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Abstract

Pairings on elliptic curves consisting of the Miller loop and final exponentiation are used for
innovative protocols such as ID-based encryption and group signature authentication. As the
recent progress of attacks for the discrete logarithm problem in finite fields in which pairings
are defined, the importance of the use of curves with prime embedding degrees k has been
increased. In this paper, the authors provide formulas to construct algorithms for computing
the final exponentiation for cyclotomic families of curves with any prime k. Since the formulas
give rise to one of the same exponents given by a lattice-based method for the small cases of
k, it is expected that the proposed algorithms are efficient enough for the cases of any prime
k. At least for the curves with k = 13 and 19 for the pairing at the 128-bit security level, the
proposed algorithms can achieve current state-of-the-art computations.

Keywords: Pairing-based cryptography, elliptic curve, final exponentiation.

1 Introduction

Pairings on elliptic curves enable innovative protocols, e.g., ID-based encryption [7], group signature
authentication [5], searchable encryption [6], attribute-based encryption [13], and homomorphic
encryption [29]. The security of the pairings is typically based on the difficulties of the discrete
logarithm problem (DLP) in the finite field and elliptic curve. In recent years, there have been
notable improvements of the tower number field sieve (TNFS) algorithm which is an attack for DLP
in a finite field [22]. This motivates researchers working on the review of the security analyses and
providing new recommendations of curves in [1, 2, 10, 17, 15, 8, 16]. Interestingly, according to these
results, not only the curves with composite embedding degree k but also the curves with prime k are
suggested for the pairings. This is because the curves with a prime k have high resistance against
the TNFS which leads to an advantage of the use of the small size of the field. In [8], Clarisse et
al. focused on this advantage and presented curves with k = 13 and 19 that are specifically tailored
to be fast over the specific group used for the pairings, however, performances of the pairings are
not so good.

In this context, the pairings on elliptic curves are typically carried out by two steps, which
are the Miller loop and extra exponentiation in the field to bring the output of the Miller loop to

1From April 2022, the affiliation has changed to Toshiba Corporation, 1–1, Shibaura 1–chome, Minato–ku, Tokyo
105–8001, Japan.
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Table 1: Properties of previous and proposed methods.
Methods Based on Alg. gen. Applicable for Effective for

Fuentes-Castaneda et al. [12] Lattice Heuristic Any families Any families
Kim et al. [23] Lattice Heuristic Any curves Curves not in families

Hayashida et al. [18] Formula Algorithmic Any families
Specific families,
e.g., BLS family

This work Formula Algorithmic
Cyclotomic families
with any prime k

Cyclotomic families
with any prime k

the unique value. This extra exponentiation is called the final exponentiation and that becomes
more of a computational bottleneck with the curves with larger k. Since the final exponentiation
has the specific exponent corresponding to the families of curves, optimization techniques have been
proposed. As one of the typical methods, in [30], Scott et al. proposed to expand the exponent in base
a field characteristic to exploit the Frobenius endomorphism with low computational complexity. In
[12], Fuentes-Castaneda et al. presented a lattice-based method for determining a multiple of the
exponent which results in at least as efficient final exponentiations as ones given by Scott et al. [30].
Later, in [23], Kim et al. also showed that a similar method to [12] for any curves. Especially, the
lattice-based method given in [12] might produce one of the most efficient algorithms for computing
the final exponentiation for a majority of families of curves. However, the method involves several
heuristic processes with a trial-and-error search and thus it requires complicated works for producing
one of the best exponents. This might become an obstacle to updating the curves and reproducing
the algorithms according to the security analyses in the future.

To overcome the problem, in [18], Hayashida et al. focused on another method for providing the
expansion of the exponent by using the structure of pairings given by Zhang et al. in [34] that is
only applicable for the BLS family [3] of curves with k = 27. They extended [34] for any families of
curves to allow us to obtain an algorithm for computing the final exponentiation with a small effort.
Their method might provide more efficient algorithms than the lattice-based method [12] for the
BLS family of curves with any k of multiple of 3 and 6 except for 18. However, unfortunately, the
method by Hayashida et al. [18] might not be effective for the other families of curves. As described
in the first paragraph, since the importance of the curves with a prime k has been notably increased,
similar methods that are especially effective for these curves are desired. In this paper, the authors
try to meet this demand.

Our contribution. The authors focus on the cyclotomic families of curves with prime embedding
degree k where the parameterizations are presented in Construction 6.6 of [11] and which can generate
the curves with k = 13 and 19 given by Clarisse et al. in [8]. For these families of curves with any
prime k, the authors propose a new method for constructing an efficient algorithm for computing
the final exponentiation. The properties of the previous methods [12, 18, 23] and the proposed one
are summarized in Table 1. The details of the contributions are described below.

(i) The authors provide formulas for providing specific multiples of the exponents of the final
exponentiation for the cyclotomic families of curves with any prime k. For the cases of k =
5, 7, 11, 13, 17, and 19, the authors confirmed that the proposed formulas provide exactly one
of the same exponents given by the lattice-based method [12]. Thus, there is a possibility that
the proposed formulas result in as efficient algorithms as ones given by [12] for the cases of
any prime k.

(ii) According to the proposed formulas, the authors construct algorithms for computing the final
exponentiation with fixed calculation costs for the cyclotomic families of curves with any prime
k. As a result, it is found that the proposed algorithms have lower computational complexity
than that of the method by Hayashida et al. [18] Indeed, although the previous algorithm has
O(n2) complexity, the proposed ones have O(n) complexity, where n is an integer such that
k = 6n± 1.
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(iii) The authors estimate the calculation costs of the final exponentiation for the curves with k = 13
and 19 at the 128-bit security level by applying the proposed algorithms. The estimation
result shows that there are 47.5% and 63.4% reductions of the calculation costs from the
previous result [8] based on the method by Kim et al. [23] for the curves with k = 13 and
19, respectively. Thus, the proposed algorithms can reach state-of-the-art computations of the
final exponentiation at least for those curves.

Differences from CANDAR’21. This paper is an extended version of the authors’ previous
work [28] published in CANDAR’21. The previous version provided the formula and algorithm
for computing the final exponentiation for the cyclotomic family of curves with prime k given by
k = 6n+ 1. Although the previous version does not consider the case of prime k of k = 6n− 1, this
paper considers the formula and algorithm for such cases. In addition to this, the authors revise the
construction of the algorithm and reduce the several numbers of the multiplications and cyclotomic
inversions of the final exponentiation of the case of k = 6n+ 1. Moreover, the authors estimate the
calculation costs of the final exponentiation of the pairings on the concrete curves.

Organization. The rest of this paper is organized below. Sect. 2 provides a brief background on
pairings. In Sect. 3, the author reviews the structure of the final exponentiation with the previous
optimization techniques. Sect. 4 presents the proposed formulas of the final exponentiation for
the cyclotomic families of curves with prime embedding degrees. In Sect. 5, the authors apply
the formulas and construct the algorithms for computing the final exponentiation. The result of
the calculation cost estimations with certain curves is also described. Finally, Sect. 6 draws the
conclusion.

2 Background on Pairing

The authors present the fundamentals of pairings on elliptic curves. In the following, for a positive
integer i and a prime p, let Fq be a finite field of order q, where q = pi. Let F∗q be a multiplicative

group of Fq and let Fq be an algebraic closure of Fq.

2.1 Elliptic curves

For a prime p > 3, an elliptic curve E of Weierstrass form defined over Fp is given as follows:

E/Fp : y2 = x3 + ax+ b, (1)

where a and b are coefficients in Fp satisfying 4a3 + 27b2 6= 0. The j-invariant of E is given by
j(E) = 1728 · 4a3/(4a3 + 27b2). A set of rational points is defined by E(Fp) = {(x, y) | (x, y) ∈
Fp×Fp, y2 = x3 +ax+ b}∪{O} where O is a point at infinity on E. The set forms an abelian group
of which O acts as the identity, and which is called a rational point group. For a positive integer s,
a point multiplication endomorphism is defined as [s] : E(Fp)→ E(Fp), P 7→ P +P + · · ·+P which
involves (s− 1)-times additions. If E(Fp) does not admit a point of order p such that [p]P = O, E
is supersingular, otherwise, E is non-supersingular or ordinary.

Let n = #E(Fp), which is the number of rational points. Let t be an integer defined by t = p+1−n
which is called the Frobenius trace of E. If E is ordinary, there is a square-free integer D such that
DV 2 = 4p − t2 with an integer V . Let r be a prime factor of n such that p 6= r. Let E[r] be an
entire group of order r defined by E[r] = {P | P ∈ E(Fp), [r]P = O} which is called an r-torsion
subgroup. Then, the group structure of E[r] is E[r] ∼= Z/rZ× Z/rZ, i.e., #E[r] = r2. This implies
that E[r] has (r + 1) different subgroups of order r since the identity O overlaps into all subgroups
of order r. Let k be the smallest integer satisfying r | (pk−1), i.e., there is a multiplicative subgroup
of F∗pk of order r. Then, E[r] belongs to the rational point group E(Fpk). The quantity k is called
an embedding degree with respect to r.
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2.2 Pairings

Let G1 and G2 be different subgroups of E[r] ⊂ E(Fpk) defined by G1 = E[r] ∩ ker(πp − [1]) and
G2 = E[r] ∩ ker(πp − [p]), where πp is Frobenius endomorphism for points of elliptic curve E, i.e.,
πp : E(Fp)→ E(Fp), (x, y) 7→ (xp, yp). Note that the groups are the eigenspaces of πp on E[r], i.e.,
G1 ⊕G2

∼= E[r]. According to the properties of the subgroups, G1 and G2 are named as base-field
and trace-zero subgroups, respectively. For two points P ∈ G1 and Q ∈ G2, the Tate pairing τr,
which is non-degenerate and bilinear, is defined as follows:

τr : G1 ×G2 → F∗pk/(F
∗
pk)r, (P,Q) 7→ fr,P (Q), (2)

where fr,P is a rational function with a divisor div(fr,P ) = r(P ) − r(O). The value of fr,P (Q) is
computed by Miller’s algorithm [25] that is an iterative algorithm with O(log2 r).

As seen in the definition, the standard Tate pairing has an undesirable property that the output
lies in an equivalence class, rather than being a unique element. To be suitable in practice, (pk−1)/r
is raised to the output of the Tate pairing as follows:

τ̂r : G1 ×G2 → µr, (P,Q) 7→ fr,P (Q)
pk−1

r , (3)

where µr is a subgroup of F∗pk of order r which consists of r-th roots of identity. The above pairing
is called the reduced Tate pairing. The additional exponentiation is called the final exponentiation.

There are several variants of Tate pairings with shorter loop length of Miller’s algorithm than
typical ones. According to [19], restricting the reduced Tate pairing to swap the arguments as
G2 ×G1 with the above subgroups leads to an ate pairing αT defined as follows:

αT : G2 ×G1 → µr, (Q,P ) 7→ fT,Q(P )
pk−1

r , (4)

where T = t−1 and fT,Q is a rational function with a divisor div(fT,Q) = T (Q)−([T ]Q)−(T−1)(O),
which is computed by Miller’s algorithm with O(log2 T ). Since log2 T < log2 r is typically satisfied
for the curves for practical pairings, the loop length of Miller’s algorithm for ate pairing is shorter
than that of the typical Tate pairings. The ate pairing is one of the special cases of ate-like pairings
introduced in [33] for generating an optimum pairing.

2.3 Pairing-friendly elliptic curves

As seen in the above descriptions, the properties of the elliptic curves are typically specified by
integer parameters k, D, p, r, and t. In this paper, elliptic curves having small k, large r, and
appropriate ρ-value defined by ρ = log2 p/ log2 r are called pairing-friendly. The concrete properties
of the pairing-friendly curves depend on the security level that we would like to guarantee, e.g., for
the STNFS secure-pairing at the 128-bit security level, it is suggested to use the curves such that
6 ≤ k ≤ 16, 256 ≤ log2 r, and 1 ≤ ρ ≤ 2.6 in [15]. Note that ρ greater than 2 is currently acceptable,
however, it is previously considered that ρ is desired to satisfy 1 ≤ ρ ≤ 2.

One of the first suggested methods for constructing ordinary pairing-friendly curves with ρ around
2 was presented in an unpublished manuscript [9] by Cocks and Pinch. The other methods are
typically based on an idea of the parameterization of p, r, and t as polynomials p(x), r(x), and t(x)
in terms of variable x to make curves to have favorite properties, respectively. In this paper, the
parameterized triple (p(x), r(x), t(x)) is called a family of elliptic curves, where a curve is generated
by finding an integer seed x = x0 making p(x0) and r(x0) being primes, and t(x0) being an integer.
Many families of pairing-friendly elliptic curves have been discovered in [26, 3, 4, 20, 11]. Currently,
cyclotomic families of pairing-friendly curves, which are introduced in [11] and are involving the
BLS family [3], are important for generating not only curves with composite k but also curves with
prime k.

3 Review of Final Exponentiation

As described in the previous section, the variants of reduced Tate pairing require the final expo-
nentiation. In this section, the authors review the basic structure of the final exponentiation and
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briefly describe the major optimizations techniques given by [30, 12, 18]. Before providing them,
the authors firstly describe the cyclotomic polynomial.

3.1 Cyclotomic polynomial

For any positive integer n, Euler’s totient function φ is given as follows:

φ(n) = #{i ∈ 1, 2, . . . , n− 1 : gcd(i, n) = 1}. (5)

The n-th cyclotomic polynomial is defined by

Φn(x) =
∏

1≤m≤n
gcd(m,n)=1

(x− e2πim/n), (6)

where e is Napier’s constant, i is the imaginary unit, and π is a mathematical constant that is
approximately equal to 3.14. Although that is not an immediate derivation from the definition, Φn(x)
is a monic polynomial with integer coefficients that is the minimal polynomial over the field of the
rational numbers of a primitive n-th root of unity. When enumerating the cyclotomic polynomials
from the smallest order n, we have the following.

Φ1(x) = x− 1, Φ2(x) = x+ 1, Φ3(x) = x2 + x+ 1,

Φ4(x) = x2 + 1, Φ5(x) = x4 + x3 + x2 + x+ 1, Φ6(x) = x2 − x+ 1, . . .

As seen above, the degree of Φn is given by φ(n). A fundamental relation involving cyclotomic
polynomials is ∏

i|n

Φi(x) = xn − 1. (7)

It is important that there are the following relations for any prime l and integer n.

Φl(x) =

l−1∑
i=0

xi, (8)

Φln(x) = Φn(xl)/Φn(x). (9)

3.2 The structure of final exponentiation

The final exponentiation is a powering (pk − 1)/r in F∗pk . To achieve a fast final exponentiation, the
exponent of the final exponentiation is typically decomposed as follows:

pk − 1

r
=

(
pk − 1

Φk(p)

)
·
(

Φk(p)

r

)
, (10)

where Φk is the k-th cyclotomic polynomial. It is possible to represent the first part as (pk −
1)/Φk(p) =

∑
eipi with small integers ei from the property of the cyclotomic polynomial given in

Eq. (7). Thus, the first part can be computed by using several pi-th power Frobenius endomorphisms,
multiplications, squarings, and inversion in F∗pk . Thus, the first part is called the easy part. After

raising to the easy part, we can work on a cyclotomic subgroup GΦk(p) of F∗pk of order Φk(p) in
which several efficient arithmetics are available corresponding to k. For any k, it is trivial that
there are low-cost inversions in GΦk(p). For 2 | k especially 6 | k, efficient squarings are described
in [32, 14, 21]. However, the second part, i.e., d = Φk(p)/r, is more difficult to compute than the
easy part and is called the hard part. To reduce the computational complexity, certain optimization
techniques are typically applied for the hard part.
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3.3 The existence optimizations of hard part

For the pairings with a family of pairing-friendly curves, the parameters p, r, and t are specified
by polynomials p(x), r(x), and t(x), respectively. Then, the exponent of the final exponentiation is
denoted by (p(x)k − 1)/r(x) where the hard part is also denoted as d(x) = Φk(p(x))/r(x). For such
the hard part, there are the following major optimization techniques.

(i) p(x)-adic expansion method. In [30], Scott et al. gave a systematic method to reduce the
computational complexity of the hard part by representing d(x) to be the polynomial in base p(x)
from the observation that p(x)-th powering in the finite field is efficiently computed by the Frobe-
nius endomorphism. In the context, d(x) can be represented as d(x) = d0(x) + d1(x)p(x) + · · · +
dk′−1(x)pk

′−1(x) where k′ is the value of Euler’s totient function by k, i.e., k′ = φ(k), and di(x)
for 0 ≤ i ≤ k′ − 1 are polynomials in base x. Assuming f is an element after raising to the
power of the easy part, one can find short vectorial addition chains to compute f 7→ fd(x) =

fd0(x) · (fd1(x))p(x) · · · (fdk′−1(x))p(x)k
′−1

.

(ii) Lattice-based method. In [12], Fuentes-Castaneda et al. proposed to use a multiple d′(x) =
c(x)d(x) such that r(x) - c(x) and presented a lattice-based method for determining d′(x) such that
f 7→ fd

′(x) can be computed at least as efficiently as f 7→ fd(x) applied [30]. An efficient d′(x) can
be found by constructing a rational matrix M ′ with dimensions k′ × (k′ deg p(x)) given as follows:

d(x)
xd(x)

...

xk
′−1d(x)

 = M ′




1
p(x)

...

p(x)k
′−1

⊗


1
x
...

xdeg p(x)−1


 . (11)

where ⊗ is a Kronecker product. Let us consider the integer matrix M constructed from M ′ as
the unique matrix of which rows are multiples of the rows of M ′ such that the entries of M are
integers, and the greatest common divisor of the set of entries is 1. Applying the LLL algorithm [24]
to M , a matrix with small entries can be obtained. Then, small integer linear combinations of the
basis of the matrix are heuristically examined with the hope of finding short addition chains with a
trial-and-error search. It is considered that the lattice-based method can achieve efficient algorithms
for many curves, however, it requires much efforts for finding one of the best choices of d′(x). Note
that Kim et al. also presented a similar method for any curves in [23].

(iii) Formula-based method. As one of the algorithmic approaches, in [18], Hayashida et al. pro-
vided a representation of d(x) that is applicable for any families of curves by generalizing the method
by Zhang et al. [34] For any family of curves given by p(x), r(x), and T (x), they described that one
can find polynomials h1(x), h2(x), T (x) ∈ Q[x] such that p(x) = h1(x)r(x) + T (x),

r(x) = Φk(T (x))/h2(x),
t(x) = T (x) + 1.

(12)

This leads to the following formula for representing d(x) = Φk(p(x))/r(x).

d(x) = h1(x)

k′−1∑
i=0

λi(x)p(x)i

+ h2(x). (13)

Assuming Φk(x) =
∑k′

i=0 cix
i with integers ci, λi(x) is denoted as follows:

λi(x) =

{
cn if i = k′ − 1,
T (x) · λi+1(x) + ci+1 if 0 ≤ i < k′ − 1.

(14)

Let d̃(x) = sd(x) be a polynomial with the smallest integer s such that both sh1(x) and sh2(x)
do not involve denominators. Then, one can construct an algorithm for computing the hard part

f 7→ f d̃(x) as seen in Algorithm 1. In the following, the details of each step in Algorithm 1 are
described with the calculation costs.
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Algorithm 1: Hard part computation [18]

Input: f ∈ GΦk(p)

Output: f 7→ f d̃(x) ∈ µr
1 u← fsh1(x), t← fsh2(x);
2 vn−1 = ucn ;
3 for i = k′ − 2 downto 0 do

4 vi ← v
T (x)
i+1 · uci+1 ;

5 w ← v0 · t;
6 for i = 1 to k′ − 1 do

7 w ← w · vp(x)i

i ;

return w = fd
′(x);

- Step 1 computes u = fsh1(x) and t = fsh2(x), which approximately takes max(deg sh1,deg sh2)-
times exponentiation by x in F∗pk .

- Steps 2–4 compute vi = uλi(x) for 0 ≤ i ≤ k′−2, which take (k′−1)·deg T -times exponentiation
by x in F∗pk with certain number of multiplications and cyclotomic inversions.

- Steps 5 set w = v0 · t and computes w = w ·
∏n−1
i=1 vi

p(x)i , which take n-times multiplications
and p(x)i-th power Frobenius endomorphisms for 1 ≤ i ≤ k′ − 1 in F∗pk .

As seen in Algorithm 1, the formula given by Hayashida et al. [18] results in an efficient final
exponentiation for the families of curves with deg T = 1, e.g., the BLS family. However, their
formula might be not effective for the other families with deg T > 1. The similar results are also
found by Shirase and Nanjo in [31].

4 The Proposed Formulas of Final Exponentiation for Curves
with Any Prime Embedding Degrees

In this section, the authors propose new formulas for representing the hard part of the final expo-
nentiation for curves with any prime embedding degrees k.

4.1 The cyclotomic families of curves with prime k

The authors construct pairing-friendly curves with prime k by using cyclotomic families of curves
with k ≡ 1, 5 (mod 6). According to Construction 6.6 of [11], the families have the specific param-
eterizations given as follows:

• k ≡ 1 (mod 6)  p(x) = 1
3 (x+ 1)2(x2k − xk + 1)− x2k+1,

r(x) = Φ6k(x),
t(x) = −xk+1 + x+ 1.

(15)

• k ≡ 5 (mod 6)  p(x) = 1
3 (x2 − x+ 1)(x2k − xk + 1) + xk+1,

r(x) = Φ6k(x),
t(x) = xk+1 + 1.

(16)

Let x0 be an integer seed making p(x0) and r(x0) being primes. Then, there is an elliptic curve E
with #E(Fp(x0)) = p(x0) + 1− t(x0) which is divisible by r(x0). Since r(x0) divides p(x0)k − 1 with
the smallest integer k, E has an embedding degree k with respect to r(x0). The concrete values of
x0 for generating curves with k = 13 and 19 are provided in [8]. Such curves with k = 13 and 19
are named BW13-P310 and BW19-P286, respectively.
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4.2 The proposed formulas of the hard part for any prime k

For the cyclotomic families of curves with prime k of k ≡ 1, 5 (mod 6), the exponent of the final
exponentiation can be written as follows:

p(x)k − 1

r(x)
=

(
p(x)k − 1

Φk(p(x))

)
·
(

Φk(p(x))

r(x)

)
= (p(x)− 1) ·

(
Φk(p(x))

r(x)

)
, (17)

where p(x)−1 and d(x) = Φk(p(x))/r(x) are easy and hard parts, respectively. It is considered that
the previous formula given by Hayashida et al. in [18] might not result in efficient algorithms for
computing the hard part since the families of curves have the property deg T = deg t > 1.

To obtain better formulas than [18], the authors apply the lattice-based method [12] and observe
results of the representations of the hard part given by d′(x) = c(x)d(x) with a polynomial c(x) for
the cases of small prime k. More actually say, the authors suppose that k′ = k−1, d(x) = Φk(x)/r(x),
and M is a matrix with dimensions k′ × φ(k) deg p(x) given by

3d(x)
3xd(x)

...

3xk
′−1d(x)

 = M




1
p(x)

...

p(x)k
′−1

⊗


1
x
...

xdeg p(x)−1


 , (18)

where 3 is the smallest integer for the coefficient of xid(x) such that M has all integer entries and
the greatest common divisor of the set of entries is 1. The authors apply the LLL algorithm to M
and obtain a matrix. Then, the authors observe the 1st row of the matrix which indicates one of the
representations of the hard parts d′(x) = c(x)d(x) for the cases of small primes k. As a result of the
observation, the authors find the following new formulas for the hard part of the final exponentiation
for the cyclotomic families of curves with any prime k.

Theorem 1. Let n be any positive integer and let k = 6n+1. Let p(x), r(x), t(x) be polynomials in
Q[x] where (p(x), r(x), t(x)) is the cyclotomic family of pairing-friendly curves with k ≡ 1 (mod 6)
given in Eq. (15). Let d(x) = Φk(p(x))/r(x) and d′(x) = c(x)d(x) where c(x) is a polynomial defined
as follows:

c(x) = (x6n − 1)/Φ6(x). (19)

If k is a prime, d′(x) is represented as follows:

d′(x) =

6n−1∑
i=0

(
x6nΦ6(x)− 3 + µ6n−1−i(x)

)
p(x)i, (20)

where µs(x) with s = 6n− 1− i is a polynomial defined as follows:

µs(x) =



−xsΦ6(x) if s ≡ 0 (mod 6),
x6n+1+sΦ6(x)− xsΦ6(x)− 3xs+1 if s ≡ 1 (mod 6),
x6n+1+sΦ6(x)− 3xs+1 if s ≡ 2 (mod 6),
xsΦ6(x) if s ≡ 3 (mod 6),
−x6n+1+sΦ6(x) + xsΦ6(x) + 3xs+1 if s ≡ 4 (mod 6),
−x6n+1+sΦ6(x) + 3xs+1 if s ≡ 5 (mod 6).

(21)

Proof of Theorem 1. Please refer to App. A. �

Theorem 2. Let n be any positive integer and let k = 6n−1. Let p(x), r(x), t(x) be polynomials in
Q[x] where (p(x), r(x), t(x)) is the cyclotomic family of pairing-friendly curves with k ≡ 5 (mod 6)
given in Eq. (16). Let d(x) = Φk(p(x))/r(x) and d′(x) = c(x)d(x) where c(x) is a polynomial defined
as follows:

c(x) = 3(x6n−1 − x6n−2 − 1)/Φ6(x). (22)
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If k is a prime, d′(x) is represented as follows:

d′(x) =

6n−3∑
i=0

(
−x6n−2Φ6(x)− 3 + ν6n−3−i(x)

)
p(x)i, (23)

where νs(x) with s = 6n− 3− i is a polynomial defined as follows:

νs(x) =



x6n−1+sΦ6(x)− xsΦ6(x) + 3xs+1 if s ≡ 0 (mod 6),
−xsΦ6(x) if s ≡ 1 (mod 6),
−x6n−1+sΦ6(x)− 3xs+1 if s ≡ 2 (mod 6),
−x6n−1+sΦ6(x) + xsΦ6(x)− 3xs+1 if s ≡ 3 (mod 6),
xsΦ6(x) if s ≡ 4 (mod 6),
x6n−1+sΦ6(x) + 3xs+1 if s ≡ 5 (mod 6).

(24)

Proof of Theorem 2. Please refer to App. B. �

4.3 The proposed formulas for small primes k

Theorem 1 and 2 can produce the following specific formulas of the hard part d′(x) = d(x)c(x) for
the cyclotomic families of curves with prime k such as k = 5, 7, 11, 13, 17, and 19.

Example 1. The cyclotomic family of curves with k = 5 has parameterizations given by p(x) = 1
3 (x2 − x+ 1)(x10 − x5 + 1) + x6,

r(x) = Φ30(x),
t(x) = x6 + 1.

(25)

The formula of the hard part is given by d′(x) = c(x)Φ5(p(x))/r(x) =
∑3
i=0 d

′
i(x)pi where c(x) =

3(x3 − x− 1) and di(x) for 0 ≤ i ≤ 3 are polynomials given as follows:
d′3(x) = −x4Φ6(x)− 3 + x5Φ6(x)− Φ6(x) + 3x,
d′2(x) = −x4Φ6(x)− 3− xΦ6(x),
d′1(x) = −x4Φ6(x)− 3− x7Φ6(x)− 3x3,
d′0(x) = −x4Φ6(x)− 3− x8Φ6(x) + x3Φ6(x)− 3x4.

(26)

Example 2. The cyclotomic family of curves with k = 7 has parameterizations given by p(x) = 1
3 (x+ 1)2(x14 − x7 + 1)− x15,

r(x) = Φ42(x),
t(x) = −x8 + x+ 1.

(27)

The formula of the hard part is given by d′(x) = c(x)Φ7(p(x))/r(x) =
∑5
i=0 d

′
i(x)p(x)i where

c(x) = 3(x4 + x3 − x− 1) and d′i(x) for 0 ≤ i ≤ 5 are polynomials given as follows:

d′5(x) = x6Φ6(x)− 3− Φ6(x),
d′4(x) = x6Φ6(x)− 3 + x8Φ6(x)− xΦ6(x)− 3x2,
d′3(x) = x6Φ6(x)− 3 + x9Φ6(x)− 3x3,
d′2(x) = x6Φ6(x)− 3 + x3Φ6(x),
d′1(x) = x6Φ6(x)− 3− x11Φ6(x) + x4Φ6(x) + 3x5,
d′0(x) = x6Φ6(x)− 3− x12Φ6(x) + 3x6.

(28)

Example 3. The cyclotomic family of curves with k = 11 has parameterizations given by p(x) = 1
3 (x2 − x+ 1)(x22 − x11 + 1) + x12,

r(x) = Φ66(x),
t(x) = x12 + 1.

(29)
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The formula of the hard part is given as d′(x) = c(x)d(x) =
∑9
i=0 d

′
i(x)p(x)i where c(x) = 3(x9 −

x7 − x6 + x4 + x3 − x− 1) and d′i(x) for 0 ≤ i ≤ 9 are polynomials given as follows:



d′9(x) = −x10Φ6(x)− 3 + x11Φ6(x)− Φ6(x) + 3x,
d′8(x) = −x10Φ6(x)− 3− xΦ6(x),
d′7(x) = −x10Φ6(x)− 3− x13Φ6(x)− 3x3,
d′6(x) = −x10Φ6(x)− 3− x14Φ6(x) + x3Φ6(x)− 3x4,
d′5(x) = −x10Φ6(x)− 3 + x4Φ6(x),
d′4(x) = −x10Φ6(x)− 3 + x16Φ6(x) + 3x6,
d′3(x) = −x10Φ6(x)− 3 + x17Φ6(x)− x6Φ6(x) + 3x7,
d′2(x) = −x10Φ6(x)− 3− x7Φ6(x),
d′1(x) = −x10Φ6(x)− 3− x19Φ6(x)− 3x9,
d′0(x) = −x10Φ6(x)− 3− x20Φ6(x) + x9Φ6(x)− 3x10.

(30)

Example 4. The cyclotomic family of curves with k = 13 has parameterizations given by

 p(x) = 1
3 (x+ 1)2(x26 − x13 + 1)− x27,

r(x) = Φ78(x),
t(x) = −x14 + x+ 1.

(31)

The formula of the hard part is given as d′(x) =
∑11
i=0 d

′
i(x)p(x)i where c(x) = 3(x10 + x9 − x7 −

x6 + x4 + x3 − x− 1) and d′i(x) for 0 ≤ i ≤ 11 are polynomials given as follows:



d′11(x) = x12Φ6(x)− 3− Φ6(x),
d′10(x) = x12Φ6(x)− 3 + x14Φ6(x)− xΦ6(x)− 3x2,
d′9(x) = x12Φ6(x)− 3 + x15Φ6(x)− 3x3,
d′8(x) = x12Φ6(x)− 3 + x3Φ6(x),
d′7(x) = x12Φ6(x)− 3− x17Φ6(x) + x4Φ6(x) + 3x5,
d′6(x) = x12Φ6(x)− 3− x18Φ6(x) + 3x6,
d′5(x) = x12Φ6(x)− 3− x6Φ6(x),
d′4(x) = x12Φ6(x)− 3 + x20Φ6(x)− x7Φ6(x)− 3x8,
d′3(x) = x12Φ6(x)− 3 + x21Φ6(x)− 3x9,
d′2(x) = x12Φ6(x)− 3 + x9Φ6(x),
d′1(x) = x12Φ6(x)− 3− x23Φ6(x) + x10Φ6(x) + 3x11,
d′0(x) = x12Φ6(x)− 3− x24Φ6(x) + 3x12.

(32)

Example 5. The cyclotomic family of curves with k = 17 has parameterizations given by

 p(x) = 1
3 (x2 − x+ 1)(x34 − x17 + 1) + x18,

r(x) = Φ102(x),
t(x) = x18 + 1.

(33)

The formula of the hard part is given as d′(x) = Φ17(p(x))/r(x) =
∑15
i=0 d

′
i(x)p(x)i where c(x) =

3(x15 − x13 − x12 + x10 + x9 − x7 − x6 + x4 + x3 − x− 1) and di(x) for 0 ≤ i ≤ 15 are polynomials
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given as follows: 

d′15(x) = −x16Φ6(x)− 3 + x17Φ6(x)− Φ6(x) + 3x,
d′14(x) = −x16Φ6(x)− 3− xΦ6(x),
d′13(x) = −x16Φ6(x)− 3− x19Φ6(x)− 3x3,
d′12(x) = −x16Φ6(x)− 3− x20Φ6(x) + x3Φ6(x)− 3x4,
d′11(x) = −x16Φ6(x)− 3 + x4Φ6(x),
d′10(x) = −x16Φ6(x)− 3 + x22Φ6(x) + 3x6,
d′9(x) = −x16Φ6(x)− 3 + x23Φ6(x)− x6Φ6(x) + 3x7,
d′8(x) = −x16Φ6(x)− 3− x7Φ6(x),
d′7(x) = −x16Φ6(x)− 3− x25Φ6(x)− 3x9,
d′6(x) = −x16Φ6(x)− 3− x26Φ6(x) + x9Φ6(x)− 3x10,
d′5(x) = −x16Φ6(x)− 3 + x10Φ6(x),
d′4(x) = −x16Φ6(x)− 3 + x28Φ6(x) + 3x12,
d′3(x) = −x16Φ6(x)− 3 + x29Φ6(x)− x12Φ6(x) + 3x13,
d′2(x) = −x16Φ6(x)− 3− x13Φ6(x),
d′1(x) = −x16Φ6(x)− 3− x31Φ6(x)− 3x15,
d′0(x) = −x16Φ6(x)− 3− x32Φ6(x) + x15Φ6(x)− 3x16.

(34)

Example 6. The cyclotomic family of curves with k = 19 has parameterizations given by p(x) = 1
3 (x+ 1)2(x38 − x19 + 1)− x39,

r(x) = Φ114(x),
t(x) = −x20 + x+ 1.

(35)

The formula of the hard part is given as d′(x) =
∑19
i=0 d

′(x)p(x)i where c(x) = 3(x16 + x15 − x13 −
x12 +x10 +x9−x7−x6 +x4 +x3−x− 1) and d′i(x) for 0 ≤ i ≤ 19 are polynomials given as follows:

d′17(x) = x18Φ6(x)− 3− Φ6(x),
d′16(x) = x18Φ6(x)− 3 + x20Φ6(x)− xΦ6(x)− 3x2,
d′15(x) = x18Φ6(x)− 3 + x21Φ6(x)− 3x3,
d′14(x) = x18Φ6(x)− 3 + x3Φ6(x),
d′13(x) = x18Φ6(x)− 3− x23Φ6(x) + x4Φ6(x) + 3x5,
d′12(x) = x18Φ6(x)− 3− x24Φ6(x) + 3x6,
d′11(x) = x18Φ6(x)− 3− x6Φ6(x),
d′10(x) = x18Φ6(x)− 3 + x26Φ6(x)− x7Φ6(x)− 3x8,
d′9(x) = x18Φ6(x)− 3 + x27Φ6(x)− 3x9,
d′8(x) = x18Φ6(x)− 3 + x9Φ6(x),
d′7(x) = x18Φ6(x)− 3− x29Φ6(x) + x10Φ6(x) + 3x11,
d′6(x) = x18Φ6(x)− 3− x30Φ6(x) + 3x12,
d′5(x) = x18Φ6(x)− 3− x12Φ6(x),
d′4(x) = x18Φ6(x)− 3 + x32Φ6(x)− x13Φ6(x)− 3x14,
d′3(x) = x18Φ6(x)− 3 + x33Φ6(x)− 3x15,
d′2(x) = x18Φ6(x)− 3 + x15Φ6(x),
d′1(x) = x18Φ6(x)− 3− x35Φ6(x) + x16Φ6(x) + 3x17,
d′0(x) = x18Φ6(x)− 3− x36Φ6(x) + 3x18.

(36)

As for the above cases of k = 5, 7, 11, 13, 17, and 19, the authors confirm that the formulas are
exactly one of the same representations of the hard part d′(x) = c(x)d(x) given by the lattice-based
method [12]. For the cases of any k, there is a possibility that the proposed formulas give rise to one
of the same representations as [12]. This also means that there is a possibility that the proposed
formulas lead to as efficient algorithms for computing the hard part as ones given by [12].

5 Applications

According to the formulas of the hard part, the authors construct the algorithm for computing
the hard part for the cyclotomic families of curves with any primes k. The authors also provide
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the calculation cost estimations of the final exponentiation for the pairings on concrete curves with
k = 13 and 19. In the following, the calculation costs of the exponentiation by s, multiplication,
cubing, pi-th power Frobenius endomorphism in F∗pk , and inversion in the cyclotomic subgroup of

F∗pk of order Φk(p) are denoted as usk, mk, ck, f ik, and ick, respectively.

5.1 Algorithms for computing the hard part for any prime k

The authors construct algorithms for computing the hard part based on the formulas given in
Theorem 1 and 2. According to the existence curves given in [8], the authors consider the case of
negative x in this paper. To reduce the number of multiplications and cyclotomic inversions, the
authors adopt the formulas of d′(x) = c(x)Φk(x)/r(x) multiplied by −(p(x) − 1). This results in
simpler representations of the hard part as given in the following corollaries.

Corollary 1. For the cyclotomic families of curves with any prime k = 6n+ 1, let p(x), d′(x), µ(x)
be a polynomial as defined in Theorem 1. Then, d̃(x) = −(p(x)− 1)d′(x) is denoted as follows:

d̃(x) = (−x6nΦ6(x) + 3)(p(x)6n − 1)−
6n−1∑
i=0

µ6n−1−i(x)p(x)i(p(x)− 1). (37)

Corollary 2. For the cyclotomic families of curves with any prime k = 6n− 1, let p(x), d′(x), ν(x)
be a polynomial as defined in Theorem 2. Then, d̃(x) = −(p(x)− 1)d′(x) is denoted as follows:

d̃(x) = (x6n−2Φ6(x) + 3)(p(x)6n−2 − 1)−
6n−3∑
i=0

ν6n−3−i(x)p(x)i(p(x)− 1). (38)

The formulas of d̃(x) = −(p(x) − 1)d′(x) lead to algorithms for computing f 7→ f
˜d(x) for the

cyclotomic families of curves with any prime k of k = 6n+ 1 and k = 6n− 1 as in Algorithms 2 and
3, respectively. In the following, the details of each step in the proposed algorithms are described
with the calculation costs.

• Algorithm 2 for computing the hard part for the cases of any prime k = 6n+ 1:

- Steps 1–3 compute fi ← f (−x)i for 1 ≤ i ≤ 6n, which take 6nu−xk .

- Steps 4–6 compute gi ← f (−x)6i+jΦ6(x) where j ∈ {0, 1, 3, 4} for 0 ≤ i ≤ n− 1, which take
6nmk.

- Steps 7–9 compute gi ← f (−x)6n−2+iΦ6(x) for 1 ≤ i ≤ 6n+ 2, which take (6n+ 2)u−xk .

- Step 10 computes t← f (−x6nΦ6(x)+3)(p(x)6n−1), which takes 2mk + ck + 2ick + f6
k .

- Steps 11–17 compute v6i+j ← f−µ6i+j(x) where j = {0, 1, 2, 3, 4, 5} for 0 ≤ i ≤ n − 1,
which take n(6mk + 4ck + 4ick).

- Steps 18–20 compute w ←
∏6n−1
i=0 v

p(x)i

6n−1−i, which take (6n− 1)mk +
∑6n−1
i=1 f ik.

- Step 21 computes w ← t · wp(x)−1, which takes 2mk + ick + f1
k .

The calculation cost of the hard part is given by (12n+ 2)u−xk + (18n+ 3)mk + (4n+ 1)ck +

(4n+ 3)ick +
∑6n−1
i=1 f ik + f6n

k + f1
k .

• Algorithm 3 for computing the hard part for the cases of any prime k = 6n− 1:

- Steps 1–3 compute fi ← f (−x)i for 1 ≤ i ≤ 6n− 2, which take (6n− 2)u−xk .

- Steps 4–8 compute gj ← f (−x)jΦ6(x) where j ∈ {0, 1}, gi ← f (−x)6i+jΦ6(x) where j ∈
{0, 1, 3, 4} for 1 ≤ i ≤ n − 1, and g6n−4 ← fx

6n−4Φ6(x), which take 5mk + (n − 1)6mk =
(6n− 1)mk.

- Steps 9–10 compute gi ← f (−x)6n−4+iΦ6(x) for 1 ≤ i ≤ 6n, which take 6nu−xk .

- Step 11 computes t← f (x6n−2Φ6(x)+3)(p(x)6n−2−1), which takes 2mk + ck + ick + f6n−2
k .
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Algorithm 2: Proposed hard part computation for curves with any prime k of k = 6n+ 1.

Input: f ∈ GΦk(p)

Output: f d̃(x) = f−(p(x)−1)d′(x) ∈ µr
1 f0 ← f ;
2 for i = 1 to 6n; do
3 fi ← f−xi−1; //u−xk

4 for i = 0 to n− 1; do
5 t← f6i+2 · f6i+1, g6i ← t · f6i, g6i+1 ← t · f6i+3; //3mk

6 t← f6i+5 · f6i+4, g6i+3 ← t · f6i+3, g6i+4 ← t · f6i+6; //3mk

7 g6n−1 ← g−x6n , g6n ← g−x6n−1; //2u−xk
8 for i = 1 to 6n; do
9 g6n+i ← g−x6n+i−1; //u−xk

10 t← g−1
6n · f3, t← tp(x)6 · t−1; //2mk + ck + 2ick + f6

k

11 for i = 0 to n− 1; do
12 v6i ← g6i; //0
13 v6i+1 ← (g6n+6i+2 · g6i+1)−1 · f3

6i+2; //2mk + ck + ick
14 v6i+2 ← g6n+6i+3 · f−3

6i+3; //mk + ck + ick
15 v6i+3 ← g6i+3; //0
16 v6i+4 ← (g6n+6i+5 · g6i+4)−1 · f3

6i+5; //2mk + ck + ick
17 v6i+5 ← g6n+6i+6 · f−3

6i+6; //mk + ck + ick

18 w ← v6n−1;
19 for i = 1 to 6n− 1; do

20 w ← w · vp(x)i

6n−1−i; //mk + f ik

21 w ← t · wp(x) · w−1; //2mk + ick + f1
k

Return w;

- Steps 12–20 compute vj ← f−νj(x) where j = {0, 1, 2, 3} and v6i+j ← f−ν6i+j(x) where
j = {−2,−1, 0, 1, 2, 3} for 0 ≤ i ≤ n − 1, which take 5mk + 3ck + 2ick + (n − 1)(6mk +
4ck + 4ick) = (6n− 1)mk + (4n− 1)ck + (4n− 2)ick.

- Steps 21–23 compute w ←
∏6n−3
i=0 v

p(x)i

6n−3−i, which take (6n− 3)mk +
∑6n−3
i=1 f ik.

- Step 24 computes w ← t · wp(x)−1, which takes 2mk + ick + f1
k .

The calculation costs of the hard part is given by (12n−2)u−xk +(18n−1)mk +4nck +4nick +∑6n−3
i=1 f ik + f6n−2

k + f1
k .

On the other hand, as described in Sect. 3.3, Algorithm 1 for computing the hard part given by
the formula [18] takes at least (k′−1) deg Tuxk for any family of curves with a certain k. Note that k′ is
the value of Euler’s totient function by k. For the cyclotomic family of curves with a prime k = 6n+1,
since k′ = 6n and T (x) = −x6n+2 + x, it requires at least (6n− 1)(6n+ 2)uxk = (36n2 + 6n− 2)uxk
for computing the hard part. Similarly for the case of a prime k = 6n − 1, since k′ = 6n − 2 and
T (x) = x6n, it requires at least (6n − 3)(6n)uxk = (36n2 − 18n)uxk. Since uxk ≈ u−xk , this means
that the previous algorithm has O(n2) complexity, but the proposed ones have O(n). Therefore, the
proposed algorithms would be better choices than the previous ones for the families of curves with
prime k.

5.2 Calculation cost estimations for curves with k = 13 and 19

The authors estimate the calculation costs of the final exponentiation of the pairings on concrete
curves in the cyclotomic families of curves with primes k. In this paper, the authors employ the
seeds x = x0 for generating concrete curves with k = 13 and 19 which are suggested for the pairing
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Algorithm 3: Proposed hard part computation for curves with any prime k of k = 6n− 1.

Input: f ∈ GΦk(p)

Output: f d̃(x) = f−(p(x)−1)d′(x) ∈ µr
1 f0 ← f ;
2 for i = 1 to 6n− 2; do
3 fi ← f−xi−1; //u−xk

4 t← f2 · f1, g0 ← t · f0, g1 ← t · f3; //3mk

5 for i = 1 to n− 1; do
6 t← f6i−2 · f6i−3, g6i−3 ← t · f6i−1, g6i−4 ← t · f6i−4; //3mk

7 t← f6i+2 · f6i+1, g6i+1 ← t · f6i+3, g6i ← t · f6i; //3mk

8 g6n−4 ← f6n−2 · f6n−3 · f6n−4; //2mk

9 for i = 1 to 6n; do
10 g6n−4+i ← g−x6n−5+i; //u−xk

11 t← g6n−2 · f3, t← tp(x)6n−2 · t−1; //2mk + ck + ick + f6n−2
k

12 v0 ← g0 · g6n−1 · f3
1 , v1 ← g−1

1 ; //2mk + ck + ick
13 v2 ← (g6n+1 · f3

3 )−1, v3 ← g6n+2 · g3 · f3
4 ; //3mk + 2ck + ick

14 for i = 1 to n− 1; do
15 v6i−2 ← g−1

6i−2; //ick
16 v6i−1 ← (g6n+6i−2 · f3

6i)
−1; //mk + ck + ick

17 v6i ← g6n−1+6i · g6i · f3
6i+1; //2mk + ck

18 v6i+1 ← g−1
6i+1; //ick

19 v6i+2 ← (g6n+6i+1 · f3
6i+3)−1; //mk + ck + ick

20 v6i+3 ← g6n+6i+2 · g6i+3 · f3
6i+4; //2mk + ck

21 w ← v6n−3;
22 for i = 1 to 6n− 3; do

23 w ← w · vp(x)i

6n−3−i; //mk + f ik

24 w ← t · wp(x) · w−1; //2mk + ick + f1
k

Return w;

at the 128-bit security level by Clarisse et al. in [8] and which are called BW13-P310 and BW19-P286,
respectively. The details of the parameters are presented in Table 2. According to [8], it could not
be found seeds for generating curves with k = 11 and 17 for the pairings at the 128-bit security level.

The calculation costs of the arithmetics operations in Fpk for k = 13 and 19 can be replaced with
the cost of the multiplication in Fp which is denoted as m in Table 3. Note that the authors refer to
[8, 15, 16, 27] and obtain Table 3. Then, the calculation costs of the proposed final exponentiation
for BW13-P310 and BW19-P286 are estimated as follows:

• Calculation cost of the final exponentiation for BW13-P310: Since the seed is given by x =
x0 = −2224 = −(211 + 27 + 25 + 24), the calculation cost of the exponentiation by −x can be
considered as u−x13 = 3m13 + 11s13 = 3(59m) + 11(59m) = 826m. According to Sect. 5.1, it is
found that the hard part takes the calculation costs 26u−x13 + 39m13 + 9c13 + 11ic13 + 13f ik =
26(826m) + 39(59m) + 9(118m) + 11(438m) + 13(12m) = 29813m. Adding the calculation cost
of the easy part m13 + i13 + f1

13 = (59m) + (489m) + (12m) = 560m, the cost of the final
exponentiation is obtained as 30373m.

• Calculation cost of the final exponentiation for BW19-P286: Since x = x0 = −145 = −(27+24+
20), the calculation cost of the exponentiation by−x is given by u−x19 = 2m19+7s19 = 2(107m)+
7(107m) = 963m. Similarly, the hard part requires the calculation costs 38u−x19 + 57m19 +
13c19 + 15ic19 + 19f i19 = 38(963m) + 57(107m) + 13(214m) + 15(1143m) + 19(18m) = 62962m.
Adding the calculation cost of the easy part m19 + i19 + f1

19 = (107m) + (1206m) + (18m) =
1331m, the cost of the final exponentiation is obtained as 64293m.
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Table 2: Curves with k = 13 and 19 for the pairing at the 128-bit security level.
Curves (k,D, ρ) Seed x = x0 log2 p(x0) log2 p(x0)k log2 r(x0)

BW13-P310 (13, 3, 1.167) −2224 310 4027 267
BW19-P286 (19, 3, 1.111) −145 286 5427 259

Table 3: Calculation costs of the arithmetic operations in F∗pk .

k mk sk ik ck ick f ik
13 59m 59m 489m 118m 438m 12m
19 107m 107m 1206m 214m 1143m 18m

Table 4: Calculation costs for the final exponentiation of the pairings at the 128-bit security level.
Curves Clarisse et al. [8] This work Reductions [%]

BW13-P310 57827m 30373m 47.5
BW19-P286 175746m 64293m 63.4

Table 4 summarizes the results of the calculation cost estimations given by Clarisse et al. [8]
and this work. Note that [8] refer to the method by Kim et al. [23] and estimated the calculation
costs as 53834m + 9i13 and 160824 + 13i19 for BW13-P310 and BW19-P286, respectively. Since the
cyclotomic inversions are available during hard part computation, the authors revise the costs as
53834m+i13+8ic13 = 53834m+(489m)+8(438m) = 57827m and 160824m+i19+12ic19 = 160824m+
(1206m) + 12(1143m) = 175746m for BW13-P310 and BW19-P286, respectively. The estimation
result shows that there are 47.5% and 63.4% reduction of the calculation costs for BW13-P310 and
BW19-P286, respectively. Thus, the proposed algorithms are considered to provide state-of-the-art
computations for these curves. It is also expected that the performances of the pairings on these
curves are significantly faster than previously considered.

6 Conclusion

In this paper, the authors presented formulas for generating the hard part representations of the
final exponentiation for the cyclotomic family of curves with any prime k. For the small cases of
k, the formulas give rise to one of the same hard part representations given by the lattice-based
method [12]. The authors also constructed algorithms for computing the hard part which can be
applied for any case of prime k. The algorithms have significantly lower complexity than ones given
by Hayashida et al. [18] for any families of curves. At least for BW13-P310 and BW19-P286 for the
pairing at the 128-bit security level, the proposed algorithms can achieve current state-of-the-art
computations. As one of the future works, the authors would like to obtain similar results for the
other families of curves.
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A Proof of Theorem 1

The authors describe the proof of Theorem 1. In this context, the authors start to modify d′(x) =
c(x)d(x) where d(x) = Φk(p(x))/r(x) by using the expansion of Eq. (13) given by Hayashida et al. in
[18]. In this case of the cyclotomic family for a prime k = 6n+1, one can determine the polynomials
h1(x), h2(x), T (x) ∈ Q[x] from the properties of the cyclotomic polynomial in Eqs. (8) and (9) and
definition of (p(x), r(x), t(x)) in Eq. (15) as follows:

h1(x) = Φ6(x)2/3,

h2(x) =
∑6n
i=0 T (x)i/r(x),

T (x) = −x6n+2 + x.
(39)

Since the value of Euler’s totient function is k′ = k − 1 = 6n and the k-th cyclotomic polynomial is
given by Φk(X) =

∑6n
i=0X

i, d′(x) can be denoted as follows:

d′(x) = c(x)h1(x)

6n−1∑
i=0

6n−1−i∑
j=0

T (x)jp(x)i


︸ ︷︷ ︸

=A(x)

+ c(x)h2(x)︸ ︷︷ ︸
=B(x)

. (40)

where the first and second terms are referred to as A(x) and B(x), respectively.

(i) Modification of A(x). For a non-negative integer s, let ms(x) be a polynomial defined by
ms(x) = c(x)h1(x)

∑s
j=0 T (x)j . For s = 0, since c(x) = (x6n − 1)/Φ6(x), it is clear that m0(x) =

x6nΦ6(x)− Φ6(x). In fact, for s > 0, ms(x) is denoted as follows:

ms(x) = −3

s−1∑
i=0

T (x)ip(x)− Φ6(x)T (x)s + x6nΦ6(x) + 3

s∑
i=1

T (x)i. (41)

which can be easily proven by the injection of s. The above formulas provide the following modifi-
cation of A(x).

A(x) =

6n−1∑
i=0

m6n−1−i(x)p(x)i

= (x6nΦ6(x)− Φ6(x))p(x)6n−1

+ (−3p(x)− Φ6(x)T (x) + x6nΦ6(x) + 3T (x))p(x)6n−2

+ (−3(T (x) + 1)p(x)− Φ6(x)T (x)2 + x6nΦ6(x) + 3(T (x)2 + T (x)))p(x)6n−3 + · · ·

+

(
−3

6n−2∑
i=0

T (x)ip(x)− Φ6(x)T (x)6n−1 + x6nΦ6(x) + 3

6n−1∑
i=1

T (x)i

)
p(x)0

= (x6nΦ6(x)− 3− Φ6(x))p(x)6n−1

+ (x6nΦ6(x)− 3− Φ6(x)T (x))p(x)6n−2

+ (x6nΦ6(x)− 3− Φ6(x)T (x)2)p(x)6n−3 + · · ·

+ (x6nΦ6(x)− 3− Φ6(x)T (x)6n−1)p(x)0 + 3

6n−1∑
i=0

T (x)i

=

(
6n−1∑
i=0

(x6nΦ6(x)− 3)p(x)i

)
︸ ︷︷ ︸

=A1(x)

−

(
Φ6(x)

6n−1∑
i=0

T (x)6n−1−ip(x)i

)
︸ ︷︷ ︸

=A2(x)

+ 3

6n−1∑
i=0

T (x)i︸ ︷︷ ︸
=A3(x)

, (42)

where the first, second, and third terms are referred to as A1(x), A2(x), and A3(x), respectively.
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(ii) Modification of A2(x). For a non-negative integer s, let ns(x) be a polynomial defined by
ns(x) = Φ6(x)T (x)s. For s ≥ 0, it is possible to denote ns(x) as follows:

ns(x) = αs(x)p(x) + βs(x)− αs(x)T (x), (43)

where αs(x) and βs(x) are polynomials in Q[x] defined as follows: Note that a polynomial γs(x) is
defined for representing αs(x).

αs(x) =

{
0 if s = 0,
αs−1(x)T (x) + γs(x) if s > 0,

(44)

βs(x) =



xsΦ6(x) if s ≡ 0 (mod 6),
−x6n+1+sΦ6(x) + xsΦ6(x) if s ≡ 1 (mod 6),
−x6n+1+sΦ6(x) if s ≡ 2 (mod 6),
−xsΦ6(x) if s ≡ 3 (mod 6),
x6n+1+sΦ6(x)− xsΦ6(x) if s ≡ 4 (mod 6),
x6n+1+sΦ6(x) if s ≡ 5 (mod 6),

(45)

γs(x) =

 0 if s ≡ 1, 4 (mod 6),
3xs if s ≡ 2, 3 (mod 6),
−3xs if s ≡ 0, 5 (mod 6).

(46)

The correctness of the above equation can be proven by induction on s′ ≥ 0 such that s = 6s′ +
i > 0 for i ∈ {1, 2, 3, 4, 5, 6}, however, that is omitted in this paper. The important fact is that
βs(x) +γs+1(x) = −µs(x) for s ≥ 0, which can be easily confirmed from the definition. Then, A2(x)
is represented as follows:

A2(x) =

6n−1∑
i=0

n6n−1−i(x)p(x)i

= (α0(x)p(x) + β0(x)− α0(x)T (x))p(x)6n−1

+ (α1(x)p(x) + β1(x)− α1(x)T (x))p(x)6n−2

+ (α2(x)p(x) + β2(x)− α2(x)T (x))p(x)6n−3 + · · ·
+ (α6n−1(x)p(x) + β6n−1(x)− α6n−1(x)T (x))p(x)0

= (β0(x)− α0(x)T (x) + α1(x))p(x)6n−1

+ (β1(x)− α1(x)T (x) + α2(x))p(x)6n−2

+ (β2(x)− α2(x)T (x) + α3(x))p(x)6n−3 + · · ·
+ (β6n−1(x)− α6n−1(x)T (x) + α6n(x))p(x)0

− α6n(x)

= (β0(x) + γ1(x))p(x)6n−1

+ (β1(x) + γ2(x))p(x)6n−2

+ (β2(x) + γ3(x))p(x)6n−3 + · · ·
+ (β6n−1(x) + γ6n(x))p(x)0

− ((α0(x) + γ1(x))T (x)6n−1 + · · ·+ γ6n−1T (x) + γ6n(x))

= −

(
6n−1∑
i=0

µ6n−1−i(x)p(x)i

)
︸ ︷︷ ︸

A21(x)

−

(
6n−1∑
i=0

γ6n−i(x)T (x)i

)
︸ ︷︷ ︸

A22(x)

, (47)

where the first and second terms are referred to as A21(x) and A22(x), respectively.

(iii) Modification of B(x). The polynomial B(x) can be modified as follows:

B(x) = c(x)h2(x)
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=
c(x)T (x)

∑6n−1
i=0 T (x)i + c(x)

r(x)

=
(−3r(x) + x2c(x) + 3)

∑6n−1
i=0 T (x)i + c(x)

r(x)

= −

(
3

6n−1∑
i=0

T (x)i

)
︸ ︷︷ ︸

=B1(x)

+
Φ6(x)(x2c(x) + 3)

∑6n−1
i=0 T (x)i + c(x)

Φ6(x6n+1)︸ ︷︷ ︸
B2(x)

, (48)

where the first and second terms to as B1(x) and B2(x), respectively.
According to the modifications (i), (ii), and (iii), it is found that d′(x) is denoted as

d(x) = A(x) +B(x) = A1(x)− (−A21(x)−A22(x)) +A3(x)−B1(x) +B2(x)

= A1(x) +A21(x) +A22(x) +B2(x)

=

6n−1∑
i=0

(
x6nΦ6(x)− 3 + µ6n−1−i(x)

)
p(x)i +A22(x) +B2(x). (49)

Thus, it is enough to show that A22(x) + B2(x) = 0 is true. Since B2(x) involves denominator

Φ6(x6n+1), it is enough to show that t1(x) = Φ6(x6n+1)B2(x) = Φ6(x)((x2c(x) + 3)
∑6n−1
i=0 T (x)i +

c(x)) and t2(x) = −Φ6(x6n+1)
∑6n−1
i=0 γ6n−i(x)T (x)i are the same. Although the authors do not

show the details in this paper, it is confirmed that t1(x) = 3(x6n−T (x)6n) = t2(x). Thus, Theorem
1 is true. �

B Proof of Theorem 2

In the following, the authors describe proof of Theorem 2. Similar to proof of Theorem 1, the authors
modify d′(x) = c(x)d(x) where d(x) = Φk(p(x))/r(x) is given by Eq. (13). For the case of the family
of curves with a prime k = 6n − 1, one can determine the polynomials h1(x), h2(x), T (x) ∈ Q[x]
from Eqs. (8), (9), and (16) as follows:

h1(x) = Φ6(x)2/3,

h2(x) =
∑6n−2
i=0 T (x)i/r(x),

T (x) = x6n.
(50)

Since the value of Euler’s totient function is k′ = k−1 = 6n−2 and the k-th cyclotomic polynomial
is given by Φk(X) =

∑6n−2
i=0 Xi, d′(x) can be denoted as follows:

d′(x) = c(x)h1(x)

6n−3∑
i=0

6n−3−i∑
j=0

T (x)jp(x)i︸ ︷︷ ︸
=A(x)

+ c(x)h2(x)︸ ︷︷ ︸
=B(x)

, (51)

where the first and second parts are referred to as A(x) and B(x), respectively.

(i) Modification of A(x). For a non-negative integer s, let ms(x) be a polynomial defined by
ms(x) = c(x)h1(x)

∑s
i=0 T (x)i. Then, for s = 0, it is clear that m0(x) = x6n−1Φ6(x)−x6n−2Φ6(x)−

Φ6(x). For s > 0, ms(x) is written as follows:

ms(x) = 3

(
xT (x)s−1 −

s−1∑
i=0

T (x)i

)
p(x)− xT (x)s−1Φ6(x)− x6n−2Φ6(x)− 3

(
xT (x)s −

s∑
i=1

T (x)i

)
.

(52)

which can be easily proven by the injection of s. This leads to the following modification of A(x).

A(x) =

6n−3∑
i=0

m6n−3−i(x)p(x)i
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= (x6n−1Φ6(x)− x6n−2Φ6(x)− Φ6(x))p(x)6n−3

+ (3(x− 1)p(x)− xΦ6(x)− x6n−2Φ6(x)− 3(xT (x)− T (x))p(x)6n−4

+ (3(xT (x)− T (x)− 1)p(x)− xT (x)Φ6(x)− x6n−2Φ6(x)

− 3(xT (x)2 − T (x)2 − T (x)))p(x)6n−5 + · · ·

+

(
3

(
xT (x)6n−4 −

6n−4∑
i=0

T (x)i

)
p(x)− xT (x)6n−4Φ6(x)

−x6n−2Φ6(x)− 3

(
xT (x)6n−3 −

6n−3∑
i=1

T (x)i

))
p(x)0

= (−x6n−2Φ6(x)− 3 + x6n−1Φ6(x)− Φ6(x) + 3x)p(x)6n−3

+ (−x6n−2Φ6(x)− 3− xΦ6(x))p(x)6n−4

+ (−x6n−2Φ6(x)− 3− xT (x)Φ6(x))p(x)6n−5 + · · ·

+
(
−x6n−2Φ6(x)− 3− xT (x)6n−4Φ6(x)

)
p(x)0 − 3

(
xT (x)6n−3 −

6n−3∑
i=0

T (x)i

)

=

(
6n−3∑
i=0

(−x6n−2Φ6(x)− 3)p(x)i

)
︸ ︷︷ ︸

=A1(x)

+

(
ν0(x)p(x)6n−3 −

6n−4∑
i=0

xΦ6(x)T (x)6n−4−ip(x)i

)
︸ ︷︷ ︸

=A2(x)

+ 3

(
6n−3∑
i=0

T (x)i − xT (x)6n−3

)
︸ ︷︷ ︸

=A3(x)

. (53)

where the first, second, and third terms are referred to as A1(x), A2(x), and A3(x), respectively.

(ii) Modification of A2(x). For a non-negative integer s, let ns(x) be a polynomial defined by
ns(x) =

∑s
i=0 xΦ6(x)T (x)s. Then, ns(x) can be denoted as follows:

ns(x) = αs(x)p(x) + βs(x)− αs(x)T (x), (54)

where αs(x) and βs(x) are defined as follows: The authors also define γs(x) for representing αs(x).

αs(x) =

{
0 if s = 0,
αs−1(x)T (x) + γs(x) if s > 0,

(55)

βs(x) =



xs+1Φ6(x) if s ≡ 0 (mod 6),
x6n+sΦ6(x) if s ≡ 1 (mod 6),
x6n+sΦ6(x)− xs+1Φ6(x) if s ≡ 2 (mod 6),
−xs+1Φ6(x) if s ≡ 3 (mod 6),
−x6n+sΦ6(x) if s ≡ 4 (mod 6),
−x6n+sΦ6(x) + xs+1Φ6(x) if s ≡ 5 (mod 6),

(56)

γs(x) =

 0 if s ≡ 1, 4 (mod 6),
3xs+1 if s ≡ 2, 3 (mod 6),
−3xs+1 if s ≡ 0, 5 (mod 6).

(57)

This can be proven by induction on s′ ≥ 0 such that s = 6s′+ i > 0 for i ∈ {1, 2, 3, 4, 5, 6}. Note that
there is a relation βs(x) + γs+1(x) = −νs+1(x) for s ≥ 0. Then, A2(x) can be modified as follows:

A2(x) = ν0(x)p(x)6n−3 −
6n−4∑
i=0

n6n−4−i(x)p(x)i

= ν0(x)p(x)6n−3
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− (α0(x)p(x) + β0(x)− α0(x)T (x))p(x)6n−4

− (α1(x)p(x) + β1(x)− α1(x)T (x))p(x)6n−3

− (α2(x)p(x) + β2(x)− α2(x)T (x))p(x)6n−2 − · · ·
− (α6n−4(x)p(x) + β6n−4(x)− α6n−4(x)T (x))p(x)0

= ν0(x)p(x)6n−3

− (β0(x)− α0(x)T (x) + α1(x))p(x)6n−4

− (β1(x)− α1(x)T (x) + α2(x))p(x)6n−3

− (β2(x)− α2(x)T (x) + α3(x))p(x)6n−2 − · · ·
− (β6n−4(x)− α6n−4(x)T (x) + α6n−3(x))p(x)0

+ α6n−3(x)

= ν0(x)p(x)6n−3

− (β0(x) + γ1(x))p(x)6n−4

− (β1(x) + γ2(x))p(x)6n−3

− (β2(x) + γ3(x))p(x)6n−2 − · · ·
− (β6n−4(x) + γ6n−3(x))p(x)0

+ ((α0(x)T (x) + γ1(x))T (x)6n−4 + · · ·+ γ6n−4(x)T (x) + γ6n−3(x))

=

(
6n−3∑
i=0

ν6n−3−i(x)p(x)i

)
︸ ︷︷ ︸

=A21(x)

+

(
6n−4∑
i=0

γ6n−3−i(x)T (x)i

)
︸ ︷︷ ︸

=A22(x)

, (58)

where the first and second terms are referred to as A21(x) and A22(x), respectively.

(iii) Modification of B(x). The polynomial B(x) can be modified as follows:

B(x) = c(x)h2(x) =
c(x)Φ6(x)

∑6n−2
i=0 T (x)i

r(x)Φ6(x)
=

3(x6n−1 − x6n−2 − 1)
∑6n−2
i=0 T (x)i

Φ6(x6n−1)
. (59)

According to the modifications (i), (ii), and (iii), it is found that

d′(x) = A(x) +B(x) = A1(x) + (A21(x) +A22(x)) +A3(x) +B(x)

=

6n−3∑
i=0

(−x6n−2 − 3 + ν6n−3−i(x))p(x)i +A22(x) +A3(x) +B(x). (60)

Thus, it is enough to show A22(x) + A3(x) + B(x) = 0. Since B(x) is denoted as Eq. (59), it is

equivalent to show −Φ6(x6n−1)(A22(x) + A3(x)) = 3(x6n−1 − x6n−2 − 1)
∑6n−2
i=0 T (x)i. Although

the authors do not present the details, it is obtained that −Φ6(x6n−1)A22(x) = −Φ6(x6n−1) ·∑6n−4
i=0 γ6n−3−i(x)T (x)i = −3(xT (x)6n−3+x6n−2) and−Φ6(x6n−1)A3(x) = −Φ6(x6n−1)

∑6n−3
i=0 T (x)i−

xT (x)6n−3 = 3(x6n−1 − x6n−2 − 1)
∑6n−2
i=0 T (x)i + 3(xT (x)6n−3 + x6n−2), which indicate that the

equation is held. Thus, Theorem 2 is true. �
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