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Abstract

A true random number generator (TRNG) is suitable for generating secure keys and nonces.
TRNGs implemented in IoT devices must be small in scale, have low power consumption,
and be feasible. The random number sequence generated by TRNG needs to have high entropy
immediately after startup and a stable state. This paper implements three types of ring oscillator
type TRNGs, TERO-based, COSO-based, and STR-based TRNG, on Zynq-7010. When these
TRNGs are implemented as a single entropy source, it is challenging to implement them because
evaluating the layout and wiring for each FPGA is necessary. This paper evaluates a TRNG
configuration, which exclusively ORs the outputs of multiple entropy sources. We show that
this configuration can reduce the implementing difficulty and realize high entropy. For the
random number sequence evaluation, we use the statistical test of NIST SP800-90B, SP800-22,
and BSI AIS 20/31. In addition, the random number sequence immediately after the startup is
also statistically evaluated. As a result, our evaluated TRNGs generate high entropy random
numbers. They are easy to implement on FPGA when we implement TRNGs with eight single
entropy sources for TERO-based TRNG, 48 for COSO-based TRNG, and two for STR-based
TRNG, respectively.
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1 Introduction

The Internet of Things (IoT) system is attracting attention as a system that provides new services.
Security is one of the important requirements for IoT systems. In addition, sensors on IoT systems
need to realize security with small-scale and low-power resources.

A random number sequence with high entropy is required to generate nonces and keys for cryp-
tographic processing in IoT devices. There are three requirements for random number sequences
used in security: randomness, non-reproducibility, and unpredictability.

There are two types of random number generators. One is a pseudo-random number generator
(PRNG) that generates random numbers using an algorithm. The other is a true random number
generator (TRNG) that uses analog noise from physical phenomena. TRNG meets the above three
requirements.

Two ways of implementing TRNG are used: One is to use an analog circuit and retrieve an
entropy source [1, 2], such as thermal noise. The other is to use a digital circuit and retrieve an
entropy source [3, 4, 5, 6, 7, 8, 9], such as its clock jitter and its metastability. The digital circuit
type TRNG is relatively low-cost. Therefore, this type is suitable for IoT devices.
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In addition, TRNG implemented in IoT devices is expected to generate random numbers with
high entropy immediately after startup with low power consumption and small scale.

Petura et al.[10] reported that they implemented five types of Ring Oscillator (RO) based TRNG
on Field Programmable Gate Array (FPGA) and evaluated the random number using statistical
tests in German standard AIS 20/31 [11]. Among five TRNGs, they describe that the entropies
vary greatly depending on the layout and wiring. Especially for the Transition Effect RO (TERO)
based, the Coherent Sampling RO (COSO) based, and the Self-timed Ring (STR) based TRNG.
Great labor needs to find suitable to find suitable parameters to get high entropy random number
sequences. We consider that the feasibility of TRNG in IoT devices is also one of the essential factors
because IoT devices will be implemented in large numbers.

There are two types of countermeasures against the problem. The first measure is to analyze
the TRNG output and adjust the TRNG parameters to absorb individual differences [12, 13]. The
second measure is to prepare multiple TRNG entropy sources and combine the output data to obtain
stable and high entropy [3, 7]. Multiple TRNG entropy sources increase the possibility of including
good entropy sources because they are implemented in various layouts and wirings.

This paper applies the second measure. We evaluate a TRNG configuration that exclusively ORs
the outputs of multiple entropy sources, TERO-based, COSO-based, and STR-based TRNG. This
configuration enables lightening the labor to find suitable parameters and increasing the feasibility,
whereas the hardware size increase. The contribution of this paper is that we clarify the number
of random sources in this configuration required to obtain a high entropy and evaluate whether the
increase of the hardware is suitable for IoT devices.

We implemented these TRNGs on FPGA and estimated their statistical properties. For eval-
uation in a stable state, we use the AIS 20/31, which includes statistical tests for TRNG and the
NIST SP800-90B [14], which includes independent identically distributed (IID) random sequences
tests for TRNG. In addition, we use the NIST SP800-22 [15], which is statistical package consist of
15 tests. For evaluation at startup, we use health test and restart the test by SP800-90B, pattern
counting health test used by Intel [16], autocorrelation coefficient, and frequency test.

The structure of this paper is as follows. In Section 2, we describe the evaluated configuration and
implementation of TRNG. Section 3 describes the statistical tests to perform randomness evaluation.
In Section 4, we evaluate the performance of TERO-based, COSO-based, and STR-based TRNG. In
Section 5, we discuss the performance evaluated and future studies. Section 6 concludes the paper.

2 TRNG configuration

2.1 Basic components of TRNG

Figure 1 shows a general TRNG block diagram [14]. It consists of three blocks: entropy source,
conditioning, and health tests. The entropy source generates raw random numbers. If there is a
correlation or bias in them, the conditioning block reduces the bias of the raw data by compression
processing and increases the entropy. If the original random number generated by the entropy has
sufficient entropy, the conditioning circuit is unnecessary; therefore, it is optional. The health tests
block outputs an error message when the entropy source cannot generate a random number with
sufficient entropy due to failure or other reasons.

2.2 TRNG Principle and Implementation Method

This section describes the principle and structure of the TERO-based, COSO-based, and STR-based
TRNGs. It is reported that the entropy of these TRNGs changes greatly depending on the circuit
characteristics [10]. Therefore, implementing TRNG on FPGA, it is necessary to specify the layout
and wiring to generate a high entropy random number, and it requires great labor.

We evaluate a TRNG configuration for TERO-based, COSO-based, and STR-based TRNG.
This configuration prepares plural single entropy sources (SES), and the outputs are exclusively
ORed (XORed) to generate random numbers, as shown in Figure 2. Compared to the single SES
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Figure 1: TRNG Block diagram [14]

Figure 2: Multiple Entropy Sources (MES) configuration

implementation, multiple SES increases the possibility of including good SES that generates high
entropy random numbers because of various layouts and wirings.

This configuration was applied to RO-based TRNG [3] and latch-based TRNG [7]. However,
it does not apply to TERO-based, COSO-based, and STR-based TRNG. In the following, this
configuration is called the Multiple Entropy Sources (MES) configuration.

We determine nses, which means the number of SES in the MES by AIS 20/31 and SP800-90B
statistical tests. First, we implement MES-TRNG with a relatively large nses on the FPGA. Using
the TRNG, we test random numbers from the TRNG with nses SES from a small number to larger
to decide the minimum number to pass the statistical test.

2.2.1 TERO-based TRNG

The TERO-based TRNG [5] uses metastability as an entropy source. It consists of two NANDs and
an even number of inverters or buffers.

Figure 3 shows the SES block of the TERO-based TRNG. By inputting signals to the two NAND
gates, the circuit starts oscillating and enters the metastable state. After that, due to various factors
such as variations in the gate elements and wiring capacitance, the circuit will eventually transition
from the metastable state to the stable state. At this time, the number of oscillations until the
transition to the stable state is random. Therefore, a 1-bit random number can be obtained by
determining whether this is an even number or an odd number using T flip-flop (TFF). The output
is sampled at the system clock divided using a D flip-flop (DFF).

In our implementation, the number of buffers is set to 3 and 5, respectively. This implementation,
proposed by Fujieda [12], enables the number of oscillations not to become too large by intentionally
increasing the propagation delay of the circuit.

In the SES design, the relative positions were specified to place each element close to the other.
The MES was implemented with eight SES (nses = 8). The placement of each SES was automatically
wired in the FPGA development environment.

2.2.2 COSO-based TRNG

The COSO-based TRNG [6] uses coherent sampling and enables low power consumption on a small
circuit scale. It consists of two independent RO, DFF and TFF, and generates random numbers by
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Figure 3: TERO-based TRNG [10]

Figure 4: COSO-based TRNG [6] [10]

extracting the jitter in the signal oscillated by the two ROs.

Figure 4 shows the SES block diagram of the COSO-based TRNG. The s1 clock by RO1 is
sampled by DFF using the s2 clock by RO2 to extract the beat signal s3. Then, the s3 signal is
used to reset the output s4 of the 1-bit counter (TFF) for s2 clock and latches the s4 to output a
random bit.

The following conditions must be met to generate random numbers [10].

∆T < 3

√
σ2
TT = ∆Tmax

(1)

where the difference between the cycles of the two ROs is ∆T , the cycle of RO1 is T , and the variance
of the cycles is σ2

T . To satisfy this condition, it is necessary to optimize the layout and wiring for
each chip manually, and these processes are laborious.

In our implementation, MES consists of 48 SES (nses = 48). In the SES design, we specified
relative positions of the RO and the latch to be placed in one slice. Then the automatic wiring of
the development environment is used for the layout of each SES.

2.2.3 STR-based TRNG

STR-based TRNG [8, 9] uses a self-timed ring (STR). STR is a multi-event oscillator with no signal
collision. Each of the L stages of STR consists of a 2-input Muller gate and an inverter. Figure 5
shows the SES block diagram of STR-based TRNG.

Each stage communicates using the two-phase handshake protocol. In addition, E out of L stages
is initialized when the Muller gate output becomes one and propagation starts. Regardless of the
initial number of events, the Charlie effect and the drafting effect eventually shift to a steady-state.
There are two modes of oscillation. The first is a burst oscillation mode in which multiple events
form a cluster. The second is an evenly spaced oscillation mode in which events spread evenly and
propagate at regular time intervals. Generally, when creating a random number generator, it is
desirable to use the evenly spaced oscillation mode.

If the number of stages and the number of events are relatively prime, STR shows the same
number of phases at different intervals. Assuming that the number of stages is L and the oscillation
period of STR is T , the phase decomposition can be expressed by the following equation [9].
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Figure 5: STR-based TRNG[8, 10]

∆φ =
T

2L
(2)

The STR stage is sampled by DFF. Their outputs are XORed and sampled at the same clock to
generate random numbers. The following equation must be satisfied to sufficiently guarantee the
entropy rate. σacc is the standard deviation of jitter.

∆φ < σacc (3)

The Muller gate was implemented using LUT, and the relative position was specified so that
the Muller gate and DFF were set in a slice. The STR-based TRNG was implemented at L = 63.
However, a single STR-based TRNG could not generate a random number that would pass the
statistical test. Therefore, we implemented MES consists of two STR-based TRNGs (nses = 2) with
L = 63. For the placement of each SES, automatic wiring in the development environment was used.
The oscillation frequency of STR was about 400 MHz.

3 Random Number Evaluation Method

3.1 Stable state Evaluation

This paper evaluates the random number sequence at a stable state using AIS 20/31, SP800-90B
and SP800-22.

3.1.1 Statistical Tests by AIS 20/31

AIS20/31 includes eight statistical tests from T0 to T8. We evaluated the random numbers in
accordance with test procedure A and B specified in AIS 20/31. In test procedure A, the random
numbers are evaluated by statistical tests from T0 to T5. In test procedure B, the random numbers
are evaluated by statistical tests from T6 to T8. Especially, Test T8 is entropy estimation, and it
outputs entropy of the tested sequence. If the tested random number is ideal, the probability of
passing these tests is almost 0.9998, while the probability of failing more than one test is almost
0. Passing the statistical tests is one of the requirements for the random number generator class
PTG.2 in AIS 20/31. The class PTG.2 random number is used for generating cryptographic keys,
nonces, and the seed of pseudo-random numbers generators.

3.1.2 IID Test by SP800-90B

SP800-90B specifies the design principles and requirements for TRNG and the tests for the validation
of TRNG. We use the tests for the IID (independently and uniformly distributed) track in SP800-
90B. IID is defined as “a sequence of random variables for which each element of the sequence has
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the same probability distribution as the other values, and all values are mutually independent” in
SP800-90B [14]. IID validation tests include shuffling tests on independence and stability (six tests)
and specific statistical tests (two tests). We used the SP800-90B Entropy Assessment library [17].
The IID test outputs the min-entropy of the random number.

3.1.3 SP800-22

SP800-22 describes statistical test suite to test random and pseudorandom number generators for
cryptographic application [15]. We evaluated the random numbers by using this suite for reference
because these tests are said to be useful for analyzing random number sources in AIS 20/31. It is
a statistical test package to test the randomness of sequences that consists of 15 tests, including
Frequency test, BlockFrequency test, etc. We used NIST statistical test suite called “sts-2.1.2.” [18]
and the recommended parameter settings specified by AIS 20/31. The size of each data set was
about 230 bits.

3.2 Startup Evaluation

To evaluate the random numbers immediately after startup, we used five statistical tests; the health
test and restart test shown by SP800-90B, the pattern counting health test used by Intel, the
autocorrelation coefficient, and the frequency test.

3.2.1 SP800-90B Health Test

The two health tests are described in SP800-90B. One is the Repetition Count Test, and the other
is the Adaptive Count Test. These tests are for watching the rapid decrease of the entropy source
of TRNG and for a startup test.

Repetition Count Test The goal of the repetition count test is to quickly detect a catastrophic
failure that causes the noise source to generate a single output value for a long time. The test
procedure is as follows. If the same value (0 or 1) appears consecutively c times or more in a sequence
of random numbers, the random numbers are a failure, where c = 1 + d30/(min− entropy)e [14]. In
this paper, min-entropy is 0.99 described in Section 3.1.2 and c is calculated as 32.

Adaptive proportion Test The goal of the adaptive proportion test is to detect a large loss of
entropy, such as might occur as a result of some physical failure or environmental change affecting
the noise source. The number of consecutive 0s or 1s must be less than or equal to the cutoff value
C1 for random numbers separated by 1024 bits [14].

3.2.2 SP800-90B restart test

In the restart test, the random number sequence immediately after startup has the same distribution
as others. The random number should be independent of bit position, and hard to predict the
subsequent startup output. These characteristics prevent an attacker from predicting the following
sequence. At first, the sanity test is performed, and if it is passed, the random number entropy is
evaluated

First, run SanityTest. We start up the TRNG 1000 times and measure 1000 bits for each startup.
Using this measurement data, create a matrix with 1000 rows and 1000 columns. The row data set
consists of 1M bits by connecting each row, and the column data set consists of 1M by concatenating
each column. Using this information, we perform the SanityCheck test. SanityChek is a test using a
binomial test. In the case of binary sequences, the test is to find the frequency of 0 or 1. And check
if the frequency is greater than that expected by the initial entropy HI (the entropy output from the
evaluation of the IID). The error probability α for Type I is set to 0.01 for the entire SanityCheck.
A test is performed for every 1000 bits of the row and column datasets, and if the test is not passed,
the SanityTest fails. If any test is not passed, the SanityTest fails, and the restart test also fails.
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Next, the entropy is evaluated. The entropy Hr and Hc of the row and column datasets are
calculated, respectively. If either Hr or Hc is less than half of the initial entropy, it fails; otherwise,
the smallest of HI, Hr, and Hc is the entropy of this source.

3.2.3 Pattern Counting Health Test

The Pattern Counting Health Test is a test implemented in the Intel CPU [16] and is used in place
of the above two tests of SP800-90B. The test is performed every 256 bits. The six data patterns
(1, 01, 101, 010, 0110, 1001) are counted in the sliding window. Type I errors (false-positive errors)
are set as 1 %. In our evaluation, the test condition was the same as it in the [16].

3.2.4 Autocorrelation Coefficient and Frequency Test

A frequency test and an autocorrelation coefficient are evaluated as examples of evaluating a random
number series by a health circuit.

Perform a χ2 test on the bit frequency. Let the error probability of type I be α = 10−3; the
number of 1s in the 256-bit series should be from 103 to 159. However, we use from 96 to 159
referring [16].

For the autocorrelation function, we investigated 256-bit Serial Correlation Coefficient (SCC).
SCC is the correlation coefficient of Lag-1.

Considering that the bit width is short, and the fluctuation of the SCC value becomes large,
min-entropy evaluated it with a pass of 0.6 or more [16].

4 TRNG Performance Evaluation

4.1 Evaluation Environment

Figure 6 shows the evaluation environment. TRNG is implemented on the Diligent Z7 Zynq-7010
evaluation board [19]. The Zynq-7010 is equipped with the XC7Z010-1CLG400C and the dual-core
ARM Cortex-A9. The FPGA development environment is Xilinx Vivado 2019.1 [20].

A command is set to command register from the PC via UART to control the TRNG core. When
measuring, random numbers generated by the TRNG core are written to RAM and sent to thse PC
via UART. RAM size is 4K × 32 bit. Therefore, this operation is repeated forty times to obtain a
random sequence of 5 Mbits in total. The clock to TRNG is generated by dividing the system clock.
The random sequences start collecting immediately after enabling signal (EN) to the TRNG is ON
for startup tests.

Figure 6: Evaluation bord block diagram
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4.2 Throughput

The throughput of TERO-based, COSO-based, and STR-based TRNG are 2 Mbit/s, 12.5 Mbit/s,
and 200 Mbit/s, respectively.

4.3 Statistical test at stable state

The stable state evaluation results of TERO-based, COSO-based, and STR-based TRNG are shown
in Table 1, Table 2, and Table 3, respectively. The evaluation used the statistical tests of AIS 20/31
and the IID test of SP800-90B. We executed the tests ten times for each of the five boards and used
5M bits for each test. All TRNGs passed the test. The entropy of SP 800-90B in the tables is the
initial entropy estimation, and the restart test calculates the entropy estimation [14].

Table 4 shows the results of the SP800-22 tests for TERO-based, COSO-based and STR-based
TRNG. P-value and proportion is shown. The minimum pass rate for each statistical test 1052 for a
sample size = 1073 binary sequences except the random excursion test and for the random excursion
test is 645 for a sample size = 660 binary sequences. If the p-value obtained for each test is less
than 0.0001, we conclude that the bit data is not random. The asterisk denotes that a test consisted
of several sub-tests and that the minimum p value is shown. TERO-based, COSO-based passed all
tests. STR-based TRNG passed tests except for one out of 148 non-overlapping template matching.
The values of the failed test are shown in bold type.

4.4 Statistical test at startup

4.4.1 SP800-90B Health Test

100 sets of random numbers were tested immediately after the TRNG started. The health test passes
when both the reputation count test and adaptive count test pass. In this evaluation, TERO-based,

Table 1: TERO-based TRNG evaluation result at stable state
Board AIS20/31 SP800-90B

number #pass entropy #pass entropy
1 10/10 0.999 10/10 0.995
2 10/10 0.999 10/10 0.998
3 10/10 0.999 10/10 0.998
4 10/10 0.999 10/10 0.998
5 10/10 0.999 10/10 0.998

Table 2: COSO-based TRNG evaluation result at stable state
Board AIS20/31 SP800-90B

number #pass entropy #pass entropy
1 10/10 0.999 10/10 0.995
2 10/10 0.999 8/10 0.994
3 10/10 0.999 10/10 0.994
4 10/10 0.999 9/10 0.993
5 10/10 0.999 10/10 0.992

Table 3: STR-based TRNG evaluation result at stable state
Board AIS20/31 SP800-90B

number #pass entropy #pass entropy
1 10/10 0.999 10/10 0.987
2 10/10 0.999 9/10 0.996
3 10/10 0.999 10/10 0.998
4 10/10 0.999 10/10 0.998
5 10/10 0.999 9/10 0.994
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Table 4: Reult of SP800-22 test
Test TERO COSO STR
name P-value Proportion P-value Proportion P-value Proportion

Frequency 0.784731 1065/1073 0.294073 1062/1073 0.074035 1056/1073
BlockFrequency 0.674040 1064/1073 0.406814 1063/1073 0.298120 1055/1073
CumulativeSums ∗ 0.222415 1063/1073 0.123997 1062/1073 0.011614 1059/1073
Runs 0.958070 1063/1073 0.945742 1062/1073 0.795339 1064/1073
LongestRun 0.901946 1056/1073 0.757550 1061/1073 0.483286 1059/1073
Rank 0.294073 1060/1073 1062/1073 0.812633 0.051725 1063/1073
FFT 0.292733 1053/1073 0.565500 1062/1073 0.124671 1061/1073
NonOverlappingTemplate ∗ 0.000200 1053/1073 0.036610 1059/1073 0.689501 1051/1073
OverlappingTemplate 0.093535 1058/1073 0.292733 1063/1073 0.388813 1066/1073
Universal 0.961257 1066/1073 0.028034 1064/1073 0.577019 1056/1073
ApproximateEntropy 0.915665 1058/1073 0.619610 1063/1073 0.895373 1063/1073
RandomExcursions ∗ 0.106093 652/660 0.004888 663/667 0.132419 619/625
RandomExcursionsVariant∗ 0.008689 653/660 0.012854 658/667 0.047468 618/625
Serial ∗ 0.159252 1062/1073 0.559762 1061/1073 0.520083 1060/1073
LinearComplexity 0.840776 1065/1073 0.555945 1067/1073 0.842378 1061/1073

Table 5: Result of SP800-90B Health test
Board number TERO COSO STR

1 100/100 100/100 100/100
2 100/100 100/100 100/100
3 100/100 100/100 100/100
4 100/100 100/100 100/100
5 100/100 100/100 100/100

Table 6: Results of restart test
TERO COSO STR

Board number entropy entropy entropy
1 0.994 0.994 0.987
2 0.994 0.993 0.995
3 0.995 0.993 0.995
4 0.995 0.993 0.993
5 0.995 0.990 0.994

Table 7: Results of pattern counting test (Failures per 800 tests)
Board number TERO COSO STR

1 1 0 0
2 1 0 0
3 1 1 0
4 1 2 0
5 1 0 0

Table 8: Results of autocorrelation coefficient and frequency test (Failures per 8000 tests)
TERO COSO STR

Board number ACC freq ACC freq ACC freq
1 0 0 0 0 2 0
2 0 0 0 0 0 0
3 0 0 0 3 0 0
4 0 0 0 0 2 0
5 0 1 0 0 2 0
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COSO-based, and STR-based TRNG were evaluated with α = 2−20, H = 0.997, C = 21, and C1

= 589. The results are shown in Table 5. All data of TERO-based, COSO-based, and STR-based
TRNG have passed the health test from the startup.

4.4.2 SP800-90B restart test

The restart test used the first 1000 bits from 2048 bits immediately after the TRNG started. TERO-
based, COSO-based, and STR-based TRNG passed the test. Table 6 shows the entropy estimation
of the first 1000 bits. The average entropies of these are 0.997, 0.993, and 0.993, respectively. It can
be seen that TERO-based, COSO-based, and STR-based TRNG have high entropy.

4.4.3 Pattern counting health test

100 sets of 2048-bit data were used immediately after the TRNG started. The evaluation results
are shown in Table 7. It can be seen that there are almost no failures in all of the TERO-based,
COSO-based, and STR-based TRNG.

4.4.4 Autocorrelation Coefficient and Frequency Test

The autocorrelation coefficient and frequency test use 1000 sets of 2048-bit data immediately after
the TRNG started on five boards. Table 8 shows the evaluation results. It can be seen that TERO-
type, COSO-type, and STR-type TRNG have almost no failure numbers in both the autocorrelation
coefficient and the frequency test.

5 Consideration

5.1 Comparison of feasibility

Table 9 shows the evaluation results of the TRNG type, method, circuit scale, power consump-
tion, bit rate, efficiency, entropy, AIS 20/31 statistical test, SP800-90B IID test, startup test, and
feasibility. For comparison, it includes the Latch-based TRNG [21, 22], ERO-based TRNG, MURO-
based TRNG [23] and implementations by the Petura et al.[10]. The power consumption in our
implementation is an evaluation in the development environment, not an actual measurement value.

The evaluation of the feasibility, that is, the implementation difficulty, follows [10]. It is divided
into six scores. Score 5 is a configuration that can be easily implemented on different models. Score
4 can be implemented with a simple setup if it is the same model. Score 3 requires parameter
optimization and settings that are difficult for some models. Score 2 requires complicated settings
(wiring optimization) depending on the model. The same model can be configured as is if the settings
are made. Score 1 is the configurations that must be optimized by each device, even for the same
model. Score 0 is that random numbers may not be generated even after optimization. Since we
deal with only one model of the Zynq-7010 board, the highest score is 4.

Table 9: Summary of TRNG implementation and evaluation
TRNG type Method Area Power cons. Bit rate Efficiency Entropy AIS20/31 SP800-90B Startup feasibility

LUT/Reg mW Mbit/s bits/µWs per bit IID

TERO This paper: MES (8 SES) 93/16 4 2 500 0.999 © © © 4
Petura[10] 39/12 3.312 0.625 188.7 0.999 © - - 1

COSO This paper: MES (48 SES) 162/295 2 12.5 6250 0.999 © © © 4
Petura 18/3 1.22 0.54 442.6 0.999 © - - 1

STR This paper: MES (2 SES) 126/153 27 200 7407 0.999 © © © 4
Petura 346/256 65.9 154 2343.2 0.999 © - - 2

Latch Fujieda[21]: MES (320 SES) 716/974 - 20.0 - - - - - 4
Torii[22]: MES (256 SES) 660/768 3 15.6 520 0.999 © © © 4

ERO Petura 46/19 2.16 0.0042 1.94 0.999 © - - 5
Hayashi[23] 12/19 1 0.125 125 0.999 © © © 4

MURO Petura: MES (120 SES) 521/131 54.72 2.57 46.9 0.999 © - - 4
Hayashi: MES (2 SES) 20/21 1 0.125 125 0.999 © © © 4
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5.1.1 TRNG configuration considering the small scale and low power consumption

When a TRNG is implemented in IoT devices, it is desirable to have a small scale, low power
consumption, and high entropy. Furthermore, the high throughput would be desirable. From this
point of view, it is better to implement the COSO-based TRNG as a single entropy source. However,
it is Score 1 and requires optimization of each device’s layout and wiring, which makes it challenging
to implement. The next candidate is implementing TERO-based TRNG as a single entropy source.
However, it is Score 1 and hard to implement as COSO-based TRNG.

From the aspect of the implementing difficulty, it is desirable to implement ERO-type TRNG. The
difficulty for implementation is score 4, so it can implement without considering device differences. In
addition, both the circuit scale and power consumption of the ERO-based TRNG are low. However,
the throughput of ERO-based TRNG is very low. For applications that require throughput, the MES
implementations of TERO-based or STR-based TRNG are a good candidate in terms of throughput
and efficiency despite the circuit scale and power consumption will be relatively large.

5.1.2 TRNG configuration considering throughput

Considering throughput, our MES of STR-based TRNG using two SES with L = 63 is good. It
is Score 4 and can be implemented without being aware of individual device differences in layout
and routing. In addition, the circuit scale and power consumption are kept lower than STR-based
TRNGs of Petura et al. because the configuration of the SES is different between them. The SES
of Petura et al. has 255 stages (L = 255), while our SES constituting the MES is 63 (L = 63).

5.2 TRNG Characteristics

5.2.1 Number of SES and entropy

To evaluate whether the random numbers generated by TRNG have high entropy, we decided the
condition that the statistical test is performed multiple times and 90 % or more of the tests are
passed. We found nses that satisfies the condition for three types of TRNG.

For example, in COSO-based TRNG, Figure 7 showed the pass rate for AIS 20/31 and SP800-
90B when nses is from 8 to 48 in increments of 8. The results from measuring and evaluating 50
random numbers, ten times each, on five FPGA boards. From this result, nses ≥ 24 is enough to
meet the condition. In this paper, we choose nses = 48 for the COSO-based TRNG because there
needs a sufficient margin to clear the condition on different FPGA models.

In TERO-based TRNG, Figure 8 showed the pass rate for AIS 20/31 and SP800-90B when nses
is from 2 to 8 in increments of 2. The results from measuring and evaluating 50 random numbers,
ten times each, on five FPGA boards. From this result, nses ≥ 6 is enough to meet the condition. In
this paper, we choose nses = 8 for the TERO-based TRNG because there needs a sufficient margin
to clear the condition on different FPGA models.

It is expected that nses will change if the experimental platform changes, due to different electrical
characteristics and wiring capacitance. In this paper, nses is selected with enough margin, however
evaluation nses depending on the platform is a future issue. On the other hand, we consider that
the MES configuration TRNG generates high-entropy random numbers because the three SES in
this paper are known to generate high-entropy random numbers on three types of FPGA; Spartan,
Cyclone, and Smart Fusion 2 [10].

5.2.2 Parameters of STR-based TRNG

Figure 9 shows the results of the statistical evaluation for the number of stages (L) and the number
of SES (nses) in the MES implementation of STR-based TRNG. We evaluated STR-based TRNG
when L= 31, 63, 123 and 255 and nses is one and two. In the evaluation, we measured 5 Mbit data
ten times for each of the five boards. We also measured at startup state on the same five boards,
and the results are the same as the stable state.

As shown in Figure 9, the SES implementation of the STR-based TRNG is difficult. That is,
it does not pass the condition that 90 % or more of the statistical tests even when the number of
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Figure 7: Number of SES evaluations for COSO-based TRNG
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Figure 8: Number of SES evaluations for TERO-based TRNG
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Figure 9: Number of stages (L) and SES evaluations for STR-based TRNG

stage L=255. On the other hand, the MES implementation (nses=2) passes the statistical test when
L ≥ 63. Therefore, we select L =63 in this paper.

5.2.3 Entropy

Table 9 shows the entropy evaluated by AIS 20/31 for TERO-based, COSO-based, and STR type
TRNG because the previous TRNGs evaluated by it. The entropy evaluated by SP800-90B is shown
in Table 6.
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5.3 Clock generation

In this evaluation, we use the system clock to generate a random number. Using the system clock,
generated random numbers may be affected by the global noise jitter of the entire board. Therefore,
to increase the attack resistance of TRNG, it is desirable to use the output of RO as a clock [24].
In the future, we plan to evaluate TRNG using the clock signal generated by RO.

5.4 Clock synchronization

In the MES configuration, we must consider synchronization between SES and D-FF clock because
set-up time violation may happen by sampling XORed SES outputs by D-FF. For TERO- and
STR-based TRNGs, the TRNG clock is the system clock, and in MES configuration, the output
DFF clock is the system clock. Therefore, there is little chance of a set-up violation. However, for
the COSO-based TRNG, each SES in MES uses a different clock signal, and we need a circuit to
synchronize the clock with the system clock of the output DFF, although it decreases the throughput
of TRNG. The evaluation in Table 9 includes this circuit for COSO-based TRNG.

5.5 Temperature Characteristics

For TERO-based and STR-based TRNGs, temperature evaluations in the SES configuration are
reported [25, 26]. They say that the frequency of RO varies when the temperature changes. However,
these TRNGs pass the statistical tests. For COSO-based TRNGs, the report in [27] states that the
two ROs cancel out the frequency changes when the temperature changes. Therefore, COSO-based
TRNG is resistant to temperature changes. We consider the TRNG in the MES configuration
generates high-entropy random numbers when the temperature changes because the three SES in
this paper is robust against temperature changes.

5.6 Possibility of attack

Ring oscillator-based TRNGs are known to have reduced entropy due to injection attacks [28]. Also,
according to [16], it is reported that when multiple oscillators are used, they are susceptible to
injection attacks because there are multiple modes in which the oscillators lock each other. MES
configuration uses multiple SES. Therefore, it may be vulnerable to injection attacks. In addition,
the attack on TERO-based TRNG [29] and the attack on STR-based TRNG [25] have not been
evaluated for MES-based. Evaluation of resistance to these attacks is future work.

6 Conclusion

We evaluated the MES-type TRNGs for TERO-based, COSO-based and STR-based TRNG, and
implemented them on FPGA using the Zybo Z7 Zynq-7010 evaluation board. We performed random
number evaluation by statistical tests following SP800-90B, SP800-22 and AIS 20/31, and some
tests at start-up. Based on these evaluations, we proposed the optimum configuration for MES-type
TRNG. Our evaluated TRNGs generate high entropy random numbers when we implement TRNGs
with eight single entropy sources for TERO-based TRNG, 48 for COSO-based TRNG, and two
for STR-based TRNG, respectively. In addition, the difficulty of implementation can be reduced by
implementing MES configuration. We compared the previously proposed TRNGs with our evaluated
TRNGs. From the viewpoint of embedding TRNG for IoT devices, our evaluated TRNGs are helpful
in some applications.

Various attack methods have been proposed against TRNGs. However, evaluating the resistance
of MES-type TRNG is future work.
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