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Abstract

Currently, software implementation is the mainstream approach for anti-malware measures.
However, software-based anti-malware measures are difficult to implement in Internet of Things
devices with limited hardware resources. To solve this problem, a malware detection mechanism
that can be realized with only hardware has been proposed. The hardware mechanism consists
of three elements: an access-hit counter, dividers, and a classifier. The classifier is generated
by a random forest and uses processor information as feature values. To reduce the hardware
scale, a Hit Rate Table (HRTable) is introduced in place of the dividers. We propose methods of
reducing the scale of hardware resources and synchronizing the CPU and the malware detection
mechanism. This paper implements the proposed mechanism in hardware, simulates it while
considering the delay caused by input/output to the HRTable, and evaluates the hardware
scale of the proposed mechanism combined with RISC-V on a field-programmable gate array
(FPGA).
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1 INTRODUCTION

The incidence of cyber-attacks targeting Internet of Things (IoT) devices has been on the rise in
recent years and many attacks by malware such as Mirai have been identified to date [16, 14]. One of
the reasons for the increase in attacks is the increasing popularity of IoT devices themselves. Another
factor is that IoT devices on the market are still vulnerable to attack [9]. Therefore, anti-malware
measures for IoT devices should be taken as soon as possible.

0The conference version of this paper is published in the proceedings of The Ninth International Symposium on
Computing and Networking (CANDAR 2021).
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One of the reasons for the lack of anti-malware measures in IoT devices is that many anti-malware
measures are designed to be implemented in software, whereas IoT devices have fewer hardware
resources than personal computers and server devices. To realize anti-malware measures that can be
implemented even in IoT devices with scarce hardware resources, a malware detection mechanism
(MDM) based on hardware implementation was proposed by Koike et al. [13]. The MDM consists
of three hardware elements: an access-hit counter, three dividers, and a classifier. It is proposed to
operate on Large-Scale Integration (LSI). A hardware element called the Hit Rate Table (hereinafter
referred to as the HRTable) was introduced to the proposed MDM and evaluated [13, 12]. It is a
mechanism that calculates the information obtained from the CPU (processor information) instead of
the divider in the MDM. In the classifier of the MDM, a random forest structure that uses processor
information as a feature is implemented in hardware. The classifier detects whether an instruction
is a normal instruction or an abnormal instruction when it is executed when it is coupled with the
CPU. Furthermore, if the number of abnormal instructions exceeds a certain number within the
number of instructions executed in a given period, then this mechanism judges the program being
executed to be malware.

Since the MDM uses processor information inside the CPU, it is necessary to synchronize the
operations of the CPU and the MDM and to properly calculate the features required for instruction
classification. In addition, varying the parameters of the number of decision trees in the random
forest and the maximum depth of the decision trees in the classifier causes differences in hardware
resource utilization. Resource utilization varies depending on the bit width of the feature value that
is imputed to the classifier.

The following are the two contributions of this paper:

• A method for calculating the bit width of features, calculating the parameters of random forest
decision trees, and reducing the scale of CPUs needed to implement the MDM, which can be
implemented on small LSIs such as those used in IoT devices.

• In the synchronization of CPUs connected to MDMs, the HRTable is realized with consistent
data input and output, taking into account the delay in implementation.

In the following, Section 2 describes related research and Section 3 gives an overview of the MDM
and issues. Section 4 describes the proposed method, Section 5 describes the measurement results
and evaluation, Section 6 discusses the results, and Section 7 concludes this paper.

2 RELATED WORKS

An example of a hardware security mechanism is the Trust-Zone security extension implemented in
ARM, which virtually divides the ARM execution environment into a normal world and a secure
world and handles important data in the secure world [10]. This mechanism is designed to protect
data, and its purpose is different from that of the MDM.

In addition, Intel has announced a processor equipped with Control-Flow Enforcement Technol-
ogy (CET), which is a chip-level security function [8]. CET can be used for attacks that exploit
return and branch instructions, which are difficult to detect and prevent in software. CET is a
function that detects the behavior of these attacks in hardware and protects the system by stopping
the program execution.

Koike et al. [13] proposed an MDM that runs in parallel with the CPU on LSI and uses processor
information to detect malware. Similar work has been done on malware detection using register ag-
gregates called hardware performance counters (HPC), which classify applications as either malware
or benign [15]. Deguchi et al. [12] proposed the HRTable as a countermeasure to the problem of
hardware utilization of the divider among the hardware elements of the MDM proposed by Koike
et al. The next section first provides an overview of the MDM and its issues and an overview of the
HRTable before evaluating the hardware implementation of the MDM using the HRTable.
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3 OVERVIEW OF MDM AND ITS ISSUES

This section gives an overview of the MDM proposed by Koike et al. [13] and the HRTable proposed
by Deguchi et al. [12].

3.1 Overview of the MDM

First, the method proposed by Koike et al. [13] is shown in Fig. 1, where the processor information
from the CPU is inputted to the access-hit counter, and statistics such as hit rates obtained from the
L1 instruction cache (L1I$), L1 data cache (L1D$), and L2 cache (L2$) are calculated using a divider.
The statistics are then inputted to the classifier to determine whether the program being executed
is malware or not. The details of the MDM are described in Fig. 2. The first step is to calculate the
total number of accesses and the total number of hits in each cache using the access-hit counter. The
counter takes as input the access signals (L1I access, L1D access, and L2 access) generated when the
CPU core accesses the cache and the hit signals (L1I hit, L1D hit, and L2 hit) generated when data
corresponding to the address exist. The number of accesses (L1I access num, L1D access num, and
L2 access num) and the number of hits (L1I hit num, L1D hit num, and L2 hit num) for each cache
are outputted by adding the values whenever a signal is obtained from each cache. In the second
process, a counter is created. In the second step, the cache hit rates (L1I hit rate, L1D hit rate, and
L2 hit rate) are calculated from the number of accesses and hits obtained by the counters using a
divider. Three dividers are provided to calculate the hit rates for each cache in parallel. The third
step is to classify the instructions using a classifier and to determine whether the program being
executed is normal or malware. For the classification of programs, the hit rate obtained from the
divider is used as the feature value and the random forest in the classifier is used to classify each
instruction. If the number of instructions classified as malignant by the random forest exceeds a
threshold value in an instruction section, then the classifier judges that the program executed in
that instruction section is malware.

Figure 1: The method proposed by Koike et al.

Figure 2: Flowchart for malware detection.
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3.2 Overview of HRTable

Deguchi et al. [12] proposed a faster method for calculating hit rates with fewer hardware resources
by introducing the HRTable as a replacement for the divider used by Koike et al. The HRTable
holds the calculated division results in the form of a table, and when a binary value consisting of the
number of accesses and the number of hits is inputted, it searches for the hit rate from the table and
outputs it. The output hit rate is inputted to the classifier as a feature value. Deguchi et al. reduced
the hardware resource utilization of the HRTable by reducing the address width corresponding to
the input values and the bit width of each entry. Figure 3 shows the MDM configuration with the
HRTable instead of dividers, focusing on the flow of malware detection from processor information
obtained from the CPU. The CPU and the MDM operate in parallel and are independent of each
other. The double line in the flowchart indicates the connection between the CPU and the MDM,
and the access and hit signals generated by the interaction between the core and each cache are
outputted to the access-hit counter in the MDM.

Figure 3: MDM configuration with HRTable.

3.3 Issues of the MDM and HRTable

The MDM has issues that need to be addressed in the hardware implementation. The divider used
in the second process requires multiple cycles to calculate the hit rate. Figure 4 shows the number
of cycles that elapse from the input of a value to the output of a divider created with Vivado, a
development tool from Xilinx [5]. The number of cycles increases as the number of divisors, the
number of dividends, and the bit width of the output value increase. Reducing the number of cycles
until calculation of the hit rate is complete increases the complexity of the divider and the scale of
the circuit, making it unsuitable for implementation in small-scale environments. Furthermore, the
relationship between the classification accuracy of the classifier and the hardware scale has not yet
been investigated [13, 12]. In addition, the timing of the signal processing of the HRTable and the
hardware scale of the simultaneous implementation of the CPU and the MDM with the HRTable
have not been explored. Details of these issues are described next.

3.3.1 Issues of the scale of the classifier and overall hardware

The hardware scale of the MDM classifier varies depending on the number of decision trees in the
random forest, the depth of the trees, and the bit width of the three features. The bit width of a
feature is 16 bits. However, although the accuracy of the random forest held by the classifier has
been verified, the hardware scale of the classifier has not been shown. For the CPU, the Rocket Chip,
which is a processor based on RISC-V [11], is adopted. However, the hardware resource utilization
of the entire system connected to the Rocket Chip has not been measured and still needs to be
verified.
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Figure 4: Number of cycles in the division process.

3.3.2 Issues of delay in HRTable input and output

The HRTable has one input port and one output port, and the access and hit signals from each
cache are processed in turn by the access-hit counter every cycle (Fig. 5). Therefore, the MDM
requires three cycles before the three features are passed to the classifier. In addition, to obtain three
features per cycle, the HRTable must operate three times faster than the CPU frequency (Fig. 6),
which increases the power consumption. However, in the study [12], only hardware scale reduction
is discussed and the delay is not considered.

Figure 5: HRTable output (three CPU cycles). Figure 6: HRTable output (one CPU cycle).

4 PROPOSED METHOD

This section describes the proposed method. Since this paper assumes that the Rocket Chip is used
as a small-scale implementation of the CPU, the connection method between the MDM and the
Rocket Chip using the HRTable is first explained. Next, a circuit reduction method for the classifier
is proposed in Section 3.3.1 and a cycle reduction method for the HRTable is proposed in Section
3.3.2.

4.1 Method for reducing the circuit scale of a classifier

4.1.1 Overview of Rocket Chip

The Rocket Chip, which is connected to the MDM in this research, has a framework called the
Rocket tile, which consists of a Rocket core with a RISC-V instruction set architecture, a page table
walker (PTW), an L1 instruction cache (L1I$), and an L1 data cache (L1D$). The Rocket Tile also
consists of the SystemBus, which interfaces to each subsystem; the MemoryBus, which contains the
memory system configuration including the L2 cache (L2$); the ControlBus, which contains a boot
loader called during interrupts and system resets; the PeripheryBus, which provides connections
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to peripheral devices; and the FrontBus, which handles read/write requests to the memory system
(Fig. 7). It is also possible to use Boom cores instead of Rocket cores or to change the configuration
to run multiple cores in parallel [3, 7].

Figure 7: Overview of Rocket Chip.

4.1.2 Reduce hardware scale of MDM and CPU

This study proposes a method that does not use the L2 cache to further reduce the circuitry compared
to the standard Rocket Chip configuration. It uses the program counter (PC) with the next highest
contribution rate after the L2 hit rate, which is described in the paper by Koike et al. Figure
8 compares the classification accuracy of the random forest when the L1 instruction hit rate, L1
data hit rate, and PC are used as features in machine learning and when only two features, the
L1 instruction hit rate and L1 data hit rate, are used. In this case, the PC is 64 bits, and the L1
instruction hit rate and L1 data hit rate are 16 bits each. The horizontal axis shows the name of
the malware for which the accuracy was measured and the vertical axis (Score) shows the ratio of
the number of instructions classified as attacks to the total number of instructions for each malware.
For some malware, the score value tends to be very low when the hit rate alone is used. Table
1 recalculates the contribution rates of the features obtained when a random forest is created by
focusing on three features for machine learning: L1 instructions, data cache hit rate, and the PC. For
the MDM, this study focuses on the configuration of the classifier and the random forest and checks
how much the hardware scale changes as each parameter changes, and then check the classification
accuracy of the classifier when each parameter is applied.

4.1.3 Bit width reduction for program counter

We describe a method to reduce the bit width of the PC for using the PC as a new feature values
in machine learning. The PC used for learning and classification holds the address of the next
instruction to be executed by the program. There are two types of addresses, physical and virtual,
and a RISC-V instruction set such as Rocket-Chip provides address translation mechanisms such as
Sv32/32, Sv39/64, and Sv48/64 [17]. The Rocket-Chip used in this research is implemented with the
Sv39/64 mechanism, which converts a 39-bit virtual address into a 64-bit physical address. When
the virtual address is extended to 64 bits, 40-64 bits must be the same value as the 39 bit. Therefore,
when the feature values have a bit width of 64 bits, the PC uses the sign-extended virtual address.
RISCV on QEMU, which is used as training data, implements Sv48/64 and performs sign expansion
when referring to the same address as above.
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Figure 8: Instruction classification accuracy of
random forests.

Table 1: Feature importance.

Features Contribution rates (%)

Program Counter 37.79
L1 Instruction Hit rate 39.88

L1 Data Hit rate 22.33

Next, select the bit regions to be reduced. In order to maintain the classification accuracy, we
leave the bit regions where a large number of feature value patterns can be collected. Therefore, we
divided the acquired 64-bit wide PC into the upper 32 bits and the lower 32 bits and measured the
number of patterns at each address. Table 2 shows the measurement results. Among the number of
instructions used as training data, only a few patterns of address changes in the upper 32 bits were
observed. This suggests that when reducing the bit width of the PC, it is effective to leave the lower
bits to maintain the classification accuracy. Therefore, as a method to reduce the bit width of PC,
we start from the upper bits. Since RISC-V consists of 32-bit fixed-length instructions and 16-bit
compressed instructions, the value of the least significant bit of the PC is always zero. Therefore,
the bit width of the PC used for learning and judgment is the value obtained by deleting the least
significant bit and adding one bit to the most significant bit.

Table 2: Number of patterns in instructions.
Num of instructions 100812

High Address [63:32] 5
Low Address [31:0] 43799

4.2 Cycle Reduction Methods for HRTable

In the MDM with the HRTable, all three feature values inputted to the classifier need to be converted
in the HRTable, and three cycles are required to align the feature values of one instruction processed
by the CPU. In this research, the number of cycles required to classify one instruction is reduced by
using the PC as a feature that does not require conversion in the HRTable.

Figure 9 shows the configuration of the Rocket tile and the MDM. In this figure, the Rocket tile
has the same configuration as shown in Figure 7 and the MDM is connected to the Rocket tile by
signal lines. Figure 9 illustrates the operation from the acquisition of processor information from
the Rocket tile to the MDM to the classification. First, the PC is inputted to the L1 instruction
cache, and the instruction is fetched. At this time, the PC output from the Rocket core is directly
inputted to the classifier as processor information. Next, for the hit rate, the access-hit counter takes
the access signals (L1I access and L1D access) and hit signals (L1I hit and L1D hit) from the two
caches as inputs and count the number of accesses and hits in each cache. These signals are asserted
using the request signal (req), which is outputted when the Rocket core accesses each cache, and
the response signal (resp), which is returned by the cache to the core upon a hit, respectively. Next,
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the counter converts the number of accesses and hits in the two caches into the address for the L1
instruction cache (L1I addr), and the address for the L1 data cache (L1D addr), and outputs them
alternately to the HRTable. In the HRTable, the L1 instruction hit rate (L1 hit rate) and L1 data
hit rate (L1D hit rate) corresponding to each address are alternately outputted and inputted to the
classifier. Thus, three feature values can be inputted into the classifier in two cycles (Fig. 10).

Figure 9: The process from processor information
acquisition to classification.

Figure 10: HRTable output (two CPU cycles).

4.3 Acquisition of feature values using DMA

Koike et al. [13] and Deguchi et al. [12] obtained the feature data for training and classification from
a virtual environment. Deguchi et al. used a RISC-V image for the virtual environment. However,
the Rocket-Chip implemented on the Zedboard uses the Sv39/64 virtual address system, which
may differ from the feature data obtained from the virtual environment. Therefore, we use Direct
Memory Access (DMA) on the Zedboard to obtain feature values directly from the target device.

5 EVALUATION METHOD AND MEASUREMENT RE-
SULTS

This section implements the proposed method described in Section 4 and evaluates the hardware
scale of the classifier, the hardware scale with the CPU and the MDM connected, and the reduction
of the number of cycles of the HRTable. For evaluation of the hardware scale, it is compared with the
number of available hardware resources of the Zynq-7000 series ”Zedboard (xc7z020clg484-1)”, which
is a FPGA to be implemented. The measured Rocket Chip and the MDM are also implemented on
the Zedboard, and it is confirmed that Linux for RISC-V runs on the Rocket Chip [2].

5.1 Evaluation of hardware scale of the classifier

5.1.1 Evaluation method

The degree of hardware resource reduction of the classifier is measured by reducing the bit width
of features. Furthermore, the change in hardware resource utilization when increasing the number
and depth of decision trees while reducing the bit width is measured and used as an indicator for
weight reduction. The measurements will be performed in a simulation environment where Vivado
completes the logic synthesis, placement, and wiring processes.

The main types of hardware resources are LUT (Look Up Table) and FF (Flip Flop) and the
hardware scale of the classifier is checked by measuring the numbers of these two hardware elements
used [6, 4]. Two of the three parameters—the number of trees, the depth of the trees, and the bit
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width of the features—are fixed and the degree of variation of two of these that affects the value of
the other is examined. The fixed values for each parameter are the number of trees, 5; the maximum
depth of the tree, 3; and the bit width, 16 bits. The measurement patterns for each of the three
parameters are shown below. In pattern 1, the bit width of the feature is varied, referring to the bit
reduction method proposed by Deguchi et al. [12]. In patterns 2 and 3, the number of decision trees
and the maximum depth of the trees, respectively, are varied. Since a large increase in the range of
variation leads to overlearning and an increase in the time required to create a random forest, the
parameters of pattern 1 are increased by 5 [1].

1. Number of trees: 5; Maximum depth: 3; Feature bit width n = 64, 32, 16, 8.

2. Number of trees: n = 20,15,10,5; Maximum depth: 3; Feature bit width: 16.

3. Number of trees: 5; Maximum depth: n = 18, 13, 8, 3; Feature bit width: 16.

5.1.2 Measurement results

Tables 3, 4, and 5 show the results of varying each parameter, respectively, on the measured hardware
resource utilization. Figures 11 and 12 show the changes in each parameter of LUT and FF. First,
Table 3 shows the number and percentage of resources used in the Zedboard when the bit width
of the features is reduced. As the width is reduced, the number of LUTs and FFs used decreases.
There is a significant difference between the 32-bit and 64-bit versions. Table 4 shows the results
of varying the number of decision trees; there are gradual increases and decreases in both LUTs
and FFs between 5 and 20 trees. Table 5 shows the results of varying the maximum depth of the
decision trees. Compared to the results in Tables 3 and 4, the number of LUTs used as a large range
of increase and decrease, while the number of FFs used remains constant.

Table 3: Number of trees: 5; Maximum depth: 3; Feature bit width: n.
Bit width i. 64bit ii. 32bit iii. 16bit iv. 8bit

LUT 722(1.36) 135(0.25) 61(0.11) 21(0.04)
FF 199(0.19) 103(0.10) 55(0.05) 30(0.03)

Table 4: Number of trees: n; Maximum depth: 3; Feature bit width: 16.
Bit width i. 20 ii. 15 iii. 10 iv. 5

LUT 124(0.23) 115(0.22) 92(0.17) 61(0.11)
FF 70(0.07) 65(0.06) 60(0.06) 55(0.05)

Table 5: Number of trees: 5; Maximum depth: n; Feature bit width: 16.
Bit width i. 18 ii. 13 iii. 8 iv. 3

LUT 1208(2.27) 1082(2.03) 469(0.88) 61(0.11)
FF 55(0.05) 55(0.05) 55(0.05) 55(0.05)
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Figure 11: Resource utilization (LUT). Figure 12: Resource utilization (FF).

5.2 Evaluation of overall hardware scale

5.2.1 Evaluation method

Evaluation method: The Rocket Chip is connected to the MDM as described in Section 4.1.2. As
well as the classifier, the hardware resource utilization of the circuit, which has already been placed
and wired, is measured and compared with the available hardware resources of the Zedboard.

The structure of the HRTable and the classifier of the MDM is as follows:

• HRTable:

– Address width: 16 bits

– Data width (feature value): 16 bits

• Classifier:

– Feature data width: 16 bits

– Random forest

∗ Maximum depth: 3

∗ Number of trees: 5

5.2.2 Measurement results

Table 6 shows the hardware resource utilization when the Rocket Chip and the MDM are connected.
The measurements show that each hardware resource is kept within the resource range maintained
by the Zedboard. Figure 13 shows the utilization rates of the Rocket Chip and the MDM separately.

Table 6: Results of measurement of hardware scale.
Resource Utilization Available Utilization Rate (%)

LUT 32,942 53,200 61.92
LUTRAM 1,123 17,400 6.45

FF 16,885 106,400 15.87
BRAM 54 140 38.57

DSP 15 220 6.82
IO 9 200 4.50

BUFG 1 32 3.13
MMCM 1 4 25.00
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Figure 13: Utilization rates of Rocket-Chip and MDM.

5.3 Evaluation of classification accuracy for each parameter

5.3.1 Evaluation method

In this section, we confirm the effect of reducing the circuit size on classification accuracy. For
each random forest of parameters with the same conditions as in Section 5.1, we send test data of
malware that is processed under the same conditions as each parameter and evaluate the classification
accuracy. For malware, features are collected twice for each execution and categorized into two types:
for training and testing. In addition, when reducing the bit width of the features to be trained and
classified, the bit width of the PC is reduced using the method described in Section 4.1.3. For each
hit rate, we use the method used in the study by Deguchi et al. The malware to be measured in this
study is a DDoS-type malware, which is generally assumed to be an attack target for IoT devices.

5.3.2 Measurement results

Figures 14, 15, and 16 show the classification accuracy of the random forest within each classifier
evaluated in Section 5.1. Figures 14, 15, and 16 show the measurement results when the bit width,
the number of decision trees, and the depth of the decision trees are varied. Some malware showed
almost no change in accuracy under each condition, while others showed a significant change. In this
measurement, the smallest difference between the maximum and minimum values of each parameter
was 0.176%, and the largest difference was 18.604%.

Figure 14: Classification accu-
racy when changing bit width.

Figure 15: Classification accu-
racy when changing the number
of decision trees.

Figure 16: Classification accu-
racy at maximum depth change.
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5.4 Evaluation of HRTable for reducing the number of cycles

5.4.1 Evaluation of delay in HRTable

5.4.1.1 Evaluation method To confirm whether it is possible to implement the MDM on
the Zedboard, considering the delay caused by the implementation of the HRTable, a test MDM
is constructed that retains only the access-hit counter functions and simulations are performed
using development tools. We use Vivado’s ”Post-Implementation Functional Simulation” and ”Post-
Implementation Timing Simulation” as the simulation environments for measurement. First, in
Functional Simulation, the logic synthesis and the design after placement and wiring are simulated
to check the correspondence between input and output values. Next, in Timing Simulation, the
above design is simulated with signal processing delay taken into account. The results of the two
simulations are compared and it is confirmed that the input and output of the HRTable function
are properly calculated.

The test MDM receives randomly generated access signals (L1I access and L1D access) and hit
signals (L1I hit and L1D hit) every cycle from the test bench of the upper-level module and gener-
ates an L1 instruction address and an L1 data address (L1I addr or L1D addr) that are alternately
sent to the HRTable. Finally, the HRTable returns the hit rate (L1I hit rate or L1D hit rate) cor-
responding to the address to the test bench (Fig. 17). One cycle is 20 ns, which is equal to the 50
MHz clock frequency of the Rocket Chip that is implemented in conjunction with the MDM. The
operating frequency of the Rocket Chip can be calculated from the following (1):

Rocket Chip Clock rate (MHz) =
1000

Zynq CLK Period
∗ RC CLK Mult

RC CLK Divide
(1)

The parameters in (1) are:

• Zynq CLK Period: 10.0,

• RC CLK Mult: 10.0, and

• RC CLK Divide: 20.0.

Figure 17: Testbench configuration.
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5.4.1.2 Measurement results The waveform results obtained during the simulation are shown
in Figures 18 and 19. First, in Figure 18, the HRTable returns the output value (L1I or L1D hit rates)
corresponding to the obtained input value (L1I addr or L1D addr) with a delay of one clock cycle.
The output value is the result of dividing the upper 8 bits of the input value by the lower 8 bits.
For example, for the input value 1c33(16), we multiply 1c / 33 = 0.5490(10) by 1,000 and output
5,490(10). Next, Figure 19 shows a simulation of Figure 18 with an additional signal processing
delay. There is a delay of approximately 10 ns until the input/output values in the HRTable and
the registers are fixed in response to the rising edge of the clock (CPU cycle), but the output values
are stable at the falling edge of the clock, and the input values and output values correspond.

Figure 18: Functional Simulation waveform.

Figure 19: Timing Simulation waveform.

5.4.2 Evaluation of delay of the overall circuit

5.4.2.1 Evaluation method In Section 5.1, we created a classifier that consists of several dif-
ferent parameters. In Section 5.4.1, we reduced the number of cycles in the HRTable and confirmed
that the delay was within an acceptable range. In this section, we implement the malware detection
mechanism by combining the reduced number of cycles of the HRTable and each classifier and per-
forming timing analysis in the circuit with the Rocket-Chip and the malware detection mechanism
combined to check for timing violations. The state of the delay in the circuit is expressed as the
difference (WNS, WHS, defined below) between the setup time, the hold time, and the analysis
result by Vivado.

The setup time is the minimum time in which the data to be received must be fixed prior to
the rising edge of the clock, and the Worst Negative Slack (WNS) is the value that has the smallest
difference from the Vivado analysis results in the circuit. The hold time is the minimum time in
which the data received after the rising edge of the clock must be held unchanged, and the value
with the smallest difference from the Vivado analysis result in the circuit is called Worst Hold Slack
(WHS). A negative value for WNS and WHS indicates that there is an unacceptable delay in the
circuit.

5.4.2.2 Measurement result Table 7 shows the results of the timing analysis of the overall
circuit for each parameter. Although there seems to be no regularity in the values of WNS and WHS
for each parameter, we can not confirm any combination of parameters that resulted in negative
analysis results for WNS and WHS. Therefore, it can be said that the overall circuit using the
classifier created with the parameters evaluated in this section satisfies the timing constraints.
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Table 7: Timing analysis results
Parameters WNS WHS

bw: 8, nt: 5, md: 3 0.250 0.035
bw:16, nt: 5, md: 3 0.181 0.030
bw:32, nt: 5, md: 3 0.389 0.019
bw:64, nt: 5, md: 3 0.412 0.014
bw:16, nt:10, md: 3 0.143 0.032
bw:16, nt:15, md: 3 0.015 0.037
bw:16, nt:20, md: 3 0.727 0.033
bw:16, nt: 5, md: 8 0.002 0.020
bw:16, nt: 5, md:13 0.193 0.036
bw:16, nt: 5, md:18 0.305 0.025

5.5 Acquisition of feature values using DMA

5.5.1 Evaluation method

Linux is run on the Rocket-Chip to obtain the feature values. Since the number of instructions of a
program obtained on the virtual environment is approximately 10,000 we measure whether 10,000
instructions can be obtained at a time by DMA. For the program to be executed, we use the same
malware as the one obtained in the virtual environment, but we restrict the function to access the
Internet. The bit width of the PC is assumed to be 64 bits (8bytes).

5.5.2 Measurement result

The PC was acquired from the Rocket-Chip using DMA. In this measurement, we were able to
obtain up to 12,000 instructions of 64-bit data. However, when transferring a larger size by DMA,
Linux on the Rocket-Chip crashed, so it is necessary to consider other countermeasures.

Next, we measured the number of patterns of PC changes obtained by executing malware on
the actual machine, and the results are shown in Table 8. In the acquired data, there were some
addresses that had the same address consecutively and some addresses that were accessed repeatedly
at regular intervals.

Table 8: Number of patterns on the PC when executing malware
Number of data 12500

Number of patterns 2353

6 DISCUSSIONS

In this section, we discuss the evaluation results obtained in Section 5.

6.1 Hardware scale of the classifier

In Section 5.1, the effect of each parameter on the hardware resource utilization of the classifier was
explored by varying the configuration of the bit width of the features, the number of decision trees,
and the maximum depth of the decision trees. The gradual increase in resource utilization caused
by increasing the number of decision trees can be attributed to the number of features. Each node
of a decision tree selects one of the input features as a condition for branching to a lower node and
decides whether the feature exceeds a certain value or not. However, since the classifier has only three
features, nodes with the same branching condition are formed in other decision trees. In addition,
Vivado is equipped with an optimization function, and branch circuits with overlapping conditions

266



International Journal of Networking and Computing

are combined into a single circuit with the same nodes mentioned above through optimization.
Therefore, it can be assumed that the number of resources used is also reduced to a minimum.
Next, the fact that a large change in the number of resources used was observed at the maximum
depth suggests that, as the nodes become deeper, branching conditions that are not used at shallower
nodes appear, and this is reflected in the number of resources used. For each classifier, the hardware
resource utilization of the Zedboard is a very small percentage, suggesting that it is possible to
increase the scale of the decision tree structure to improve detection accuracy.

6.2 Overall hardware scale

In Section 5.2, it was confirmed that the hardware scale of the combined circuit of the Rocket Chip
and the MDM was within the amounts of each hardware resource in the Zedboard. The hardware
resource utilization of the Rocket Chip exceeds most of the total utilization, but the MDM is kept
to a small amount, and there is a surplus in the resource utilization in the Zedboard (Fig. 13).
Therefore, it is possible to add or improve the functions of the MDM. In particular, the amount of
FF used is relatively small, which is because the types of features in the classifier and the number
of bits in each feature are limited.

6.3 Evaluation of classification accuracy for each parameter

We measured the classification accuracy against the learned malware by changing the parameters
for creating the classifier. In this measurement, we confirmed that the classification accuracy was
high throughout and that the accuracy could be maintained even when the circuit scale was small.

However, the classification accuracy against unlearned malware and the false positive rate against
ordinary programs have not been measured yet. Therefore, if the above verification shows a decrease
in the classification accuracy or an increase in the false positive rate, then it is necessary to adjust
the parameters. In addition, since the malware is limited to the DDoS type, it is also necessary to
learn programs with different behaviors, such as those that perform malicious mining.

Furthermore, the proposed mechanism uses a program counter and cache hit rates, and is con-
sidered to be effective and versatile for any CPU equipped with a cache.

6.4 Reducing the number of cycles in HRTable

The measurement results for the HRTable in Section 5.4 show that the delay in the HRTable is
within one clock cycle of the Rocket Chip. Therefore, it is expected that the throughput in the
calculation of the cache hit rate can be reduced by using this HRTable when it is implemented on
the Zedboard. In addition, we conducted timing analysis of the Rocket-Chip and the overall malware
detection mechanism using an HRTable with a reduced number of cycles and confirmed that all the
classifiers we created satisfied the timing constraints.

6.5 Acquisition of feature values using DMA

We used DMA to transfer data directly from the Zedboard. As future work, we need to train
using the features obtained from the DMA and verify whether there is a difference in the training
between using the data obtained in the virtual environment and that obtained the DMA. If there
is no difference, then the hardware resources of the DMA itself can be reduced by using the data
in the virtual environment. If there is a difference, then the data needs to be acquired from the
DMA, so the DMA needs to be implemented when obtaining data for machine learning. However,
it is difficult for the resources of the IoT device to perform malware detection on the software of the
IoT device using the data transferred from the DMA. In addition, since the time required for data
transfer by DMA is added to the time required for detection, the detection speed is slower than that
of a hardware-based malware detection mechanism. Therefore, it is desirable to use DMA only for
creating a classifier.
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7 CONCLUSION

In this paper, we proposed and evaluated the implementation of a malware detection mechanism
(MDM) and CPU on a small LSI using the Hit Rate Table (HRTable) proposed by Deguchi et al.
[5]. For the classifier, the variation of hardware resource utilization in the classifier was evaluated
by adjusting the bit width of features, the number of decision trees constituting a random forest,
and the maximum depth. Next, we evaluated the classification accuracy of the classifiers whose
hardware resources were measured and found that they showed high accuracy in each parameter.
By connecting the reduced MDM to the connected Rocket Chip and measuring the hardware scale,
we confirmed the feasibility of implementation on the Zedboard. In the HRTable, the hit rate for
one instruction was obtained in a total of two cycles by using the program counter (PC) instead of
the processor information obtained from the L2 cache. In addition, timing analysis was performed
to confirm that the timing constraints were satisfied overall in the circuit.

Next, a data tracing method on hardware using DMA was evaluated, and it was shown that the
number of instructions required for learning could be obtained.

In the future, we will compare the feature values acquired by the DMA with those acquired in
the virtual environment, and verify whether it is necessary to create a classifier again. In addition,
we will run the CPU with the MDM on the Zedboard, and we will evaluate whether it is possible
to distinguish between normal programs and malware.
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