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Abstract

The main contribution of this paper is to present an efficient hardware algorithm for RSA
encryption/decryption based on Montgomery multiplication. Modern FPGAs have a number
of embedded DSP blocks (DSP48E1) and embedded memory blocks (BRAM). Our hardware
algorithm supporting 2048-bit RSA encryption/decryption is designed to be implemented using
one DSP48E1, one BRAM and few logic blocks (slices) in the Xilinx Virtex-6 family FPGA. The
implementation results showed that our RSA module for 2048-bit RSA encryption/decryption
runs in 277.26ms. Quite surprisingly, the multiplier in DSP48E1 used to compute Montgomery
multiplication works in more than 97% clock cycles over all clock cycles. Hence, our implemen-
tation is close to optimal in the sense that it has only less than 3% overhead in multiplication
and no further improvement is possible as long as Montgomery multiplication based algorithm
is used. Also, since our circuit uses only one DSP48E1 block and one Block RAM, we can
implement a number of RSA modules in an FPGA that can work in parallel to attain high
throughput RSA encryption/decryption.
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1 Introduction

RSA [9] is one of the most widely used public key cryptography, which can be done by computing
modulo exponentiation such as C = PE mod M . The security of the RSA cryptosystem is based on
the problem of factoring large numbers problem. An RSA operation is a modular exponentiation,
which requires repeated modular multiplications. For security reasons, greater than 1024-bit length
of keys are suggested recently, which leads to a huge time consumption. Therefore, Montgomery
Modular Multiplication algorithm [7] is proposed as the most efficient modular multiplication algo-
rithm available. Most of literatures have reported to implement RSA by Montgomery Multiplication
such as [2, 3, 11]. With Montgomery Multiplication algorithm, trial division can be replaced by the
modulus with a series of additions and shift operations.

An FPGA is a programmable logic device designed to be configured by the customer or designer
by hardware description language after manufacturing. Since FPGA chip maintains relative lower
price and programmable features, it is widely used in those fields which need to update architecture
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or functions frequently such as communication and education. The most common FPGA architecture
consists of an array of logic blocks, I/O pads, Block RAMs and routing channels. Recent FPGAs
have embedded microprocessors to broaden a growing range of other areas. A recent trend has been
to take the coarse-grained architectural approach by combining the logic blocks and interconnects
of them. Furthermore, embedded DSP blocks have integrated into an FPGA that makes a higher
performance and a broader application.

The main contribution of this paper is to present an efficient hardware algorithm of modular
exponentiation, maximized making use of the DSP blocks in our target FPGA, Xilinx Virtex-6
family. Our hardware algorithm requires only one DSP block, as well as one Block RAM with a
small quantity of logic blocks. A multiplier in the DSP block works in more than 90% over all the
clock cycles. From 64-bit, up to 2048-bit RSA encryption/decryption can be applied in the same
architecture without any modification.

Our modular exponentiation algorithm implemented in Xilinx Virtex-6 family FPGA XC6VLX240T-1
uses only one DSP48E1 Block, one Block RAM, and few logic blocks (slices). The implementation
results showed that our RSA module for 2048-bit RSA encryption/decryption runs in 447.027MHz
using 123940864 clock cycles, that is, in 277.26ms. Quite surprisingly, Montgomery multiplica-
tion based RSA encryption/decryption needs 120434688 times of 17-bit multiplication, and thus,
a multiplier in DSP48E1 is used in more than 97% clock cycles over all clock cycles. Hence our
implementation is close to optimal in the sense that it has only less than 3% overhead and no fur-
ther improvement is possible as long as Montgomery multiplication based algorithm is used. For
the comparison purpose, our circuit also implemented in obsolete generation Xilinx Virtex-5 and
Virtex-4 FPGA. Also, since our circuit uses only one DSP48E1 block and one Block RAM, we can
implement a number of RSA modules in an FPGA that work in parallel to attain high through-
put RSA encryption/decryption. Actually, we have implemented 128 RSA encryption/decryption
circuits to improve the throughput greatly.

The remaining contents of this paper are organized as follows. Section 2 introduces modular expo-
nentiation and Montgomery modular multiplication algorithm and its relative researches. Section 3
describes our proposed hardware algorithm and its architecture. Section 4 gives the experimental
result, its analysis and comparisons with relative literatures. Finally, Section 5 is a brief conclusion.

2 Modular Exponentiation

In the RSA encryption/decryption, the modular exponentiation C = PE mod M or P = CD mod M
are computed, where P and C are plain and cypher text, and (E,M) and (D,M) are encryption
and decryption keys. Usually, the bit length in P , D, and M is 512 or larger. Also, the modulo
exponentiation is repeatedly computed for fixed E, D, and M , and various P and C. Since modulo
operation is very costly in terms of the computing time and hardware resources, Montgomery modular
multiplication [7] is used, which does not directly compute modulo operation.

2.1 Montgomery Modular Multiplication

Montgomery multiplication [7], introduced in 1985 by Peter Montgomery, is an optimal method to
calculate modular exponentiation. Three R-bit numbers X, Y , and M are given, and (X · Y + q ·
M) · 2−R mod M is computed, where an integer q is selected such that the least significant R bits
of X · Y + q · M are zero. The value of q can be computed as follows. Let (−M−1) denote the
minimum non-negative number such that (−M−1) ·M ≡ −1( or 2R −1) (mod 2R). Since M is odd,
then (−M−1) < 2R always holds. We can select q such that q = ((X · Y ) · (−M−1))[r − 1, 0]. For
such q, (X · Y + q · M)[r − 1, 0] are zero. For the reader’s benefit, we will confirm this fact using
an example. Suppose X = 10010011(147), Y = 01011100(92), M = 11111011(251), and R = 8. We
have the product X · Y = 011010011010100(13524). Next, we need to select an integer q such that
the least significant R bits of X ·Y + q ·M are zero. In this case, (−M−1) = 11001101(205), because
(−M−1) · M ≡ 1100100011111111(51455) ≡ −1 (mod 2R). Thus q = (X · Y )[R − 1, 0] · (−M−1) =
11000100(196) is selected. Then the product q·M = 1100000000101100(49196) and the sum X ·Y +q·
M = 1111010100000000(62720) could be obtained. Now, we have (X ·Y +q ·M)[R−1, 0] = 00000000
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and (X · Y + q ·M) · 2−R = (X · Y + q ·M)[2R− 1, R] = 11110101(245). Since 0 ≤ X,Y < M < 2R

and 0 ≤ q < 2R, it is guaranteed that (X · Y + q · M) · 2−R < 2M . Therefore, by subtracting M
from (X · Y + q · M) · 2−R, we can obtain (X · Y + q · M) · 2−R mod M if it is not less than M .

Radix-2r Montgomery multiplication is shown in Algorithm 1. In Algorithm 1, d = ⌈R/r⌉
presents the number of digits in radix-2r operands. The multiplier Y is partitioned by each r-bit
and Yi represents the i-th digit of Y . Therefore, Y could be given by Y =

∑d−1
i=0 2ir ·Yi. After d loops,

R-bit Montgomery multiplication can be computed. As far as now, Montgomery multiplication could
be computed by multiplication, addition and shift operations without modulo operations. The later
is time cost and resource cost.

- Algorithm 1: radix-2r Montgomery Multiplication -
radix-2r, d = ⌈R/r⌉, X,Y,M ∈ {0, 1, ..., 2R − 1},
Y =

∑d−1
i=0 2ir · Yi, Yi ∈ {0, 1, ..., 2r − 1}

(−M−1) · M ≡ −1 mod 2r, −M−1 ∈ {0, 1, ..., 2r − 1}
Input: X,Y,M,−M−1

Output: Sd = X · Y · 2−dr mod M
1. S0 ← 0
2. for i = 0 to d − 1 do
3. qi ← ((Si + X · Yi) · (−M−1)) mod 2r

4. Si+1 ← (X · Yi + qi · M + Si) / 2r

5. end for
6. if (M ≤ Sd) then Sd ← Sd − M

Since X ·Y +q ·M ≡ X ·Y (mod M), we write (X ·Y +q ·M) ·2−R mod M = X ·Y ·2−R mod M .
Let us see how Montgomery modular multiplication is used to compute C = PE mod M . Suppose
we need to compute C = PE mod M . For simplicity, we assume that E is a power of two. Since
R and M are fixed, we can assume that 22R mod M is computed beforehand. We first compute
P · (22R mod M) · 2R mod M = P · 2R mod M using the Montgomery modular multiplication. We
then compute the square (P ·2R mod M)·(P ·2R mod M)·2−R mod M = P 2·2R mod M . It should be
clear that, by repeating the square computation using the Montgomery modular multiplication, we
have PE ·2R mod M . After that, we multiply 1, that is (PE ·2R mod M)·1·2−R mod M = PE mod M
is computed. In this way, cypher text C could be obtained.

Algorithm 2 shows the modular exponentiation using Montgomery multiplication of Algorithm 1.
In Algorithm 2, Eb represents the size of E. Inputs 22dr mod M and −M−1 are given. To use
Montgomery modular multiplication, C and P are converted from 1 and P in the 1st line and the
2nd line, respectively. The portion underlined in Algorithm 2 can be computed using Montgomery
multiplication of Algorithm 1.

- Algorithm 2: Modular Exponentiation -
0 ≤ E ≤ 2Eb − 1, E =

∑Eb−1
i=0 2i · Ei, Ei ∈ {0, 1}

Input: P,E,M,−M−1, 22dr mod M
Output: C = PE mod M
1. C ← (22dr mod M) · 1 · 2−dr mod M ;
2. P ← (22dr mod M) · P · 2−dr mod M ;
3. for i = Eb − 1 downto 0 do
4. C ← C · C · 2−dr mod M ;
5. if Ei = 1 then C ← C · P · 2−dr mod M ;
6 end for
7. C ← C · 1 · 2−dr mod M ;

2.2 Related Researches

There are several researches reported to implement modular exponentiation by Montgomery multi-
plication algorithm. In [4], the number of multiplications and additions, the times of memory access,
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and the size of memory necessary to compute Montgomery modular multiplication are evaluated by
software implementation. McIvor et al. implemented and evaluated three algorithms shown in [4]
on FPGAs [6]. Blum and Paar proposed a modular exponentiation hardware algorithm with a
radix-2 Montgomery multiplication using systolic array [2]. Also, a radix-24 modular exponentia-
tion circuit that is an extended method of the radix-2 circuit is proposed [3]. The circuits above
are fixed for the size of operands. However, the following methods that are independent of the size
of operands were proposed. Tenca et al. presented a radix-2 scalable Montgomery multiplication
architecture [11]. This architecture uses fixed processing elements to deal with variable bit length
of operands. Nakano et al. presented a radix-216 Montgomery multiplier and an RSA encryption
hardware algorithm using embedded Block RAMs of an FPGA efficiently [8]. In the algorithm, they
use a method to prevent a long carry delay in huge integer addition with redundant number system.
Mazzeo et al. proposed a small RSA encryption circuit [5]. They compute Montgomery multiplica-
tion in Digit-Serial way using Radix-2. Suzuki proposed a high speed modular exponentiation circuit
featuring a Xilinx FPGA which contains DSP blocks with radix-217 [10]. Several DSP blocks are
used to achieve a high operation frequency. Alho et al. implemented the modular exponentiation
using Altera FPGA with a single DSP block in radix-218 [1]. The performance issues of above works
will be discussed in Section 4 .

Above literatures introduce methods to implement modular exponentiation in FPGA using Mont-
gomery multiplication featuring radix, device and scalability. In this work, we propose an efficient
method to implement modular exponentiation using Xilinx FPGA in radix-217. The radix-217 is
decided by the feature of embedded DSP blocks in our target device.

3 Modular Exponentiation Algorithm with Single DSP Block
and Single Block RAM

In our hardware algorithm, we use an embedded DSP block and a Block RAM in Xilinx FPGA. This
section mainly shows a Montgomery modular multiplication circuit and a modular exponentiation
circuit with it.

3.1 FPGA architecture

Our proposed algorithm is implemented in a Xilinx Virtex-6 family FPGA which is a low-power-cost
and high speed device [15]. In this section, features of Virtex-6 are briefly described necessary to
explain our hardware algorithm. However, our algorithm can be implemented to other families of
Xilinx FPGA; Xilinx Virtex-5 [13] and Virtex-4 [12]. The implementation results will be discussed
in Section 4.

The schematic diagram of Virtex-6 FPGA is shown as Figure 1. An FPGA chip is composed by
CLBs (Configurable Logic Blocks), which are the basic programmable logic blocks, configurable inner
connections and input/output blocks (I/O Blocks). To compensate for processing speed insufficiency
of CLBs, Virtex-6 FPGAs have a DSP48E1 block that is a DSP block with a multiplier and an adder,
which can perform multiply-accumulate operation in high clock frequency. Also, Virtex-6 FPGAs
have a Block RAM to compensate for memory insufficiency of CLBs. In our proposed algorithm,
these blocks are used efficiently.

The CLB in Virtex-6 consists of 2 sub-logic blocks called Slice. With the components LUT (Look
Up Table) and Flip-Flop in the slice, various combinatorial circuits and sequential circuits can be
implemented.

The DSP48E1 block has a two-input multiplier followed by multiplexers and a three-input
adder/subtractor/accumulator. The DSP48E1 multiplier has an 18-bit and a 25-bit two’s com-
plement operands and produces one 48-bit two’s complement operand. Programmable pipelining of
input operands, intermediate products, and accumulator outputs enhances throughput and improves
the frequency. Our algorithm utilizes a DSP48E1 block using multiply accumulate (MACC) of 17-bit
operands. Among the operators of the DSP48E1, since the pipeline registers are used, its latency
has been increased. This latency is absorbed by always performing the multiplier in our algorithm.
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Figure 1: Internal Configuration of Virtex-6 FPGA

The Block RAM is a synchronized write and read embedded memory. In Virtex-6 FPGA, it can
be configured as a 36k-bit dual-port Block RAMs, FIFOs, or two 18k-bit dual-port RAMs. In our
architecture, it is used as a 1k×18-bit dual-port RAM.

3.2 Montgomery Modular Multiplication Algorithm with Single DSP
Block and Single Block RAM

Algorithm 3 shows our proposed algorithm of Montgomery multiplication. Let {A : B} denote a
concatenation of A and B. For example, if A = (FF )16 and B = (EC)16, {A : B} = (FFEC)16.
Algorithm 3 is an improved algorithm from Algorithm 1 introduced in Section 2.1. Considering the
features of our target Virtex 6 FPGA, radix-217 is selected. Let R denote the size of Montgomery
multiplier operands X, Y , and M . Also, d = ⌈R/17⌉ is the number of digits of the operands on
radix-217. In the algorithm, we introduce the condition 17d ≥ R+3 to ignore the subtraction shown
in the 6th line of Algorithm 1. If the condition is satisfied, we can guarantee that at least 3-bit 0
is padded to the most significant bits of the most significant digit as the redundancy. Due to the
stringent page limitation, the proof is omitted. However, we can say that M ≥ C is always satisfied
in the modular exponentiation shown in Algorithm 2 . Further, in practical RSA encryption, the
size of operands is radix-2 numbers such as 512-bit, 1024-bit, 2048-bit, and 4096-bit. For radix-217

system, the condition 17d ≥ R + 3 is satisfied. If the condition is not satisfied, we just need to
append one redundant digit at the most significant digit.

Algorithm 3 is a radix-217 digit serial Montgomery algorithm from Algorithm 1. In other words,
each 17-bit, as 1 digit, is processed every clock cycle. For this reason, the operands X, Y , M , and Si

are split into 17-bit digits Xj , Yj , Mj , and S(i,j), respectively. The loop from the 2nd to 11th lines
of Algorithm 3 corresponds to the 2nd to 5th lines of Algorithm 1. Comparing the two algorithms,
Si+1 ← (X · Yi + qi · M + Si) / 2r of the 4th line of Algorithm 1 corresponds to the digit serial
processing by 4th to 10th lines of Algorithm 3. In Algorithm 3, Cα, Cβ , Cγ , and CS are carries and
they are added at the next loop. In the algorithm, Cα, Cβ are 17-bit carries for 17-bit MACC, and
Cγ , CS are 1-bit carries for 17-bit addition. For example, at the 6th line a product of Xj and Yi,
and an addition of the product and Cα are computed. The resulting upper 17-bit denotes a carry
Cα which can be added at next loop. The lower 17-bit of result is α which is used at the 8th and
9th lines. These carries in our algorithm appear in both the 17-bit MACC and the 17-bit adder to
prevent a long carry chain that causes circuit delay.

- Algorithm 3: Our Montgomery Algorithm -
radix-217, d = ⌈R/17⌉, 17d ≥ R + 3,
X, Y,M, Si ∈ {0, 1, ..., 2R − 1},
−M−1, α, β, γ, Cα, Cβ ∈ {0, 1, ..., 217 − 1}, Cγ , CS ∈ {0, 1},
X =

∑d−1
i=0 217i · Xi, Xi ∈ {0, 1, ..., 217 − 1}, Xd = 0

Y =
∑d−1

i=0 217i · Yi, Yi ∈ {0, 1, ..., 217 − 1}
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Table 1: Data Flow of Our Montgomery Multiplier

T(clock) Multiplier(DSP48E1) Adder(DSP48E1) Adder(CLB)
... ... ... ...
k X0 · Yi {Cβ : β} ← q · Md + Cβ {CS : S(i,d−2)} ← γ + S(i−1,d−1) + CS

k + 1 X0 · Yi + S(i,0) {Cγ : γ} ← α + β + Cγ

k + 2 {CS : S(i,d−1)} ← γ + S(i−1,d) + CS

k + 3 q ← (X0 · Yi + S(i,0)) · (−M−1)
k + 4
k + 5
k + 6 X0 · Yi

k + 7 q · M0 {Cα : α} ← X0 · Yi + Cα

k + 8 X1 · Yi {Cβ : β} ← q · M0 + Cβ

k + 9 q · M1 {Cα : α} ← X1 · Yi + Cα {Cγ : γ} ← α + β + Cγ

k + 10 X2 · Yi {Cβ , β} ← q · M1 + Cβ {CS : S(i+1,−1)} ← γ + S(i,0) + CS

... ... ... ...
k + 2d + 6 Xd · Yi {Cβ : β} ← q · M(d−1) + Cβ {CS : S(i+1,d−3)} ← γ + S(i,d−2) + CS

k + 2d + 7 q · Md {Cα : α} ← Xd · Yi + Cα {Cγ : γ} ← α + β + Cγ

k + 2d + 8 X0 · Yi+1 {Cβ : β} ← q · Md + Cβ {CS : S(i+1,d−2)} ← γ + S(i,d−1) + CS

k + 2d + 9 X0 · Yi+1 + S(i+1,0) {Cγ : γ} ← α + β + Cγ

k + 2d + 10 {CS : S(i+1,d−1)} ← γ + S(i,d) + CS

k + 2d + 11 q ← (X0 · Yi+1 + S(i+1,0)) · (−M−1)
k + 2d + 12
k + 2d + 13
k + 2d + 14 X0 · Yi+1

... ... ... ...

M =
∑d−1

i=0 217i · Mi,Mi ∈ {0, 1, ..., 217 − 1},Md = 0
Si =

∑d−1
j=0 217j · S(i,j), S(i,j) ∈ {0, 1, ..., 217 − 1}, Sd = 0

Input: X,Y,M,−M−1

Output: Sd = X · Y · 2−17d mod M
1. S0 ← 0
2. for i = 0 to d − 1 do
3. q ← ((X0 · Yi + S(i,0)) · (−M−1)) mod 217

4. Cα, Cβ , Cγ , CS ← 0
5. for j = 0 to d do
6. {Cα : α} ← Xj · Yi + Cα

7. {Cβ : β} ← q · Mj + Cβ

8. {Cγ : γ} ← α + β + Cγ

9. {CS : S(i+1,j−1)} ← γ + S(i,j) + CS

10. end for
11.end for

3.2.1 Architecture of Montgomery Multiplier with Single DSP Block and Single Block
RAM

Figure 2 shows the architecture of Montgomery multiplier using Algorithm 3. The inputs of Mont-
gomery multiplier are supplied from a Block RAM and registers of modular exponentiation circuit.
Given the inputs, the operations of Algorithm 3 are executed by the MACC composed with one
DSP48E1 and one adder composed with CLBs. The data flow of these operations is shown in
Table 1.

The computations of the 3rd, 6th and 7th lines are executed with the DSP48E1. In order to
obtain q in the 3rd line, X0 · Y0 + S(i,0) is obtained first. After that, (X0 · Yi + S(i,0)) · (−M−1) is
computed. According to Table 1, 6 clock cycles are necessary to compute q. In the 6th line, 17-bit
multiplication Xj · Yi is computed and the carry Cα for the digit is added at the same time. The
production and the addition are computed using the DSP48E1. After that, the lower 17-bit of the
result will be added in the following adder composed by CLB. On the other hand, the upper 17-bit
of the result is stored as a carry into the pipeline register and added at the next clock. The 7th line
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Figure 2: Structure of our Montgomery multiplier

q ·Mj + Cβ is computed as the same as the 6th line using DSP48E1. As shown in Table 1, the sums
of products of the 6th and 7th lines in Algorithm 3 are computed by alternate inputs of Xj , Yi and
Mj , q. Since the carries are stored to the pipeline register in the DSP48E1, our circuit is able to be
performed efficiently.

The adder, that is composed by CLBs, following the DSP48E1 computes α+β+Cγ , γ+S(i,j)+CS

of the 8th and 9th lines in the Algorithm 3. Since Cγ and CS are 1-bit carry, they can be computed
by a two-input 17-bit adder. The operands S(i,j) comes from the Block RAM, α, β come from
DSP48E1 and γ is feedback of α + β + Cγ . The most significant bit of the output is feedback to the
adder as carries CS and Cγ . Also, the lower 17-bit of the output is feedback to the adder, while at
the same time S(i+1,j−1) is stored into the Block RAM. These can be computed using registers and
multiplexers as shown in Figure 2.

3.2.2 Necessary Clock Cycles

In our algorithm, based on the radix-217 number system, R-bit operands are split into d = ⌈R/17⌉
blocks. Let MMmul denote the number of clock cycles to compute the Montgomery multiplication.
In [4], the number is computed by the following equation;

MMmul = 2d2 + d (1)

The equation means that d2 multiplications are necessary to compute X · Y and q · M , and d
multiplications are needed to obtain q.

On the other hand, the number of clock cycles MMclk of our Montgomery algorithm is computed
by Equation 2.

MMclk = ((d + 1) · 2 + 6) · d + 4 = 2d2 + 8d + 4 (2)

It shows that from the 5th to 10th lines of Algorithm 3, (d + 1) · 2 + 6 cycles are necessary for
the loop, and d cycles are needed for loop from 2nd to 11th lines. Also, in order to complete the
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Figure 3: Embedded multiplier utilization rate of our Montgomery multiplier(MMmul/MMclk )

computation of operands of the modular exponentiation Montgomery circuit shown in Section 3.3,
another 4 cycles are necessary.

Figure 3 shows the utilization rate of the multiplier in our proposed algorithm. From this figure,
when the size of operands R is larger than 500-bit, the utilization rate is more than 90%. Also, if
the size of operands is 2048-bit, the utilization rate is more than 97%. Since the size of operands
should be large in practice, our proposed algorithm is optimal for a single DSP48E1 slice.

3.3 Modular Exponentiation Circuit with Single DSP Block and Single
Block RAM

In our modular exponentiation circuit, the modular multiplication shown in Algorithm 2 is applied.
In the algorithm, the modular exponentiation C = PE mod M can be computed by iterations
of the Montgomery multiplication. The block diagram of our modular exponentiation circuit is
shown in Figure 4. The internal configuration of Block RAM is shown in Figure 5. The modular
exponentiation circuit is consists of MM control circuit and ModExp control circuit. The data flow
shown in Table 1 is controlled by MM control circuit. and it supplies the inputs of the multiplier
inside of the Montgomery processor. Also, the number of shift for E to decide the inputs of the
Montgomery block by ModExp.

The inputs of modular exponentiation are R-bit integers P,E,M, 22dr mod M and 17-bit −M−1.
The output is R-bit integer C. Also, R-bit S is used to store the interim results of Montgomery
multiplier. The storage architecture of a 1k ×18-bit Block RAM is shown as Figure 5. According
to the figure, six R-bit memory spaces and one 17-bit memory space are necessary. In our work, in
order to simplify the control circuit, 1k address space is used and split into 8 portions as shown in
Figure 5. Furthermore, a flag bit is appended as MSB to every 17-bit block to find the end of each
data. Considering the condition d = ⌈R/17⌉ of Algorithm 3, when only one Block RAM is used, the
maximum size of operands is R = 128 · 17 − 3 = 2173-bit.

The number of clock cycles necessary to perform modular exponentiation using Algorithm 2
and Montgomery multiplier shown in Section 4 can be calculated by Equation 3 and Equation 4.
Equation 3 represents the maximum number of cycles when all the bits of E are 1. Actually it could
not happen in practice since E is a prime number, then, the average number of cycles are computed
as Equation 4 which represents the condition that Eb/2-bit of E is 1.

MEclk ,max = (2d2 + 8d + 4) · (2Eb + 3) (3)

MEclk ,avr = (2d2 + 8d + 4) · (1.5Eb + 3) (4)
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Figure 4: Structure of our modular exponentiator

Figure 5: Internal configuration of Block RAM in our modular exponentiator
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Table 2: Experimental result of our modular exponentiator using Virtex-6 FPGA
Virtex-6

Number of occupied Slices 180/301440
Number of 36k-bit BRAMs 1/416
Number of DSP48E1s 1/768
Maximum Frequency[MHz] 447.027

Table 3: Worst-case execution time of our modular exponentiator using Virtex-6 FPGA
Bit length R 64 128 256 512 1024 2048
Blocks d 4 8 16 31 61 121
Frequency[MHz] 447.027 447.027 447.027 447.027 447.027 447.027
Clock cycles 9344 51456 332288 2231296 16259072 123940864
Execution time[ms] 0.02 0.12 0.74 4.99 36.37 277.26

4 Experimental Results and Discussions

The proposed modular exponentiation circuit is implemented and evaluate on Xilinx Virtex-6 FPGA
XC6VLX240T-1, programmed by hardware description language Verilog HDL and synthesized with
Xilinx ISE Foundation 11.4.

Table 2 shows the synthesized result for the Virtex-6 FPGA. As shown in Section 3.1, Table 2
lists the resource costs. According to the table, the size of our circuit is quite small. Also, since the
maximum clock frequency of DSP48E1 is 600MHz, an extremely high frequency can be obtained
by our algorithm. Table 3 shows the worst execution time of modular exponentiation based on
Equation 3 and Table 2. Any bit length of operands of Modular exponentiation less than 2173-bit
can be executed in the same circuit without any modification.

For comparison, our proposed algorithm is also implemented on Xilinx Virtex-5 FPGA XC5VSX50T-1
and Xilinx Virtex-4 FPGA XC4VSX35-10. Virtex-5 FPGA and Virtex-4 FPGA are the previous
generations FPGA produced by Xilinx. Comparing with Virtex-6 FPGA, although there are some
differences on the programmable logic and DSP block, proposed algorithm can be implemented in
these devices using almost the same Verilog code. However, the description for the DSP block should
be modified. For Virtex-5 and Virtex-4 FPGAs, their pipeline registers and MACC are also con-
tained in the DSP block, as shown in Figure 6. Thus proposed algorithm can be applied with the
same configuration. Table 4 and 5 show the synthesized results. Although it is difficult to compare
their performances because of the different structures of these devices, it is obviously shown that
our proposed architecture is compatible to all kinds of FPGAs.

There are a number of literatures reported to implement modular exponentiation using FPGAs
as described in Section 2.2. Performances such as the device, circuit size, frequency, execution time
and scalability of 1024-bit modular exponentiation circuit are compared in Table 6. In the RSA
encryption/decryption, the modular exponentiation C = PE mod M is computed, where C and P
are cypher/plain text and plain/cypher text, respectively, and (E,M) is an encryption/decryption
key. In typical 1024-bit RSA encryption/decryption, the bit length of E and M is approximately
1024. Also, as shown in Equations (3) and (4), execution time depends on the size of E and the
number of 1’s in E. Execution time denotes the worst case when all the 1024-bit of E are 1. Average
case evaluates the execution time corresponding to the average case that a half (512-bit) of 1024-bit
of E is 1. Blum et al. [3] implemented a high speed modular exponentiation circuit based on radix-24

using Montgomery multiplication. Comparing with proposed algorithm, it is not scalable and too
many logic blocks are used without memory blocks or DSP blocks. Nakano et al. [8] implemented a
modular exponentiation circuit by the redundant number system and LUTs. The scale of the circuit
is huge and scalability is not supported. However, the authors have used the embedded Block RAMs
and embedded Multipliers to achieve a high speed circuit.
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Figure 6: Internal Configuration of DSP48E1 in Our Architecture

Table 4: Experimental result of our modular exponentiator using Virtex-5 FPGA
Virtex-5

Number of occupied Slices 128/8160
Number of 18k-bit BRAMs 1/132
Number of DSP48Es 1/288
Maximum Frequency[MHz] 362.5

Table 5: Experimental result of our modular exponentiator using Virtex-4 FPGA
Virtex-4

Number of occupied Slices 251/15360
Number of RAMB16s 1/192
Number of DSP48s 1/192
Maximum Frequency[MHz] 291.4

Suzuki implemented a circuit on Xilinx Virtex-4 FPGA with DSP blocks which is scalable and
extremely fast [10]. However, the amount of circuit resources is comparatively larger than in our
method: 17 times more DSPs and 21 times larger logic blocks. In order to increase the clock
frequency, Suzuki used a pipeline structure whose registers are composed by logic blocks. Mazzeo
et al. have shown that radix-2 based Montgomery multiplier can run in Digit-Serial way without
memory blocks or DSP blocks [5]. Their circuit has a small scale, however nevertheless about 6 times
larger than our circuit. They evaluated the performance using E = 217 + 1 (see Table 6), which
means that the size of E is only 18 bits long, and that there are only two bits in E set to 1 (the
most significant and the least significant ones). Such a small bit length is reasonable for encryption,
but safe decryption typically requires lengths around 1024 bits. Under the same E = 217 + 1, our
method outperforms Mazzeo et al.’s by a factor of 33 times (0.12ms against 3.86ms). Similar to
the proposed architecture, Alho et al. implemented modular exponentiation using one DSP block in
Digit Serial way [1]. However, their DSP block requires two multipliers, while only one is necessary
in our solution. If we had used 2 multipliers, the two multiplications listed in the Algorithm 3 (lines
6 and 7) could have being computed in parallel, thus reducing the computation time. Our method
is also faster in the average case, although a direct comparison is difficult due to the fact that Alho
et al. used a different FPGA.

Since DSP48E1s and Block RAMs are efficiently used in our circuit, the size of our modular
exponentiation circuit is very small. Also, the DSP48E1 works almost all the clock cycles shown in
Section 3.2.2. Therefore we have achieved a quality performance with high execution frequency and
our architecture could be said most optimal when only 1 multiplier is used.

According to the above results, we have implemented a multi-processors system that has 128
processors in a Virtex-6 family FPGA XC6VLX240T-1. In the system, each processor is our RSA
implementation as shown in the above sections. Table 7 shows the result of synthesis of our multi-
processors system. From the table, 64 Block RAMs are used in our multi-processor circuit. Further,
since the Block RAM in the Virtex-6 FPGA is dual port, that is, it has two address ports and
can be read the data of two addresses, which can be distinct, in the same time [14]. Hence, two
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Table 6: Comparison with previous 1024-bit modular exponentiator algorithms
Blum [3] Nakano [8] Suzuki [10]

Device Xilinx XC40250XV Xilinx XC2VP30-6 Xilinx XC4VFX12-10
Logic block 6633 CLBs 11589 Slices 3937 Slices
Memory block - 29 BRAMs 7 BRAMs
DSP block - 64 18× 18-bit multipliers 17 DSP48s
Frequency[MHz] 45.6 52.9 400, 200
Execution time[ms] 11.95(worst case) 2.52(worst case) 1.71(worst case)
Scalable no no yes

Mazzeo [5] Alho [1] This work
Device Xilinx Virtex-E2000-8 Altera Stratix EP1S40 Xilinx XC6VLX240T-1
Logic block 1188 Slices 341 LEs 180 Slices
Memory block - 13604-bit 1 BRAM
DSP block - 1 DSP 1 DSP48E1
Frequency[MHz] 86.2 198 447.027
Execution time[ms] 3.86(E = 217 + 1) 28(average case) 36.37(worst case)
Scalable no yes yes

processors can share the one 36k-bit Block RAMs as two 2k × 18k-bit Block RAMs. Therefore, in
the multi-processor system, the number of used Block RAMs is equivalent to the half number of
processors. Also, the timing analysis reported that our implementation runs in 447.027MHz. Because
the frequency is the same as that of the single processor implementation as shown in Table 2, each
processor can work without decreasing performance for the increase of the circuit elements.

Table 7: Experimental results of our 128-processor system
Virtex-6

Number of occupied Slices 23040/301440
Number of 36k-bit BRAMs 64/416
Number of DSP48E1s 128/768
Maximum Frequency[MHz] 447.027

5 Conclusions

In this paper, we have proposed a hardware algorithm for modular exponentiation using minimum
logic units with maximized use of a DSP block. Our hardware algorithm is close to optimal in the
sense that running clock cycles is close to the lower bound of the number of multiplications involved
in Montgomery multiplication. In other words, a multiplier in a DSP block works during almost
all the processing clocks. Our algorithm is evaluated in the latest Xilinx Virtex-6 family FPGA.
Experimental results show that our implementation runs very fast given the tiny amount of circuit
resources required. Also, our algorithm can be executed in parallel to attain high throughput RSA
encryption/decryption.
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