robots in that neighbour-
hood at that time, and move only to a neighboring node. Communication is (modeled as) occurring
through the transmission of constant size messages.

A robot is able to pick up a single tile; carry it; and put it on a node that does not contain a tile
already; it can also pass a tile to a neighbouring robot. A tile will be said to be lifted when picked
up or carried by a robot, posed otherwise; at any time, on a node there can be at most one posed
tile.

Each robot has a local sense of orientation (up/down, left/right) that allows it to distinguish
between the six adjacent neighbours of the node where it is located.

The system works in synchronized rounds. In each round, one or more robots become active
and execute an atomic sequence of operations, called Look-Compute-Move (LCM) cycle. The LCM of
activated robot R is composed of the three phases:

• Look: R observes its status and that of its immediate neighbourhood. It identifies the nodes
where there is a tile, those with a robot, the state of those robots and whether they are carrying
a tile. It also receives the message (if any) sent by robots on neighbouring nodes in a previous
round. It also accepts the tile (if any) passed by a robot from a neighbouring node in a previous
round.

• Compute: Using what gathered in the previous phase as input, R executes the algorithm (the
same for all robots) to determine its action in the next phase, as well as if and what to
communicate to each of its neighbouring robots. If so determined, R prepares and sends the
messages to its neighbouring robots.

• Move: R performs the action determined in the previous phase. The set of possible actions, in
addition to nil (no action) are as follows. If R is holding a tile, it can: (i) place it on the node
on which it is located, if no tile is posed there already; or (ii) pass it to a neighbouring robot;
or (iii) move (with the tile) to a neighbouring node that does not contain another robot. If R
is not holding a tile, it can: (iv) pick up the tile from the node it occupies (if any is there); or
(v) move to a neighbouring node that does not contain another robot.

Within the round, the execution of each phase by the activated robots is synchronized.
The decision of which robots are active in a given round is assumed to be under the control of an

adversary, called activation scheduler, whose goal it to make the protocol fail; the only restriction
to its power is basic fairness: every robot must be activated infinitely often. Such an adversary
is called semi-synchronous (SSYNC) in the literature on autonomous mobile robots [18]. Weaker
adversaries are the sequential scheduler (SEQNL), obtained by constraining SSYNC to activate
only one robot in each round (e.g., [20]), and the fully synchronous scheduler (FSYNC), where all
robots are activated in every round.

Observe that some basic operations require multiple cycles to be completed. For example, a
message transmitted at round t by robot R to a robot R′ on neighbouring node v will be (considered
received and) processed only in the Look phase of the first round t′ > t when R′ is active next.

At all times, a robot must stand on a node occupied by a tile or adjacent to one such a node.
It is further required that, at all times, in the sub-graph G′ of G induced by the posed tiles and the
robots, the non-faulty tiles are connected; this requirement is called Basic Connectivity Constraint.
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Initially, all the tiles are posed and form a line segment. Let L0 denote the line of the grid where
the segment lies. Initially each robot is on a distinct node occupied by a tile.

A tile may become faulty at any time. A robot is able to detect whether or not the tile it is on
(or nearby, or carrying) is faulty. There is no constraint on the number f of tiles that will become
faulty, nor on the location and time of the occurrence of a fault; in particular, a tile may become
faulty while being carried by a robot, and more than one tile might become faulty at the same time.

The Dynamic Line Maintenance (DLM) problem requires the r robots to collaboratively
remove any faulty tile from L0 within finite time from it becoming faulty subject to three constraints:
(1) (Line Maintenance) all non-faulty tiles eventually are in the same line segment on L0; (2) (Basic
Connectivity) at any time, in the sub-grid of the locations occupied by all robots and tiles, all non-
faulty tiles are connected; and (3) (Collisionless) at no time two robots occupy the same tile. In
other words, should no more failures occur, all and only the non-faulty tiles will form a line on L0.

2.2 Basic Limitations

Under the stated conditions, the problem is unfortunately unsolvable even in very simple static
settings. In fact, as we show, there exists no deterministic algorithm that would always allow an
arbitrary number of robots to restore the line even if there is a single failure in the system (i.e.,
f = 1) and the scheduler is fully synchronous (i.e., FSYNC).

The proof is actually quite simple as this impossibility follows from the impossibility of the robots
to break the initial symmetry of the system.

Theorem 1. There exists no deterministic algorithm that solves the Dynamic Line Maintenance
problem for all r > 1, regardless of the initial position of the robots and of the location of the faulty
tiles. This results holds even in FSYNC with f = 1.

Proof. By contradiction, let A be a solution algorithm that allows the robots to solve the problem
regardless of their number and initial position, and regardless of the number and location of the
faulty tiles. Consider a line with an odd number of tiles, of which only the center one is faulty,
and where an even number of robots are located symmetrically with respect to the faulty tile. For
simplicity let r = 2, and let the two robots be located on the extreme tiles of the line. Consider now
a fully synchronous execution of A. In this execution, since the robots are identical (i.e., without
identifiers or distinguished features) and any attempt by both robots to move on the same tile are
forbidden (since collisions must be avoided by any correct algorithm), the two robots will always
be on distinct locations. Moreover, in such an execution, at any time, the symmetry of the overall
configuration in the grid (location of the tiles and the positions of the two robots) will be necessarily
preserved. To solve the problem, however, the symmetry must be broken, because one of the robots
must move on the faulty tile (to remove it); such a configuration necessarily creates an asymmetric
configuration. A contradiction.

From the proof of the above theorem, it follows that, to escape the impossibility, there must be
some means in the system for the robots to break symmetry. Clearly, this goal can be achieved by
endowing the robots with unique identifiers4, or assuming the a-priori existence of a distinguished
robot (the leader); these are however quite strong requirements. In reality, it is sufficient for the
robots to have some basic level of orientation in the grid, specifically, to agree on the left/right
direction of the initial line. In fact, with such an orientation, one robot (e.g., the rightmost) can be
uniquely singled out and assume the role of leader.

Thus, in view of the impossibility result, in the rest of the paper we will assume the following:

Assumption. The robots agree on the left/right direction of the initial line L0.

Observe that, although each robot might have a distinct orientation of the grid and thus not be
able to agree on which parallel line to L0 is up and which is down, the leader (once identified though
the use of the direction of the line) can communicate its own orientation to the other robots so that,
within finite time, they agree also on the up/down direction. In other words, they can construct

4However, in such a case the robots would not be finite state.
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a globally consistent sense of orientation that allows each of them to distinguish between the six
adjacent neighbours of the node where they are located; we will denote the neighbours of node u
by right(u), rightup(u), rightdown(u), left(u), leftup(u), leftdown(u). Let u be the node of L0

where a robot is initially located; then, by construction, the nodes right(u) and left(u) are also on
L0 and, without loss of generality, let the nodes rightup(u) and leftup(u) be on line L1, and the
nodes rightdown(u) and leftdown(u) be on line L−1.

Another important observation is that, since faults are dynamic, some operations are necessary
regardless of the solution algorithm. More precisely, let a tile b ∈ T be said to be covered at time t
if either it is being carried by a robot or it is posed and there is a robot on it. Then, we have:

Theorem 2. In any algorithm solving the Dynamic Line Maintenance problem, should no more
failures occur after time t, all non-faulty tiles must be covered infinitely often.

Proof. (sketch) By contradiction, let A be a solution algorithm that does not cover a non-faulty tile,
say b ∈ T , infinitely often in an execution E where no more failures occur after time t; this means
that there exists a time t′ > t from which no robot will ever cover b. Consider now an execution E ′
which is identical to E except that b fails at time t′; clearly A will fail to remove b from the line in
this execution, contradicting it correctness.

As a consequence, as long as there are more posed non-faulty tiles than robots, it is necessary to
continuously patrol the posed non-faulty tiles to determine whether a failure has occurred.

3 Dynamic Line Maintenance: Basic Modules

As a first step in the development of our solution protocol for the general Dynamic Line Mainte-
nance problem, we consider the problem under two special settings: when there is a single robot
(r = 1), and when the number of robots is equal to the number of tiles (i.e., r = n > 1). In this
section, we design and present solution algorithms DLR1 and DLR* for these cases. Both will be used
in Section 4 as basic modules of our protocol solving the general problem.

3.1 Algorithm DLR1

Initially, all tiles form a line on L0. Let FirstNode and LastNode denote the rigthmost and the
leftmost node of L0 containing tiles. Initially, the only robot (called the Patroller), is on LastNode.

3.1.1 Informal Description

Algorithm DLR1 is composed of two procedures, Patrolling and Reconfiguration.
During Patrolling, the Patroller patrols the line traversing it in alternate direction (“forward”

and “backward”) looking for faulty tiles. Procedure Patrolling is rather straightforward; it uses a
variable direction ∈ {right, left}, whose value, initialized at right, is switched after the patrolling
of the line in the indicated direction has been completed. If the Patroller finds a faulty tile while
patrolling, it starts executing the Reconfiguration procedure.

Informally, during Reconfiguration, the Patroller will remove a faulty tile from the line (moving
it to L1) and, unless that tile is on FirstNode, it will be replaced by a non-faulty tile. To replace a
faulty tile without breaking the connectivity, the Patroller needs first to find and pick up a non-faulty
tile, called the substitute, removing it from the line. To ensure that this removal does not violate
the connectivity requirement, the target tile used for substitution is the tile on FirstNode. Once the
substitute has been picked up, the Patroller carries it until it reaches the faulty tile and performs
the replacement. Once the replacement is completed, the Patroller carries the faulty tile to the front
of the line; once there, it places it on L1, and restarts Patrolling.

Due to the fact that any tile might become faulty at any time and that the robot is a finite state
machine, this simple high level description of the Reconfiguration procedure hides the presence of
a variety of different situations that may occur and the Patroller must handle. In particular, the tile
intended to be used as a substitute might be found to be faulty, or the substitute tile might become
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faulty while being carried. Also observe that, when the Patroller reaches a faulty tile carrying the
substitute tile, it might not be able to determine whether or not this is the one, b, that triggered
this replacement operation.

The Reconfiguration procedure uses two simple auxiliary operations:

1. Substitute(x, y), which starts with the robot holding tile y while standing on the node u
where tile x is posed; it ends with y posed at u, with the robot standing there.

2. Return(x) which starts with the Patroller holding a faulty tile x; it consists of the Patroller
moving on L0 until it reaches FirstNode; it then places x on rightup(FirstNode) (which, as
we will prove, does not contain a tile), and moves back on FirstNode.

In the following section, procedure Reconfiguration is described in more details. The pseudo-
code of all procedures and operations is to be found in Section 3.1.3.

3.1.2 Reconfiguration

The Reconfiguration procedure always starts with the Patroller on a node u where the posed tile
b is faulty; this is for example the case when the Patroller, while Patrolling, arrives at u and
discovers that b is faulty. What happens depends first of all on the location u of the tile.

1. If u = FirstNode, then the tile is just removed from L0 and placed on leftup(u), which, as
we will prove, does not contain a tile; the Patroller then sets direction = left and restarts
Patrolling.

2. If u 6= FirstNode, the Reconfiguration procedure is more complex. The Patroller first
moves right until it reaches FirstNode, with the intention of using the tile c located there as
a replacement tile.

(a) If the tile c is faulty, it is removed from L0 and placed on leftup(FirstNode), which, as
we will prove, does not contain a tile; the Patroller then sets direction = left and restarts
Patrolling.

(b) If the tile c is not faulty, then the Patroller picks it up, sets direction = left, and moves
on L0 carrying it until either it arrives on a node u with a faulty tile, or c becomes faulty
(recall: since faults can occur anywhere at any time, c might become faulty at any time
during the movement).

i. If c becomes faulty during the movement, as soon as detected this to be the case, the
Patroller executes operation Return(c), and then restarts Patrolling with direction =
left.

ii. If c does not become faulty during the movement, when the Patroller arrives to a
node v with a faulty tile d, the Patroller performs operation Substitute(d, c), moves
to rightdown(v), picks up d and moves to right(v) (which, as we will prove, does
not contain a tile), followed by operation Return(d); it then restarts Patrolling

with direction = left. Note that the tile d that is being substituted in the
Reconfiguration procedure is not necessarily the same tile b that was detected
to be faulty in the most recent traversal by the Patroller. In fact, if in the meantime
a closer tile has become faulty, it will be substituted first.

Note that, whenever the tile on u = FirstNode is picked up by the robot, then obviously node
v = left(u) becomes the new FirstNode.

3.1.3 Rules of Algorithm DLR1

The pseudo-code for Algorithm DLR1 and procedures Patrolling and Reconfiguration is shown
in Algorithm 1, Algorithm 2 and Algorithm 3, respectively. Additionally, the rules for the Substitution
and Return operations are presented in Algorithm 4 and Algorithm 5, respectively. For an example
of execution of the procedures and the operations, see Figure 1.
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Algorithm 1 DLR1

1: /* Initially: the Patroller is at node u = LastNode, and direction = right */
2: while !(u = FirstNode and left(u) is without tiles) do
3: Patrolling()
4: end while

Algorithm 2 DLR1: Procedure Patrolling

1: /* The Patroller is at node u and b is the
posed tile on u */

2: if b is faulty then
3: execute Reconfiguration

4: else
5: if direction = left then
6: if u 6= LastNode then
7: move to left(u)
8: else
9: set direction := right

10: move to right(u)

11: end if
12: else
13: if u 6= FirstNode then
14: move to right(u)
15: else
16: direction := left
17: move to left(u)
18: end if
19: end if
20: end if

Algorithm 3 DLR1: Procedure Reconfiguration

1: /* The Patroller is at u and the posed tile b
on u is faulty */

2: if u = FirstNode then
3: pick up b
4: move to leftup(FirstNode)
5: place b there
6: move to FirstNode
7: direction = left
8: else
9: move to FirstNode; let c be the tile there

10: pick up c
11: if c is faulty then
12: drop c on leftup(FirstNode)
13: move to FirstNode
14: direction = left
15: else
16: while c and the tile d posed on the

current node are not faulty do
17: move left on L0

18: end while
19: if c is faulty then
20: execute Return(c)
21: direction = left
22: else
23: execute Substitute(d, c)
24: move to rightdown(u)
25: pick up d
26: move to right(u)
27: execute Return(d)
28: direction = left
29: end if
30: end if
31: end if

Algorithm 4 Operation Substitute(x, y)

1: /* The robot is on tile x at node u holding
tile y; nodes leftdown(u) and rightdown(u)
are empty */

2: move with y to leftdown(u) and place y there
3: move to u and pick up x

4: move with x to rightdown(u) and place x
there;

5: move to leftdown(u) and pick up y
6: move to u and place y there
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Algorithm 5 Operation Return(x)

1: /* Robot holds x at node u */;
2: move with x to rightup(u) (i.e., reaching L0)
3: while currentnode 6= FirstNode do
4: move right with x on L0

5: end while
6: move with x to rightup(FirstNode)
7: place x
8: move to FirstNode

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1: (a) During patrolling, the Patroller detects a fault; (b) it goes to FirstNode to get a
replacement tile and moves with it towards the faulty tile; (c)-(e) it reaches the closest faulty tile
and substitutes it; (e)-(f) it returns to FirstNode to dispose of the faulty tile; (f) during the
disposal, FirstNode becomes faulty; (g)-(h) the Patroller removes that faulty tile from L0 and
restarts patrolling.
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3.1.4 Correctness of Algorithm DLR1

The following two properties trivially hold:

Property 1. At any time. the Patroller can unambiguously detect FirstNode and LastNode.

Property 2. At any time, if no Substitute is in progress, all posed non-faulty tiles are in a
connected line on L0.

Correctness of DLM1 is based on the following lemmas.

Lemma 1. 1. Any Substitute operation correctly terminates in finite time.

2. Any Return operation correctly terminates (a faulty tile is placed on L1, connectivity main-
tained) in finite time.

3. Any execution of the Reconfiguration procedure correctly terminates (at least one faulty tile
is removed, connectivity is maintained) in finite time.

Proof. 1. Procedure Substitute(x, y) starts with the robot holding tile y on the node u where the
faulty tile x is located; by construction, leftdown(u) and rightdown(u) are empty. The robot
moves to leftdown(u) temporarily placing y there; it then moves back to u to pick up x, and then it
places it on rightdown(u); it finally goes to leftdown(u) to take y and places it on u (which is now
empty). In the entire process, the the line is never disconnected and, since the procedure cannot be
interrupted by other events, it obviously terminates.

2. Return(x) consists of the simple process of the robot moving right along L0 until reaching
FirstNode. Since the new tile that substituted x has been taken from right(FirstNode), by con-
struction rightup(FirstNode) is empty (the disposed tiles start from rightup(right(FirstNode)),
so x can be dropped there, completing the operation.

3. Since there is a single robot continuously executing the algorithm, it proceeds with the
substitutions sequentially and it is not interrupted by other events. It then trivial follows that any
execution of the Reconfiguration operation correctly terminates.

Since any execution of the Reconfiguration operation correctly terminates, for any number of
faults f , it is easy to see that:

Lemma 2. Let n > f . There exists a time t such that:

1. ∀t′ ≥ t, all non-faulty tiles form a line on L0, all faulty ones form a line on L1;

2. if n − f > 1 from time t the Patroller executes Patrolling perpetually. If n − f ≤ 1, the
Patroller stops executing the algorithm.

In conclusion, from the above lemmas we have the following:

Theorem 3. Algorithm DLR1 solves the Dynamic Line Maintenance problem when r = 1.
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3.2 Algorithm DLR*

In this section, we present an algorithm, called DLR*, that solves the problem when there are more
than one robot, and the number of robots and the number of tiles is the same (i.e., r = n > 1).

Initially, all tiles form a compact line on L0. Let FirstNodeMonitor and LastNodeMonitor denote
the leftmost and the rightmost node of L0 containing tiles5. Initially, all robots are active and each
robot is on a different tile; let robot Ai be on tile bi, where b1 is the tile on FirstNodeMonitor and
bn is the tile on LastNodeMonitor. Robot A1 is in state FMonitor, An in state LMonitor and all
others are in state Monitor.

The robots continuously monitor the tile they are located on. When faults happen, the robots
cooperatively replace the faulty tiles with non-faulty ones to recover the line.

The algorithm is composed of a single procedure which uses two operations: Substitute and
Dispose.

3.2.1 Informal Description

Informally, the procedure works as follows. All the active robots monitor their tile continuously to
detect whether it becomes faulty.

If the FMonitor robot finds that its tile is faulty, it lifts that tile from the node u where it currently
is, and then executes the Dispose operation, consisting on moving with the tile to rightup(u). This
move generates a change of state of both the FMonitor robot, that becomes Redundant and inactive,
and of its neighbouring robot on L0, that becomes FMonitor; furthermore, the tile where the new
FMonitor is located becomes the new FirstNodeMonitor.

If a robot in state Monitor or LMonitor finds that its tile is faulty, it originates a request for the
FMonitor to provide a replacement tile. Upon notification of the existence of a request, the robot
FMonitor picks up the non-faulty tile it is on; this tile is passed along the monitoring robots until it
reaches the closest robot whose tile is faulty; that faulty tile is then replaced with the newly arrived
tile (operation Substitute). After the replacement, the robots cooperate to pass the faulty tile
just removed until it reaches the FMonitor, say on node u, that will execute the Dispose operation,
become Redundant and notify the robot on right(u) to become FMonitor.

This informal description hides the operations needed to correctly handle the totally unpre-
dictable (i.e., adversarial) timing of the occurrence of failures and, as a consequence, of tile requests,
of the movements of replacement tiles, of the substitution operations, and of the movements of
faulty-tiles to be discarded. The design of the request management mechanism, the delivery of
replacement tiles and the disposal of faulty tiles are described in more details next.

3.2.2 Algorithm Description

Let robot A on node u discover that the tile it is on has become faulty.
If A is the FMonitor robot, then it removes itself and its tile from L0: it lifts the tile from

the node u where it currently is, and executes the Dispose operation, moving to rightup(u) and
placing the carried tile there. At the end of this operation, A changes its state to Redundant and
sends a message 〈BecomeFMonitor〉 to its neighbour on L0 (i.e., the robot on right(u)), which then
becomes FMonitor.

If A is in state Monitor or LMonitor, it originates a request and sends a 〈TileRequest〉 message
to left(u), its left neighbour on L0; this request will be said to be pending until that faulty tile is
replaced. The 〈TileRequest〉 message originated by A is forwarded by the robots along L0, until it
reaches either the FMonitor or a Monitor robot B that has already forwarded a still pending request
or originated one; two local Boolean variables, ReceiveRequestFlag and StartRequestFlag, initially
set to false, are used by each robot to record the reception and the origination of such a message,
respectively.

The forwarding of a 〈TileRequest〉 message by a robot R is paused in two cases: (i) should the
recipient robot be involved in the Substitute operation (described later), the forwarding resumes

5Note that this is the opposite of what happens with FirstNode and LastNode in DLR1, which are instead the
leftmost and the rightmost node, respectively; the reason for this will become clear in Section 4
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(a) Faulty tile detected (b) Replacement tile sent

(c) Faulty tile moved down (d) Replacement tile brought up

(e) Faulty tile passed and disposed

Figure 2: Substitution and disposal of a faulty tile after its detection.

after that operation is completed; (ii) should the recipient robot be the FMonitor executing the
Dispose operation, when that operation terminates, no more forwarding is needed: R becomes the
new FMonitor, and will act as if it just received the request, unless it is the originator of that request,
in which case it executes the Dispose operation.

The Substitute operation always starts with a robot R with a replacement tile in hand (call it
c) on a node u where the posed tile b is faulty. The Substitute is done by R taking the replacement
tile c to node leftdown(u), moving back to u to pick up b, bring b to rightdown(u) to momentarily
drop it there, move again to leftdown(u) to pick up c, move back to u to place c there (see Figure
2).

Since both the Substitute and the Dispose operations terminate in a constant number of
rounds, we have:

Property 3. Should any robot other than FMonitor detect that its tile has become faulty, the FMon-
itor will eventually receive a 〈TileRequest〉 message.

When the FMonitor receives a 〈TileRequest〉 message, if its tile is non-faulty, the FMonitor uses
its tile as a replacement and starts the process, we shall call Replacement Transfer, of transferring
the replacement along the line; it does so by lifting the tile it is on, passing it to its neighbour on
L0, and waiting for a faulty tile to arrive.

This replacement tile, as long as it does not become faulty, is passed by the robots along the
line until it reaches the closest robot C on L0 whose tile is faulty. When this happens, C uses the
received tile to replace its faulty tile by performing the Substitute operation.

After the substitution, the faulty tile is picked up and brought to u, then passed from robot to
robot until it reaches FMonitor with the note 〈Return-Success〉.

Should instead the replacement tile become faulty while being passed, this tile is moved back to
FMonitor with the note 〈Return-Failure〉.

Since no other Substitute or Dispose is performed during this process, we have:

Property 4. Within finite time from sending a non-faulty replacement tile, the FMonitor will receive
a faulty tile.
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Once the FMonitor robot receives the faulty tile, it disposes of the tile by executing the Disposal
operation; it then notifies its neighbour on L0 that becomes the new FMonitor. If the note had been
〈Return-Success〉, the substitution has been successful and no action is needed by the new FMonitor.
On the other hand, if the note had been 〈Return-Failure〉, the substitution has not yet occurred;
hence, a new Replacement Transfer process must be started: the new FMonitor will operate as if
just receiving a 〈TileRequest〉 message.

Observe that, if the accompanying note is 〈Return-Success〉, a pending request has been sat-
isfied. This means that, unless C is aware of the existence of another pending request (i.e., its
ReceiveRequestF lag = true), the values of the ReceiveRequestF lag of every Monitor robot be-
tween C and FMonitor will be reset to false upon reception of the 〈Return-Success〉 note.

3.2.3 Rules of Algorithm DLR*

The algorithm prescribing the robots’ behavior is described, for each robot’s state, by a corre-
sponding set of rules: the behavior of a robot in state Monitor or LMonitor is described in Algorithm
8; the behavior of a robot in state FMonitor is described in Algorithm 6. The Substitute and
Dispose operations are shown in Algorithm 4 and Algorithm 7, respectively.

Algorithm 6 DLR* (State FMonitor)

1: /* Robot R is on tile b at node u */ :
2:

3: Case {b is faulty} do
4: if u = LastMonitorNode then
5: terminate the algorithm
6: else
7: pick up b
8: execute Dispose(b)
9: note← Normal

10: send 〈BecomeFMonitor;note〉 to robot on right(u)
11: end if
12:

13: Case {receive a 〈TileRequest〉 message from right(u)} do
14: pick up b
15: pass b to the robot on right(u)
16:

17: Case {receive a faulty tile c with message 〈Return;note; flag〉 from right(u)} do
18: execute Dispose(c)
19: send message 〈BecomeFMonitor;note〉 to robot on right(u)

Algorithm 7 Procedure Dispose(x)

1: /* Robot R is on node u holding tile x */ :
2: move to rightup(u)
3: drop x
4: state← Redundant
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Algorithm 8 DLR* (State Monitor or LMonitor)

1: /* Robot R is on tile b at node u */:
2:

3: Case {b is faulty} do
4: StartF lagRequest← true
5: if ReceiveRequestF lag = false then
6: send a 〈TileRequest〉 message to left(u)
7: end if
8:

9: Case {receive a 〈TileRequest〉 message from
right(u)} do

10: if ReceiveRequestF lag = false then
11: ReceiveRequestF lag ← true
12: if StartRequestF lag = false then
13: send 〈TileRequest〉 to left(u)
14: end if
15: end if
16:

17: Case {receive a tile c from the robot on
left(u)} do

18: if c is not faulty but b is faulty then
19: execute Substitute(c, b)
20: move to rightdown(u)
21: pick up b and move to u
22: StartRequestF lag ← false
23: note← Return.Succes
24: flag ← ReceiveRequestF lag
25: send b to the robot on left(u) with the

message 〈Return;note; flag〉
26: else
27: if c is not faulty then
28: pass the tile to the robot on right(u)

29: else
30: return c to the robot on left(u) with

the message 〈Return;Return.Failure; true〉
31: end if
32: end if
33:

34: Case {receive a faulty tile from the robot on
right(u) with 〈Return;note; flag〉 message}
do

35: if note = Return.Sucess and flag = false
then

36: ReceiveRequestF lag ← false
37: end if
38: pass the tile and the message to the robot on

left(u)
39:

40: Case {receive 〈BecomeFMonitor;note〉}
do

41: state← Fmonitor
42: if b is faulty then
43: pick up b
44: execute Dispose(b)
45: forward the message to robot on right(u)
46: else/* b is not faulty */
47: if ReceiveRequestF lag = true or note =

Return.Failure then
48: lift b
49: pass it to the robot on right(u)
50: end if
51: end if

3.2.4 Correctness

From Properties 3 and 4, the following lemma is immediate:

Lemma 3. Let the FMonitor robot R start the Replacement Transfer process.

1. If the replacement tile a does not becomes faulty while being carried, a faulty tile b will be
replaced by a and will be posed on L1; R will become Redundant and its neighbour on L0 will
become FMonitor.

2. If the replacement tile a becomes faulty while being carried, a will be posed on L1; R will become
Redundant, and a new Replacement Transfer process will be started by the new FMonitor.

3. During the entire process, the Basic Connectivity Constraint is maintained.

Observe that, in Lemma 3, while a faulty tile is always removed from L0, a pending request is
satisfied only in case (1). We now show that eventually, every pending request is satisfied.

Theorem 4. Let P (t) denote the set of requests still pending at time t. Then: ∀t ≥ 0, if P (t) 6= ∅,
then ∃t′ ≥ t such that |P (t′) ∩ P (t)| < |P (t)|.
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Proof. Consider the time t0 when a 〈TileRequest〉 arrives at the FMonitor robot that we shall denote
by R[t0].

By contradiction, assume that, for all t′ > t0, |P (t′) ∩ P (t0)| ≥ |P (t0)|. This means that, by
Lemma 3, the result of the Replacement Transfer process started by R[t0] ends in the original
replacement tile, we shall denote by b[t0], becoming faulty and returned to R[t0], that will dispose
it on L1. Upon R[t0] becoming Redundant, always according to by Lemma 3, another robot, say
R[t1], becomes FMonitor and starts at time t1 > t0 a new Replacement Transfer process. By
assumption, also this process fails; and so will fail any process, started by the FMonitor R[ti+1] at
time ti+1 > ti after the failure of the one started by the FMonitor R[ti] at time ti. In other words,
|P [ti]| ≥ |P [ti−1]|.

Let k[t0] be the number of consecutive non-faulty tiles posed starting from FirstMonitorNode at
time t0. All Replacement Transfer processes end in failures; however, since each failure results
into the leftmost tile removed from L0 and moved to L1, after at most k[t0] failed processes, the
faulty tile closest to R[t0] when it received the 〈TileRequest〉 at time t0 is precisely the one on
FirstNodeMonitor. According to the algorithm, in this case the FMonitor moves that tile directly
to L1 (without starting a new process); when this happens, the pending request associated to this
tile has been resolved. A contradiction.

Theorem 5. Let f(t) denote the number of faulty tiles at time t. Let no more failures occur after
time t̂ ≥ 0 and at least one tile be non-faulty. Then there is a time t∗ ≥ t̂ such that ∀t ≥ t∗:

1. all n′ = n − f(t̂) non-faulty tiles form a compact line on L0, and all f(t̂) faulty tiles form a
compact line on L1;

2. r′ = min{r, n′} robots are on distinct tiles on L0 and the other r − r′ robots are on distinct
tiles on L1,

Proof. By Lemma 3, it follows that each Replacement Transfer process, whether successful or not,
results into the current FMonitor on node u moving with the faulty tile to rightup(u) and staying
there; similarly, each time the FMonitor on node u discovers that the tile on u is faulty, it moves with
the faulty tile to rightup(u) and stays there. By Theorem 4, every faulty tile is eventually replaced
and removed (or removed directly if the FMonitor robot is on it). Thus, if no more failures occur
after time t̂ ≥ 0, there is a time t′ ≥ t̂ when all the faulty tiles are placed on L1 into consecutive
nodes, each with a robot on it; on the other hand, since only the robots that in state FMonitor
dispose of a faulty tile move and remain on L1, there is a time t′′ ≥ t̂ where all the non-faulty tiles
form a line on L0, each with a robot on it. Hence, at time t∗ = max{t′, t′′}, both statements of
the theorem hold. Since in either situation no action is taken anymore by the robots, the theorem
holds.

In conclusion, from the lemmas above we have the following:

Theorem 6. Algorithm DLR* solves the Dynamic Line Maintenance problem with with n = r
robots.

4 The General Algorithm DLR

We now describe the general algorithm, DLR, that solves the problem regardless of the number r of
robots, 1 ≤ r ≤ n.

In the special cases of r = 1 and r = n, the algorithm is precisely DLR1 and DLR*, respectively,
without modifications. In all other cases (i.e., 1 < r < n), the algorithm DLR is composed of a careful
concurrent composition of algorithms DLR1 and DLR*, appropriately modified and described below.

Observe that, although the robots have no knowledge of r or n, they can easily determine the
relationship between these two values, and hence execute the correct module of the algorithm,
through a preprocessing phase described later (Section 4.2.6).

For simplicity, the description will first assume r > 2; the algorithm will work with some simpli-
fications for r = 2, as discussed later.
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4.1 Overall Strategy

Informally, the idea of the algorithm is to dynamically integrate the operations of DLR1 and DLR*.
Initially the line segment is divided into two parts, the monitored area controlled by r−1 robots (the
Monitors) placed on r − 1 consecutive tiles, like in Algorithm DLR*, and the patrolled area explored
by one robot (the Patroller), as in Algorithm DLR1 (see Figure 3).

Figure 3: Initial configuration of the line segment.

Failures in the patrolled area are generally treated like in DLR1, while those in the monitored
areas are generally treated like in DLR*. Exceptions are failures occurring at the “border” between
the two areas, where more care has to be taken.

Various new operations are introduced involving the border between the two areas. The first
is the reintegration of the patroller: if the Patroller realizes that there is only a single tile to be
patrolled then, instead of terminating its execution (as in DLR1), it joins the execution of DLR*

becoming LMonitor.
The most significant change is the reintegration of monitors. After the substitution of a monitored

tile, when the FMonitor robot disposes of the faulty tile, it becomes Redundant; instead of being
discarded, like done in DLR* (where it is no longer used), in this algorithm the Redundant robot will
be reintegrated into active monitoring; it will do so by travelling on L1 to reach the border between
the two areas, and moving down to L0 to monitor a new tile (see Figure 4). The reintegration of
redundant robots allows the algorithm to make use of all the available robots. This operation will
be possible at time t as long as the number p(t) of nodes being patrolled at that time is more than
one.

If faults continue to occur, eventually the Patroller is reintegrated and the line will contain only
the monitored area (see Figure 7). When/if this occurs, there is no possibility for Redundant robots
to be reintegrated, and the end of the reintegration process starts. At this point, the Redundant
robots will move to occupy the faulty tiles on L1 on the right (the ones disposed of by the Patroller,
see Figure 7 (a)) and become Done. It is possible that all these tiles become occupied (this situation
is easily detected by a redundant robot). In such a case, since there is no more room on the faulty
tiles on the right, all current/future redundant robots will become Superfluous and will move to
occupy the faulty tiles on the left side (see Figure 7 (b) and (c)).

The coordination between the patroller and the monitors, as well as the management of the
reintegration process, involve handling several new situations originated by the concurrent execution
of two algorithms. This requires various technicalities to avoid breaking the connectivity, creating
deadlocks, and having robots collide (i.e., be on same cell at the same time).

4.2 Algorithm Description

Initially, the tiles form a compact line on L0 with tile bi on node ui, 1 ≤ i ≤ n, where u1 is the
leftmost node of the line containing a tile. The r robots are on the r leftmost nodes of the line:
robot Rj is on tile bj at node uj , 1 ≤ j ≤ r. Recall that, since the robots are finite state machines,
generally they cannot compute the values of r and n; they can however easily determine whether
r = 1 or r = n, and hence whether 1 < r < n.

Let 1 < r < n. In this case, initially: robot Rr is in state Patroller, and executes a modified
DLR1; the other robots execute a modified DLR* with Rr−1 in state LMonitor, R1 in state FMonitor
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(a) The line with some faults

(b) Two Redundant robots on their way to reintegration

(c) The monitored area changes as Redundant robots join.

Figure 4: Reintegration of monitors.

and all others in state Monitor. Initially, u1 is the FirstNodeMonitor, ur−1 the LastNodeMonitor,
ur the LastNodePatrol, and un the FirstNodePatrol.

Details of modifications needed in both DLR1 and DLR* to perform the reintegration, as well as
to correctly perform the other parts of the algorithm, are described below.

4.2.1 Reintegration of the Patroller

Let us first describe a simple modification needed to be made to DLR1. If the Patroller P determines
that there is only a single tile to be patrolled (u = LastNodePatrol and there is no tile on right(u))
then, instead of terminating its execution of the algorithm (as would happen in DLR1), P sends a
〈BecomeMonitor〉 message to the robot on left(u) (which is the current LMonitor), changes state
to LMonitor and joins the execution of DLR*.

As part of this reintegration, when the LMonitor robot receives a 〈BecomeMonitor〉 message, it
changes state to Monitor.

4.2.2 Reintegration of the Redundant robots

The following set of modifications to DLR* is more complex and crucial, and focus on state Redundant.
Recall that, when a robot R becomes Redundant, it is at a node of line L1 on a faulty tile that it
has just placed there. After sending a message 〈BecomeFMonitor〉 to the robot on rightdown(u)
(that will change its state to FMonitor), instead of terminating its execution of the algorithm (as
would happen in DLR*) R does as follows. It moves rightwise on L1, pausing if another Redundant
robot is in front of it, and continues until its leftdown neighbour is LMonitor (see Figure 4 (b)).

Let u be the node where R is when this occurs. The intention of R is to move to v = rightdown(u)
(if/when it is without robots) and rejoin the monitors. However, this operation has to be done
carefully; in fact, a direct move by R to v might create a collision should the Patroller be at right(v)
at that time (and, thus, not visible by R) and about to move to v. To prevent this possibility, rather
then moving directly to v, R performs a double-step: it moves first to right(u), if without robots.
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Then, if v is without robots and the tile is non-faulty, and if the Patroller is not at v, R moves from
right(u) to v (see Figure 4 (b) and (c)).

Note that, before the second step toward v, if R sees that v is occupied by a robot or does
not contain a tile, or contains a faulty tile, a variety of situations are possible; for example, it is
possible that a substitution is now ongoing involving v, or that the Patroller is now visiting v as
part of normal operation. In all cases, to avoid a potential collision on v, R waits until the situation
changes and can safely descend to v. Also note that, if right(v) is occupied by the Patroller, R
can move safely to v because the Patroller will refrain from going there as described in Subsection
4.2.3(b).

Once the double-step is completed, R must notify the robot on left(v) (the old LMonitor) to
become Monitor, and change state from Redundant to LMonitor to join the execution of DLR*.
However, also this operation has to be done carefully. The reason is that, by changing its state to
LMonitor, R would enable the next Redundant robot to descend to right(v) creating the potential of a
collision with the Patroller should it be now in downright(v) (having just completed a substitution).
For these reasons, should R see the Patroller in downright(v), it waits for the Patroller to move
away before assuming the role of LMonitor.

4.2.3 Other interactions at the border

In addition to the reintegration of Patroller and Redundant robots, other actions performed at the
border between the patrolled and the monitored areas require attention to avoid possibility of colli-
sions.

a) The Patroller disposing of a faulty tile on FirstNodePatrol: A special rule is needed
when the Patroller is on FirstNodePatrol (call it u) and finds a faulty tile. According to DLR1,
the Patroller should dispose of the faulty tile bringing it to leftup(u). However, such an action is
dangerous in this case, as it could potentially create a collision with a Redundant robot (this could
happen if FirstNodePatrol is adjacent to LastNodePatrol, in which case there could be a Redun-
dant robot that the patroller cannot see, about to move precisely to leftup(u)). To avoid this issue,
the final destination of the faulty tile is still leftup(u), but, instead of moving directly there, the
Patroller performs a double-step going first to left(u) (which, by construction is surely empty) and
then to rightup(left(u)) (if/when without robots). Should the Patroller holding the faulty tile on
left(u) see a Redundant robot R on leftup(u), it passes the faulty tile to R and becomes LMonitor
(telling the current LMonitor to become Monitor). Upon receiving the faulty tile, R deposits the
tile and continues the algorithm still in state Redundant. In the similar case that R is on leftup(u)
and sees P on u holding the faulty tile, it waits for P to move to left(u) and passes the faulty tile.
It is also possible that the Patroller on u is in the second step of disposing the faulty tile found in
FirstNodePatrol and the Redundant robot R is on leftup(u) in the first step of its reintegration. In
this case, the Patroller moves to rightup(u), drops the faulty tile, and returns to u while R waits
for this operation to be finalized. For an example of execution of these rules see Figure 5.

b) The Patroller sees a Redundant robot about to descend: If the Patroller P at u sees
on leftup(u) a Redundant robot R on a node without a tile, communication between R and P is
needed to distinguish between two possible situations that require attention: either (i) R is in the
second step of its reintegration about to descend to u and P is in the first step of disposing of a faulty
FirstNodetPatrol is about to move to u (as described above in 4.2.3(a)) or (ii) R is in the second
step of its reintegration about to descend to u and P is about to move to u for its regular patrolling.
Case (i) has been already treated in a). In case (ii), priority is given to R or to P depending on the
status of the tile on u. (ii1) As long as u does not contain a faulty tile P waits for R to descend
before continuing the patrolling; should u be the last node of the segment when R descends on u,
R becomes Monitor, P becomes LMonitor and both robots join algorithm DLR*. (ii2). If instead
u contains a faulty tile, P proceeds with the substitution and R waits for the substitution to be
concluded (see Figure 6).
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(a) The Patroller finds the tile on FirstNodePa-
trol faulty

(b) The Patroller lifts the faulty tile and the Re-
dundant robot is about to descend to L0

(c) The Patroller moves with the faulty tile to
FirstNodePatrol

(d) The Patroller passes the faulty tile to the
Redundant

(e) The Redundant disposes the faulty tile
and becomes Done. The Patroller be-
comes LMonitor and updates its state

Figure 5: The Patroller disposes a faulty tile on FirstNodePatrol. A small hexagon around a robot
indicates a carried tile.

c) LastNodePatrol is faulty: Communication between LMonitor and the Patroller is needed
when the Patroller finds that LastNodePatrol is faulty (and is not the only node of the patrolled
area). In this case, the Patroller notifies the LMonitor from LastNodePatrol and waits for acknowl-
edgment before starting the substitution; it then notifies again when the substitution is completed.

d) LastNodeMonitor is faulty: The substitution can proceed only if there is no substitu-
tion currently ongoing involving LastNodePatrol (note that LMonitor is always aware of ongoing
substitutions involving LastNodePatrol because of Rule 4.2.3(c) above.
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(a) Redundant waits for the Patroller to substitute the
faulty tile

(b) Patroller lifts the non-faulty tle on the FirstNodePa-
trol as the replacement tile

(c) Patroller starts the substitute operation (d) Patroller removed the faulty tile from L0

(e) Patroller replaces the faulty tile with non-faulty tile (f) Patroller lifts the faulty tile and Redundant performs
the second step of its double step

(g) Patroller disposes the faulty tile

Figure 6: The Patroller sees a Redundant robot about to descend. The small hexagon around a
robot indicates a carried tile.

4.2.4 End of reintegration

When the patrolled area is composed of a single node (or two nodes, one of which faulty), there
is no possibility for Redundant robots to be reintegrated. At this point, the Redundant robots will
migrate to occupy the faulty tiles on L1 which have been disposed of by the Patroller (i.e., the ones
posed on the right of the segment, see Figure 7 (a)). Once a robot reaches the end of these faulty
tiles, it becomes Done and any incoming Redundant robot seeing a Done robot on its right will also
become Done. It is possible that all these tiles become occupied (this situation is easily detected
by a Redundant robot). In such a case, since there is no more room on the faulty tiles on the right,
all further Redundant robots will migrate to the left side to occupy the faulty tiles which have been
posed there by the monitors.

The change of direction in the Redundant robots’ migration requires proper coordination to avoid
collisions with Redundant robots which could still be moving to the right. This will be achieved
through communication among the robots and change of state.

This is started when a Redundant robot R on node u with no posed tile finds a Done robot
on right(u). At this point, R starts the “broadcast” of a 〈NoMore〉 message to be communicated
(through local communication among neighbouring robots) to all robots on L0, as well as to the ones
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(if any) on L1 on the left of u. This message will make any Redundant robot, including R, wait for
an 〈Ack〉 message. This message will be broadcasted to the right by the FMonitor once it receives
the 〈NoMore〉 message. All redundant robots receiving the 〈Ack〉 become Superfluous, except for
R that becomes FSuperfluous. At this point, R (as well as any Superfluous robot, if any) moves to
the left, pausing if there is another superfluous robot on its left, becoming Done if it reaches the end
of the faulty tiles or it sees a Done robot on its left.

Note that an additional synchronization is necessary during this migration process to avoid
the collision between the FMonitor (disposing of its faulty tile) and a Superfluous robot. This is
accomplished by having the FMonitor wait, after the broadcast of 〈Ack〉, until the passage of the
FSuperfluous robot R. From this moment on, when a FMonitor goes to L1 to dispose of a faulty
tile, it becomes Superfluous instead of Redundant.

(a)

(b)

(c)

Figure 7: No more reintegration is possible: (a) Redundant robots migrating to the right; (b) a robot
detects that no more room is available on the right side, after broadcasting a 〈NoMore〉 message
and receiving acknowledgment, starts migrating to the left; (c) Superfluous robots move to the left
side.

4.2.5 The case n > r = 2

When the system is composed of at least three tiles but of only two robots (a case easily detectable
by the robots), the algorithm conceptually follows the same rules as the ones described above, with
the Patroller visiting the patrolled area and the single monitor controlling a monitored area of size
one. Clearly, in this situation, the single monitor has to act both as LMonitor and as FMonitor. In
general, all the rules, while being conceptually the same as for r > 2, are subject to slight technical
simplifications. In particular, the reintegration of monitor after becoming Redundant (Rule 4.2.2),
as well as the end of reintegration (Rule 4.2.4) become straightforward.

38



International Journal of Networking and Computing

4.2.6 Preprocessing

As mentioned before, although the robots have no knowledge of r or n, they can easily determine
the relationship between these two values, and hence execute the correct module of the algorithm.

This can be achieved by the robots, initially all in the same state, say Pre, executing the following
simple pre-processing phase.

Let u and v be the rightmost and leftmost node of the line containing a posed tile. Informally,
the robots start the pre-processing phase by moving in the right direction. The robot R that reaches
first (or is already on) u changes its state to P-Patroller, moves to leftup(u) and moves left on L1.

If the P-Patroller reaches leftup(v) without detecting any robot (moving) on L0, it correctly
determines that r = 1; it then moves to v becomes Patroller, and executes DLR1.

If, instead while moving left on L1, R encounters Pre robots (moving) on L0, it understands that
r > 1. It thus notifies them that r > 1, and instructs them to become Hold and to stop moving. R
continues to move left on L1 until it reaches leftup(v). When this occurs, all other robots are on
L0, not moving, in state Hold. Importantly, by the time R reaches leftup(v), it is able to determine
whether or not r = n.

Indeed, r = n if and only if R, during its move from leftup(u) to leftup(v), only sees on L0

nodes with a robot on them. Should this be the case, R returns to u, becomes Rmonitor, and sends
a notification to all robots Upon notification, the Hold robot on v becomes Lmonitor, any other Hold
robot becomes Monitor, and can start the execution of DLR*.

In the case r < n, R returns to u, notifying on the way all the other robots, becomes P-Patroller
and moves left on L0. Upon notification, the Hold robots become P-Monitor and move left. Hence,
eventually all robots move in the left direction on L0 and, within finite time, they occupy the leftmost
r tiles of the line, all in state P-Monitor, except for the rightmost robot, which is in state P-Patroller.
The P-Monitor robot on v changes its state to Lmonitor and notifies its neighbour; the notification
transforms the robot in Monitor, and is forwarded until it is received by the P-Monitor next to the
P-Patroller, which become Rmonitor and Patroller, respectively. A final notification is sent by the
Patroller allowing the robots to start the execution of DLR.

Further observe that, if the Patroller and Lmonitor are neighbours, they both detect that r = 2.

4.3 Rules of Algorithm DLR

The algorithm prescribing the robots’ behavior is described, for each robot’s state, by a corresponding
set of rules as indicated below:

- State Patroller: Algorithm 9
- State LMonitor: Algorithm 8 with the addition of Algorithm 10
- State FMonitor: Algorithm 6 with the addition of Algorithm 11
- State Monitor: Algorithm 8 with the addition of Algorithm 12
- State Redundant: Algorithm 13
- State FSuperfluous: Algorithm 14
- State Superfluous: Algorithm 15

The Substitute, Reconfiguration, and Dispose operations are shown in Algorithm 4, 3, and
7, respectively.
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Algorithm 9 DLR (State Patroller)

1: /* Rules for robot P in state Patroller on
node u, with direction ∈ {right, left}; b is
the posed tile on u (if any) */

2:

3: Case {u = LastNodePatrol, b is faulty, P
holds a non-faulty tile c } do

4: send 〈 Substitute-Start 〉 to left(u)
5: wait to receive 〈 Ack-Substitute 〉
6: execute Substitute(u, c)
7: send 〈 Substitute-Done 〉 to left(u)
8:

9: Case {u = FirstNodePatrol, b is faulty} do
10: lift b
11: move to left(u)
12: /* first step of the double-step */
13: if rightup(u) = v is empty then
14: /* u is the FirstNodePatrol */
15: move to v
16: drop b
17: move to u
18: else /* v is occupied by a robot R */
19: pass b to R
20: end if
21:

22: Case {leftup(u) contains a Redundant
robot R without a tile} do

23: /* R is in its 2nd step of double-step */
24: communicate with R
25: if b and the tile on left(u) are non-faulty,

and u is not FirstNodePatrol then
26: wait for R to move to left(u)
27: else if b is faulty and u is FirstNodePatrol

then
28: lift b
29: move to left(u)
30: /* first step of double-step */
31: else if the tile of left(u) is faulty and u is

not FirstNodePatrol then
32: move to left(u)
33: execute Reconfiguration

34: end if
35:

36: Case {u = LastNodePatrol and right(u)
has no tile} do

37: send 〈BecomeMonitor〉 to left(u)
38: state← LMonitor
39: execute DLR*
40:

41: Case {Otherwise} do
42: if b is faulty then
43: execute Reconfiguration

44: else
45: if u ∈ {LastNodePatrol,FirstNodePatrol}

then
46: change direction
47: end if
48: move to direction
49: end if

Algorithm 10 DLR (State LMonitor)

1: /* Additional rules for robot R on node u: */
2:

3: Case {receive 〈BecomeMonitor〉 from right(u)} do
4: state←Monitor
5:

6: Case {receive 〈Substitute-Start〉 from right(u)} do
7: if no substitution is ongoing then
8: send 〈Ack − Substitute〉 to right(u)
9: end if

10:

11: Case {u = lastNodeMonitor contains a faulty tile, and R holds a non-faulty tile b } do
12: if receive 〈Substitute− Start〉 from right(u) then
13: wait for receiving 〈Substitute−Done〉 from right(u)
14: else
15: Substitute(u, b)
16: end if
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Algorithm 11 DLR (State FMonitor)

1: /* Additional and modified rules for robot R on node u: */
2:

3: Case {receive 〈NoMore〉} do
4: broadcast 〈Ack〉 to the right direction
5: wait to receive 〈Resume〉
6:

7: Case {receive 〈Ack〉 and holding a faulty tile b} do
8: Dispose(b)

Algorithm 12 DLR (State Monitor)

1: /* Additional rules for robot R on node u: */
2:

3: Case {receive 〈NoMore〉} do
4: forward 〈Nomore〉 to the left direction
5:

6: Case {receive 〈Ack〉} do
7: forward 〈Ack〉 to the right direction

Algorithm 13 DLR (State Redundant)

1: /* Robot R on node u on L1; let v =
rightdown(u) */:

2:

3: Case {leftdown(u) contains a Monitor and
right(u) is empty} do

4: move to right(u)
5:

6: Case {leftdown(u) contains a LMonitor} do
7: if right(u) contains an empty non-faulty tile

then /* first step of the double-step */
8: move to right(u)
9: if v contains an empty non-faulty tile and

Patroller is not at v then /* second step of
the double-step */

10: move to v
11: if rightdown(v) is empty then
12: send 〈BecomeMonitor〉 to left(v)

/* the robot on left(v) is the LMonitor;
right(v) is now the LastNodePatrol */

13: state← LMonitor
14: end if
15: end if
16: if receive a faulty tile b from v then
17: place b on u /*Patroller disposing of a

faulty tile at FirstNodePatrol*/
18: end if
19: end if

20:

21: Case {v and left(v) are occupied by robots
and right(u) contains a faulty tile} do /*No
possibility for Redundant robots to be rein-
tegrated*/

22: while right(u) contains an empty faulty tile
do

23: moves to right(u)
24: end while
25: if right(u) contains no faulty tile or contains

a robot in Done state then
26: state← Done
27: end if
28:

29: Case {v and left(v) are occupied by robots
and right(u) contains a Done robot on a
faulty tile} do /* all of the faulty tiles are
occupied*/

30: broadcast 〈NoMore〉
31:

32: Case {originated a 〈NoMore〉 broadcast and
receive 〈Ack〉} do

33: state← FSuperfluous
34:

35: Case {receive 〈NoMore〉 and 〈Ack〉} do
36: state← Superfluous
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Algorithm 14 DLR (State FSuperfluous)

1: /* Robot R on node u:*/
2:

3: Case {left(u) is empty and v = leftdown(u)
contains robot} do

4: if v is occupied by FMonitor then
5: send a 〈Resume〉 message to it
6: end if
7: move to left(u)

8:

9: Case {left(u) contains faulty tile without
robot and v = leftdown(u) is empty} do

10: if left(u) contains no faulty tile or left(u)
contains a robot in Done state then

11: state← Done
12: end if
13: move to left(u)

Algorithm 15 DLR (State Superfluous)

1: /* Robot R on node u: */
2:

3: Case {left(u) is empty and v = leftdown(u)
contains robot} do

4: move to left(u)
5:

6: Case {left(u) contains faulty tile without

robot and v = leftdown(u) is empty} do
7: if left(u) contains no faulty tile or left(u)

contains a robot in Done state then
8: state← Done
9: end if

10: move to left(u)

Algorithm 16 Procedure Dispose(b)

1: /* Robot R is on node u holding tile b after receiving 〈Ack〉: */
2:

3: move to rightup(u)
4: drop b
5: state← Superfluous

4.4 Correctness

The correctness of the individual modules DLR1 and DLR* has been shown in Sections 3.1.4 and 3.2.2,
respectively. We now show that the general algorithm DLR, created by the integration of these two
modules correctly solves the problem. To do so we show that, with the modifications described and
discussed above, any potential problem created by the concurrent execution of the modules does not
occur; more precisely, there are no collisions nor deadlocks. For ease of presentation, we shall refer
to the rule described in sub-Section 4.2.i simply as Rule 4.2.i.

We first show that no collisions are created during the reintegration of redundant robots.

Lemma 4. No collision can occur between a Redundant robot and the Patroller.

Proof. The Patroller P moves on L0 (when performing the regular patrolling), on L1 (when per-
forming a return operation or disposing a faulty FirstNodePatrol), and on L−1 (when performing
a substitution operation), while a Redundant robot R only moves on L1 and L0 to reintegrate
among the monitors. A collision may occur between R and P in four cases.
Case 1) R is in the second step of reintegration (it wants to descend to node u) and P also wants
to move to u for its regular patrolling. In this case, by construction (Rule 4.2.3(b)), if u contains
a non-faulty tile, P waits until R has descended to node u before continuing the patrolling. If u
contains a faulty tile, R waits for P to perform the substitution.
Case 2) R is in the second step of reintegration (it wants to descend to node u), another Redundant
robot R′ is on L0 changing its state to LMonitor, while P is on L−1 terminating a substitution and
is about to move up to L0. Note that R cannot descend to L0 until it sees R′ in state LMonitor.
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On the other hand, by construction (Rule 4.2.2), R′ checks the downright tile and does not change
state until P moves away. In doing so, no collision between R and P can occur.
Case 3) R (on leftup(u)) is in the first step of reintegrating and P (on u) is in the second step of
disposing the faulty tile found in FirstNodePatrol. In this case, by construction (Rule 4.2.3(a)), P
moves to rightup(u), drops the faulty tile and returns to u while R waits for the operation to be
completed.
Case 4) R is in the second step of its reintegration (about to descend to node u) and P is in the first
step of disposing the faulty FirstNodePatrol (about to move to node u). In this case, by construction
(Rule 4.2.3(b)) R at rightup(u) waits for P to move to u to pass the faulty tile.

We now focus on the procedures Substitute, Dispose, and Return employed by the algorithm,
and show that their execution always terminate without collisions.

Lemma 5.
(i) Procedure Substitute, when executed, always terminates without collisions.
(ii) Procedures Dispose and Return, when executed, always terminate without collisions.

Proof. (i) There are at most two concurrent executions of Substitute, one in the monitored area
and one in patrolled area. If neither occurs at the border of the two areas, the claim trivially
holds. Consider when there are executions of Substitute at the border: the LMonitor is replacing
LastNodeMonitor and/or the Patroller is replacing LastNodePatroller.

• Only LastMonitorNode is faulty: LMonitor starts the substitute operation as there is no
substitution currently ongoing involving the LastNodePatrol (Rule 4.2.3(d)).

• Only LastPatrolNode is faulty: the Patroller interacts only with LMonitor, exchanging a mes-
sage and the rest of the substitution proceeds by construction without collisions (Rule 4.2.3(c)).

• LastMonitorNode and LastPatrollerNode are faulty: Patroller informs LMonitor from LastN-
odePatrol and waits for receiving acknowledgement before staring the substitution. Once the
substitution is completed, it informs the LastMonitor (Rule 4.2.3(c)). Therefore, only one sub-
stitution is allowed to proceed at the border at a time with priority given to the substitution
of LastPatrollerNode by the Patroller. While the substitution is ongoing, by construction it
will proceed until completion without interference from other robots.

(ii) There is at most one execution of Dispose operation and/or one execution of the Return

operation. The potential collision may occur between FMonitor (disposing of its faulty tile) and a
Superfluous robot, as well as between the Patroller (disposing of the faulty tile) and a Redundant
robot. By construction, Fmonitor waits after broadcasting the message until the passage of FSu-
perfluous robot. The potential collision between the Patroller and Redundant has been considered
in Lemma 4.

The following is easy to see:

Lemma 6.
(i) Every Superfluous robot becomes Done within finite time.
(ii) Every Redundant robot becomes either Done or LMonitor within finite time.

We now show that there are no deadlocks in the system:

Lemma 7. During the execution of Algorithm DLR, no deadlocks occur.

Proof. The following waiting situations happen during the execution of the algorithm:

1. The Redundant robot R is in the second step of reintegration at node u, wanting to descend to
node v = leftdown(u), and the Patroller P wants to move to v for its regular patrolling. Let
v contain a non-faulty tile. In this case, R and P are neighbours and they can communicate:
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P informs R that it wants to descend to v, and P waits for R to descend to v before continuing
the patrolling (Rule 4.2.3(b)). P restarts the regular patrolling as soon as either R moves to v
or the tile on v becomes faulty, in which case P proceeds with a substitution and R waits for
the substitution to be completed. By Lemma 5 the substitution will eventually be completed
and P will move away to dispose of the tile. Note that the tile might become faulty again and
R might again be activated when that happens; also in this case, eventually the wait will be
resolved. This process might be repeated several times, resolved every time. In the worst case,
this will happen until there is no more room for reintegration; that is, when upon activation,
R finds that the patrolled area contains one node and a faulty tile has been passed by P (Rule
4.2.3(a)).

2. A Redundant robot R at node u is in the same situation as in the previous poit: in the second
step of the reintegration, it wants to descend to v = leftdown(u)). If R sees that v is i)
occupied by a robot, or ii) does not contain a tile, or iii) contains a faulty tile, then it has to
wait until the situation changes. Let us show that in all cases, the waiting condition will be
eventually resolved.
i) Let v be occupied by a robot (necessarily Patroller P ). If P is performing the patrolling, it
will by construction move away to continue its regular patrolling and, when coming back, it
will stop to wait for R to descend (Rule 4.2.3(b)). If P is substituting a faulty tile, by Lemma
5 the substitution will eventually be completed and P will move away to dispose of the faulty
tile. Note that the tile might become faulty again and R might always be activated when that
happens: following the same reasoning as in point 1), the waiting condition will be eventually
resolved. ii) and iii) In the case that v does not contain any tile or contains a faulty tile, it
means that the Patroller P is performing (or will perform) a Substitute operation; by Lemma
5 the substitution will eventually be completed and a non-faulty tile will be placed the on v.
Following the same reasoning as in point 1), the waiting condition will be eventually resolved.

3. The Redundant, at node u, has completed the double-step and has to notify the LMonitor to
become Monitor. In the case that it sees the Patroller in downright(u), it has to wait for the
Patroller to move away. By Lemma 5, the Patroller will conclude the substitute operation
and will move away to dispose the faulty tile at rightup(FirstNodePatrol).

4. The Redundant robot R is in the first step of its reintegration and Patroller is in the second
step of disposing the faulty FirstNodelPatrol. In this case, R will wait for this operation to be
completed; specifically, if Patroller is at FirstNodePatrol holding the faulty tile, R waits at
leftup(FirstNodePatrol); if Patroller is at right(FirstNodePatrol) holding the faulty tile and
R is at rightup(FirstNodePatrol), it waits for Patroller to move to FirstNodePatrol and pass
the faulty tile. In the first situation, the Patroller will move rightup(FirstNodePatrol), drop
the faulty tile, and return to the FirstNodePatrol. In the second situation the R will receive
the faulty tile from the Patroller and place it on the rightup(FirstNodePatrol) (Rule 4.2.3(a)).
In both situation the waiting condition is resolved.

5. If the LastNodePatrol is faulty, the Patroller notifies the LMonitor and waits for the acknowl-
edgement before starting the substitution. Once the Lmonitor receives message, it sends an
acknowledgement if there is no substitution involving LastNodeMonitor ongoing. Otherwise,
it sends the acknowlegement once the substitute operation is completed and the faulty tile
is passed for being disposed (Rule 4.2.3(c)).

6. If the LastNodeMonitor and LastNodePatrol are faulty, LMonitor waits until the substitution
of LastNodePatrol is completed. The Patroller always notifies the LMonitor before starting the
substitution, it then notifies again when the substitution is completed. Since the substitution
will eventually terminate, the waiting condition will be resolved.

7. The Redundant robots that received the 〈NoMore〉 message, have to wait to receive the 〈Ack〉
message. As the 〈NoMore〉 is broadcasted, it is received by the FMonitor. Next, the FMonitor
will broadcast the 〈Ack〉 message to the right, reaching all of the robots.
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8. After the broadcast of the 〈Ack〉 message, Fmonitor waits until the passage of FSuperfluous
robot. After receiving the 〈Ack〉 message, all the redundant robots become Superfluous except
the one that started the broadcast of the 〈NoMore〉 message that becomes FSuperfluous. At
this point all of them start moving to the left until they reach the end of the faulty tiles on
the left. Eventually, FSuperfluous will pass by Fmonitor.

Termination of the reintegration process then follows:

Lemma 8. The end of reintegration process terminates correctly.

Let f(t) denote the number of faulty tiles at time t. From the above sequence of lemmas, we have:

Lemma 9. Let no more failures occur after time t̂ ≥ 0 and at least one tile be non-faulty. Then
there is a time t∗ ≥ t̂ such that ∀t ≥ t∗:
(i) All n′ = n − f(t̂) non-faulty tiles form a compact line on L0, and all f(t̂) faulty tiles form a
compact line or two compact lines on L1.
(ii) r′ = min{r, n′} robots are on distinct tiles on L0 and the other r− r′ robots are on distinct tiles
on L1 in state Done.
(iii) If r′ < n′, then the rightmost robot on L0 is in state Patroller and the others are monitoring
the leftmost r′ − 1 tiles; if r′ = n′, then each tile on L0 is monitored by a robot.

In conclusion:

Theorem 7. Algorithm DLR solves the Dynamic Line Maintenance problem with an arbitrary
number of robots.

5 Conclusions

In this paper, we started the investigation of computing in the Hybrid Programmable Matter model in
presence of multiple robots operating concurrently and of dynamic failures of the tiles. We considered
the problem of maintaining a line formation of tiles when any tile can stop functioning at any time,
and when the number of robots is arbitrary. In our solution, the robots, which have the power only
of finite state machines and have only local communication capabilities, cooperate to rearrange the
line as faulty tiles are discovered, substituted (to restore the line shape of the non-faulty tiles), and
disposed of; all of this is done avoiding collisions, deadlocks, and disconnections.

This work opens several new research directions. These include, for example, the examination of
possible speed-up vs the increased complexity due to coordination among the robots, and the study
of the maintenance of more complex shapes.
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