
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 12, Number 1, pages 164–187, January 2022

Neural Architecture Search based on Genetic Algorithm and Deployed in a Bare-Metal Kubernetes
Cluster

Andreas Klos
Chair of computer architecture, FernUniversität in Hagen

Hagen, North Rhine-Westphalia, 58097, Germany

Marius Rosenbaum
Chair of computer architecture, FernUniversität in Hagen

Hagen, North Rhine-Westphalia, 58097, Germany

Wolfram Schiffmann
Chair of computer architecture, FernUniversität in Hagen

Hagen, North Rhine-Westphalia, 58097, Germany

Received: July 25, 2021
Revised: October 25, 2021

Accepted: November 29, 2021
Communicated by Susumu Matsumae

Abstract
The interest in Deep Neural Networks has dramatically increased, especially e. g. in Computer

Vision or Neural Language Processing tasks. Due to the heavy influence of the Neural Networks
architecture on its predictive accuracy, Neural Architecture Search has gained much attention
in recent years. Neural Architecture Search typically comes along with a high computational
demand and thus, requires scalability as well as high availability to ensure no data loss or waste
of computational power. Hence, we developed a scalable and highly available multi-objective
Neural Architecture Search and adopted it to the modern thinking of developing applications by
subdividing an already existing, monolithic approach – based on a Genetic Algorithm – into
microservices. Moreover, we adjusted the initial population creation by mutating each individual
1,000 times, extended the approach by inception layers, implemented it as island model and
achieved on MNIST, Fashion-MNIST and CIFAR-10 dataset 99.75%, 94.35% and 89.90% test
accuracy, respectively. Furthermore, we analyzed nine different configurations of the Genetic
Algorithm – with only one subpopulation – to identify well performing settings. Besides, our
model is strongly focused on high availability empowered by the deployment in our bare-metal
Kubernetes cluster. Our results show that the introduced Neural Architecture Search can easily
handle and recover – without the necessity of human interaction – from the exceptional loss of
Kubernetes pods within seconds and no loss of results or the algorithms state.

Keywords: neural architecture search, genetic algorithm, island model, kubernetes, microservices,
high availability

1 Introduction
Due to the fact that the architecture of an Artificial Neural Network (ANN) heavily influence its
predictive performance, numerous Neural Architecture Search (NAS) algorithms have been developed

164

International Journal of Networking and Computing

in recent year. In the following we center our attention to NAS algorithms based on a genetic
algorithm. To identify a well suited neural network architecture, usually a huge search space must be
explored including e. g. the number of layers, the kind of each layer, activation functions, the quantity
of neurons in each layer etc. Such a huge search space must be efficiently traversed and therefore,
becomes restricted as e. g. in [1–3]. Furthermore, to reduce the computational demands early
stopping [3, 4] as well as parameter sharing has already well proven to lessen the necessary number
of epochs to provide sufficient results which leads to a minimized training time [3, 5]. Nevertheless,
NAS depicts a high computational burden as e. g. the algorithm in [6] applied 200 GPUs for 1.5 days
resulting in 300 GPU days. Thus, scalability as well as high availability are required to increase
parallelism and reduce potential loss of results or the algorithms state which may force the user to
run the algorithm from scratch again.

To guarantee the scalability, high availability and to adopt the software development to the
changed thinking of developing microservices instead of monolithic applications, all components of
the proposed NAS algorithm have been deployed in our bare-metal Kubernetes cluster. Our NAS
algorithm is based on [3] which has been adopted to the Island Model Genetic Algorithm, as in [7],
to facilitate scalability and avoid pre-mature convergence to one solution.

We subdivided the proposed NAS algorithm into the following microservices: PostgreSQL
databases, Network File System (NFS) server and client for storing and exchanging results, RabbitMQ
message brokers to facilitate Remote Procedure Calls (RPC), RPC clients as well as RPC workers.
We used the message broker with the RPC pattern to assign task to our pods on the worker nodes.

We showed that our NAS deployment is scalable as well as highly available and capable to reach
with compact architectures – low free parameter count – state of the art results regarding accuracy
on MNIST [8], Fashion-MNIST [9] and CIFAR-10 [10] dataset. We achieved 99.75%, 94.35% and
89.90% accuracy on the test dataset after utilizing the NAS for 1,000 generations. Furthermore, we
investigated several configurations of the proposed NAS algorithm to identify favorable settings.

This paper is the extended version of our previous investigations in [11] and enlarges the initial
contribution by a more in-depth description of the proposed Genetic Algorithm. Furthermore, the key
differences of the proposed NAS to related work are highlighted. Besides, we analyse the scalability
of our approach as well as the utilized hardware resources more precisely. Moreover, the aspect
of high availability is examined in a more systematic manner and results are reported by different
configurations of the Genetic Algorithm.

The remaining paper is structured as follows: Section 2 summarizes related work and highlights
the key differences to our proposed NAS algorithm. In Sec. 3 the developed NAS algorithm and its
components are detailed. Section 4 is dedicated to the achieved results and its discussion. In Sec. 5
the paper ends in a conclusion and an outlook on our future works.

2 Related Work

The creation of a proper architecture of an ANN depicts a crucial task for its predictive performance.
To develop a well suited architecture for the task at hand many decision e. g. about the kind of
layer, number of neurons, activation function, number of feature maps and more have to be taken.
In recent years, a vast amount of research has been done to identify appropriate architectures and to
perform hyperparameter optimization. Many algorithms have been applied, as e. g. Evolutionary
Algorithms, Bayesian Optimization, Reinforcement Learning [12] [13] [14] etc. In this paper we only
consider related work based on Evolutionary Algorithms.

This paper is based on the Genetic Algorithm proposed in [3]. This algorithm represents the
individuals internally by the architecture and their assigned fitness value. The architecture is depicted
by a list of strings, each string describes the configuration of a layer. The possible layers are predefined
comprising dense, convolutional, pooling, and residual layers. The selection takes place by roulette
wheel. Every generation one or two individuals are selected, depending if mutation or crossover
should be utilized. The initial population is created by mutating the starting architecture (only
input and output layer) repeatedly, till the population reaches a certain size. Each generation, one
new individual is created and evaluated regarding its fitness. The fitness values are the accuracy

165

NAS based on Genetic Algorithm and Deployed in a k8s Cluster

reached on the test dataset and the number of free parameters of the corresponding architecture.
Depending on some threshold, the fitness value for selection is the accuracy or the free parameter
count. To facilitate a greater variety of our population, our approach differs by the creation of the
initial population. Furthermore, we add inceptions layers and implemented the approach in a highly
available and scalable fashion. The former property is achieved by deploying all components of our
NAS in a Kubernetes cluster. The scalability of the proposed approach is enabled by implementing
the algorithm as Island Model Genetic Algorithm.

In [15] another multi-population Genetic Algorithm is proposed. Each architecture is constrained
to a stack of three cells and can be represented by a directed acyclic graph with maximum seven nodes
and nine edges. Internally the individual is represented by two chromosomes. The first chromosome
determines the layer type and position and the second chromosome the connections between the layers.
The subpopulations can be evolved either by Regularized Evolution (RE) or Genetic Algorithm (GA).
A group of subpopulations is called a tribe. Each Genetic Algorithm inside a tribe utilizes different
mutation and crossover strategies. Thereby, two tribes exchange individuals. Mixed tribes (RE +
GA) as well as only GA tribes are investigated. The stopping criteria is the maximum number of
generations or the test error. New individuals are created by mutation or crossover. Two selection
mechanisms are employed: 1) the best half of the ranked individuals in the current population is
selected. Afterwards, the parents are randomly selected from those individuals. 2) The population
is subdivided into two groups with the best and worst half of the individuals. Subsequently, they
select individuals from the best group to perform mutation and one individual from both groups for
crossover. Our proposed approach differs from selection, internal representation, migration schema
and the fact, that we exclusively use Genetic Algorithm.

Moreover, in [16] a scalable NAS approach based on evolutionary search is presented. The approach
identifies a module of convolutional layers and repeat it several times. The spatial dimension is
reduced by max pooling layers. The number of layers inside a module is fixed to three. New individuals
are created by mutation (adding layers) or crossover. Unfortunately, the internal representation, as
well as selection etc. are left unconsidered. Nevertheless, the approach uses the remote procedure
call pattern and facilitates a scalable NAS approach. In case of failure, the tasks survive, but human
interaction is necessary to restart the failed workers which can be costly in the utilized AWS EC2
platform, if not sufficient monitored. Our approach differs that we use RabbitMQ as message broker,
instead of developing our own. Additionally, we store our population, algorithm state and fitness
information in a PostgreSQL database. Both, the message broker as well as the database are deployed
highly available in a Kubernetes cluster. Furthermore, we perform selection and crossover in a
different manner. Besides, our approach is deployed as Island Model Genetic Algorithm.

In [17] a NAS approach based on GA and Dynamic Structured Grammatical Evolution (DSGE)
is introduced. Candidate solutions are represented by two independent levels: 1) GA level which
encodes the macro structure of the architecture (which layer type can be used and their order) and
depicts the sequence of the evolutionary units. Each unit in the sequence is the starting non-terminal
symbol for expansion of the DSGE level genotype. 2) In the DSGE level, the parameters are stored
in a backus-naur form grammar, represented as ranges, or closed sets of possibilities. New individuals
are created by crossover and mutation operator. The predictive performance of an individual is used
as fitness measure.

Besides, in [18] a multi-objective NAS which generates convolutional- and capsule-based architec-
tures is proposed. The validation accuracy, energy consumption, latency and memory footprint are
used as fitness measures. The algorithm is based on a specialized version of NSGA-II algorithm. The
internal representation is performed by a layer descriptor (9-element position-based structure). To
create a new individual mutation and crossover are applied. The search terminates after an execution
duration has been exceeded.

In [19] a NAS algorithm based on a Genetic Algorithm is introduced. The population is randomly
initialized. The architecture of an individual is represented by a gene map with the keys defining
hyperparameter (e. g. activation, pooling, etc.) which are mapped to values sampled from a pre-
defined value range. The elitism roulette wheel selection is used to pick individuals as parents. New
individuals are created by the application of crossover or mutation on the selected parents.

None of the last three discussed publications focus on multi-population genetic algorithm, high

166

International Journal of Networking and Computing

availability or scalability. Moreover, we implemented a different selection mechanism, target multi-
objectives in a different way and have a simplified internal representation.

3 Neural Architecture Search Algorithm and Components

First the NAS algorithm and its adjustments are explained. Afterwards, each component of the
proposed NAS algorithm is detailed.

3.1 Neural Architecture Search Algorithm

The proposed algorithm is based on [3] which utilizes the Genetic Algorithm. An individual of a popu-
lation is represented by its architecture and the assigned fitness values. The architecture is represented
by a list of strings. The first and the last element of the list are always the input and output layer. The
input layer is depicted by In_w_h where In determines the kind of layer with the width w and height h
of each input sample. The output layer is encoded by D_n where n specifies the number of output neu-
rons. The hidden layers are inserted between the first and last element of the list and are represented
either by type_kw_kh_sw_sh_f or type.bt-e-fact_kw_kh_sw_sh_f.branch2.branch3.branch4 de-
pending on the layer type. In [3], only convolution, max-pooling, residual and dense layers are used,
which are encoded by the former string, while the inception layer is encoded by the latter string.
The type can be one of the aforementioned layer types. The kernel width is indicated by kw and the
height by kh. The stride is depicted by sw as well as sh and the number of feature maps is denoted
by f. In case of the inception layer bt defines the branch type, e controls if the corresponding
branch is employed and fact determines the factorisation applied to this branch. In sum, three more
branches are described in the same fashion – indicated by branch[2,4], each separated by a dot.
The inception layer and its factorization types are based on [20]. The inception layer is implemented
in three different variants: 1. Replacing convolution kernels ≥ 3 by smaller convolution kernels, 2.
factorizing convolution kernels and 3. expanding the kernel outputs. If a branch is employed as well
as the variant of inception layer is chosen randomly. Thereby, it is guaranteed, that at least one
branch is evolved to avoid the creation of faulty neural network architectures.

The algorithmic procedure of the Genetic Algorithm is illustrated in Fig.1. Initially, each individual

initialize
population

select
individual

create new
solution

update
population

determine
fitness

Figure 1: Genetic Algorithm

of the population is equal (only input and output layer are employed with a proper size according
to the classification task). First, every individual of the population is mutated 1,000 times and
the fitness is evaluated. Afterwards, an individual is selected from the population. In our case the
selection is performed by roulette wheel selection (also known as fitness proportionate selection).
During roulette wheel selection, each individual i of the population N has a probability pi to become

167

NAS based on Genetic Algorithm and Deployed in a k8s Cluster

selected as shown in Eq. 1

pi =
fi∑N
j fj

(1)

where fi and fj are the assigned fitness values to the individuals i and j respectively. Depending on
the kind of operation (mutation, migration or crossover) one or two parent individuals are selected.
Thirdly, the new solution is created by applying one of the aforementioned operations to the selected
parent(s). The operation selection takes place randomly, based on the pre-configured probability
distribution. Subsequently, the fitness values of the newly created individual, namely accuracy
and number of free parameters, are determined and assigned. The decision about which fitness
value is picked for subsequent selections is based on the fitness of the worst individual as well as a
threshold. The new individual is inserted into the population if its fitness value is better than the
worst performing individual of the population, otherwise, the new individual is omitted. The fitness
values of each individual determines which individual will be replaced by the newly created one. The
described steps from selection to the update of the population with the new individual are repeated
several times. Each circle leads to a new generation. The algorithm terminates if the number of max
generations is reached.

Furthermore, the NAS algorithm has been changed to the Island Model Genetic Algorithm as
illustrated in Fig. 2. The NAS algorithm comprises multiple – in the subsequent experiments five [1,5]

5

4 3

2
1

1. Migration 2. Migration

5

4 3

2

1

Figure 2: Two migration steps of the island model with five sub-populations. Selected individuals
(green), replaced once (red).

– subpopulations per dataset as illustrated by double lined, big circles in Fig. 2. Therein, small circles
depict an individual within a subpopulation. Green tagged circles highlight individuals migrated to
another subpopulation and red circles denote the individuals which will be replaced in the destination
subpopulation. Therefore, 30% of the best performing individuals are pre-selected as possible migrants.
From those, the 5% of the subpopulation size are migrated to another subpopulation. The destination
subpopulation is chosen as described by Alg. 1, where ml is the previous migration subpopulation,

Algorithm 1: Determining migration destination subpopulation. Similar to [7]
Input: ml := int,Np := int, p := int,Nd := int
Output: mc := int

1 mc ← (ml + Nd)%Np

2 if mc == p or mc == 0 then
3 mc ← (p + Nd)
4 if mc! = Np then
5 mc = mc%Np

6 ml ← mc

Np denotes the population count, p depicts the current population number, Nd is the dataset count

168

International Journal of Networking and Computing

and mc is the current migration subpopulation of the latest generation. Nd is necessary, if more
than one dataset should be utilized at once and if subpopulations, exclusively working on the same
dataset, should exchange migrants.

The overall configuration of the proposed NAS is shown in Tab. 5 (see Appendix A). Our approach
favours small architectures, as soon as the worst individual of a subpopulation has exceeded the
fitness thresholds mentioned in Tab. 5.

3.2 Neural Architecture Search Components
Our bare-metal Kubernetes cluster consists of ten worker nodes, each with the following hardware
components: AMD Ryzen 9 3900X, 1 TB SSD NVME XPG GAMMIX S50, 16 TB SATA WD40EFRX
Red as software RAID 5, 32 GB DDR4 RAM, two worker nodes, each with one NVIDIA GeForce
RTX 2080 Ti and eight worker nodes, each with one NVIDIA GeForce RTX 3090. The master
comprises an Intel(R) Core(TM) i7-2600K, 1 TB ST1000DM003-1CH1_Z1D2A4DX, 12 GB DDR3
RAM, and NVIDIA GeForce GTX 460. We use: Kubernetes 1.19.13 initialized with kubeadm with
Host OS Ubuntu 20.04.1 LTS, CNI Weave Net 2.7.0 and CRI Docker 19.3.13.

The monitoring of our cluster is done with Prometheus, DCGM-exporter and Grafana. In case
e. g. of overheating the GPU or CPU, Grafana will send a notification to our Discord channel, so
that in worst case the cluster administrator can take action.

Our deployment of the proposed NAS algorithm is composed of four microservices (Genetic
Algorithm, Fitness Evaluator, PostgreSQL database and RabbitMQ message broker) as shown in
Fig. 3. Each microservice is composed of various Kubernetes resources which are briefly explained in

ns Managed by KubeDB Operator:
PostgreSQL DB

svc
secret

pv pvc

sts

pod

cm

sa

role

rb
sc

Legend
___Creates

References

RabbitMQ Messagebroker
svc

pv pvc sts
pod

secret

cmrole

rb

sa

pvpvc

sc

sc

Genetic
Algorithm

job

pod

Fitness
Evaluator

pod

job

Figure 3: Decomposed Neural Architecture Search Kubernetes cluster setup. Gray dashed arrows
indicate creation, whereas black solid arrows illustrate references between individual resources.

the following. A service (svc), in Kubernetes, is an abstraction defining the policy by which a logical

169

NAS based on Genetic Algorithm and Deployed in a k8s Cluster

set of pods is accessible. svc facilitating pod intern communication of a microservice are omitted
in Fig. 3. The namespace (ns) determines where the resources will be deployed. The role, role
binding (rb) as well as the service account (sa) facilitate role-based access control. A pod represents
the smallest deployable unit of computing composed of one or more containers with shared storage
as well as network resources and specifies, how to run the container(s). Persistent volumes (pv) are
pieces of storage in the cluster with their own lifecycle independent of any individual pod using it.
A Persistent volume claim (pvc) denotes a request for storage (pv) by some user. If a proper pv is
identified, the pv becomes bound to the pvc. The pvc can be used to mount the storage of the pv at
a specific location in the container. The stateful set (sts) manages the deployment and scaling of a
set of pods with guarantees about the ordering and uniqueness of those. Besides, the sts maintains
a pinned identity for each of its pods. ConfigMaps (cm) are used to store non-confidential data in
key-value pairs which can be consumed by pods as environment variables, command-line arguments,
or as configuration files in a volume. Secrets contain sensitive data such as passwords, tokens, or
keys to avoid the necessity to include confidential data in the application code. A job creates one or
more pods and keeps track about successful completions. If the pre-defined number of successful
completions is not met, the job will create new pods till the number of successful terminations is
met 1.

The utilized PostgreSQL database is managed by the KubeDB operator. The database is deployed
threefold, each on a different worker node. One database – further called DB1 – serves incoming
queries in master mode, while the other databases – DB2 and DB3 – are in standby mode to replicate
the contents stored in DB1 by streaming replication. Streaming replication means that the databases
in standby mode will stay up-to-date by shipping and applying the Write-Ahead Logging (WAL)
records continuously. The master DB streams the WAL records to the standby DBs as they are
generated, without waiting for the WAL file to be filled. Due to the asynchronous behaviour of the
streaming replication, small delays between committing a transaction in the master DB and the
changes becoming visible in the standby DBs exist, which in the worse case can lead to data loss. In
case that DB1 fails e. g. caused by a software bug or faulty hardware, DB2 or DB3 will take over in
master mode through a leader election after a pre-configured amount of time.

The RabbitMQ message broker is deployed as statefulset. In sum three pods are created by the
statefulset. If a new message becomes published to a queue it will be replicated to all mirrors. The
primary replica – called master – is the one created first and all operations for a given queue are
performed on the masters queue first. If a message have been acknowledged by the master, the
secondary replicas – called mirrors – drop the corresponding message from the queue too. If the
master fails, the oldest queue will be promoted to the new master as long as it is synchronised. The
message broker is used for distributing the work (fitness evaluations) by the RPC pattern from the
NAS algorithm to the Fitness Evaluator pods.

Each Fitness Evaluator pod utilizes PyTorch and depicts a RPC worker, whereas the NAS
(genetic algorithm) pods are the RPC clients. If one of the RPC workers or clients fail, a new pod
will be started as soon as the crash is realized by the kubelet. The RPC worker pods are stateless,
thus a crash of those pods is uncritical, while the pods of the RPC clients have a state, stored in the
aforementioned database. If a new pod is launched, the database is queried, in case that a state of the
current pod is available, the NAS algorithm is continued from that state on. To assign every container
in all NAS pods a certain population, a counter in a table of the database is incremented one by one,
facilitated by querying locks and suitable unlocking. If a NAS pod fails, the pod verifies, which pods
are not reachable anymore (by pinging all pod IPs stored in the state table of the corresponding
database), or if the same IP address has already allocated a certain population and updates the state
table properly.

Weight sharing is facilitated by a NFS share between the pods of the NAS and the Fitness
Evaluator. The trained models are saved in the NFS and the results regarding training, validation,
test, NAS state and information about every single population are stored in the database.

The RPC communication scheme between the n NAS populations, the message broker and n
Fitness Evaluator pods is exemplified by Fig. 4.

1For further information about Kubernetes the authors refer to [21] or the documentation [22].

170

International Journal of Networking and Computing

GA pod Fitness Evaluator pods

Individual of
population n

RabbitMQ Queues

Population 1

Population 2

Population n

Individual of
population 1

Individual of
population 2

RequestRequestRequest

Reply to
population 1

Reply to
population 1

Reply to
population 1

Reply to
population 2

Reply to
population 2

Reply to
population 2

Reply to
population n

Reply to
population n

Reply to
population n

Figure 4: RPC setup. Red arrows: RPC client send request; Orange arrows: RPC worker receives
request; Yellow arrows: RPC worker send reply; Green arrows: RPC client receive results.

Obviously, each NAS pod sends its task to the Request queue. Each RPC worker polls one task
at once, process it and publish the achieved results to the dedicated queue as well as acknowledge
the task to be processed successfully. The RPC client receives the message on the corresponding
response queue, updates the population and creates the next generation of the population. Each task
is formatted as the subsequent string:

population∼generation∼input*kfolds*loi∼architecture!checkpointFilename
where the population is the population number, generation is the current generation, input is
in our case MNIST, FMNIST or CIFAR-10, kfolds determines if k-fold cross validation should be
performed and how many folds are used, in the subsequent analysis this value was one and loi defines
which layer requires the computation of the gradient during fitness calculation. The architecture
is the concatenation of the internal reprentation of the individuals architecture (a list of strings, see
Sec. 3.1) separated by a double dot:

input_layer:hidden_layer:...:output_layer
The response of the RPC worker is a string as follows:

hash,architecture,checkpointFilename,generation,accuracy,loss,executionTime,
freeParameters,age

where the hash is generated with Pythons hashlib based on the current time, queried by the
datetime package.

4 Results and Discussion

First the results achieved with the Island Model Genetic Algorithm are detailed and discussed.
Afterwards, the results obtained with nine different configurations of the Genetic Algorithm – with
only one subpopulation – are presented and discussed. Thirdly, the high availability, scalability as
well as utilized hardware is investigated.

4.1 Island Model Genetic Algorithm

After 1,000 generations of each subpopulation, the NAS algorithm terminates. The achieved test
accuracies as well as those reached by related work are summarized in Tab. 1.

171

NAS based on Genetic Algorithm and Deployed in a k8s Cluster

Table 1: Accuracy overview achieved on test dataset. In column p are the results reached by applying
some pre-processing of the input data in addition to normalization or standardization. p̄ shows the
results obtained with only normalization or standardization as pre-processing of the input data.

NAS MNIST [%] F.-MNIST [%] CIFAR-10 [%]
p̄ p p̄ p p̄ p

Hajewski et al. [16] – – – – 76.8
Yotchon et al. [15] – – – – 88.82 –
Assunção et al. [17] 99.65 99.7 94.23 94.7 88.41 92.51
Ma et al. [19] – 99.72 – 94.6 – 89.32
Marchisio et al. [18] 99.72 – 93.34 – 85.99 –
Litzinger et al. [3] 99.69 – 93.58 – 85.16 –
Proposed approach 99.75 – 94.35 – 89.90 –

In [3] – the paper of the base algorithm – results are stated neither for the Fashion-MNIST nor the
CIFAR-10 dataset. For a better comparability, we utilize our algorithm with only one subpopulation
and without the inception layer for three runs. The aforementioned configuration is assumed to be
similar to the one in [3]. The highest reached accuracy on both datasets for this configuration is
shown in Tab. 1 in the row dedicated to the base algorithm ([3]).

The best performing, evolved architecture reached an accuracy of 99.75% and hence, outperformed
the base algorithm proposed in [3] with an accuracy of 99.69% by having less than half the number
of free parameters – in sum 966,215. The evolved architecture is shown in Fig. 9 (see Appendix B)
and composed of two residual, two convolutional, one pooling and two inception layers.

The developed architecture has a lower error rate (0.25%) than all single predictive models stated
in [23]. Compared with the results achieved by other NAS algorithms, the proposed one was capable
to evolve state of the art results. E. g. in [18] the framework NASCaps applied to the MNIST dataset
achieved a test accuracy of 99.72%. Besides, in [19] the same test accuracy on MNIST dataset of
99.72% has been reported. For the DENSER NAS algorithm proposed in [17] a test accuracy of
99.7% was achieved. Those mentioned results are comparable to the 99.75% accuracy achieved by
our NAS algorithm.

The highest accuracy achieved on the Fashion-MNIST test dataset by the proposed NAS approach
is 94.35% with 3,774,376 free parameters. Compared with the base algorithm, ours surpass the
accuracy by 0.77% with about 1.85 times more free parameters. The overall architecture is shown in
Fig. 10 (see Appendix B).

The evolved neural network consists of one residual, one pooling, one dense and one inception
layer. This architecture is capable to outperform all models – without data augmentation – listed
in [24] except the model generated by DENSER which is stated with an accuracy of 95.3%. In [17]
the test accuracy reached by DENSER is reported as 95.26%. This accuracy was achieved by the
utilization of an ensemble of the best performing two network architectures. The accuracy reached by
the best single architecture evolved by DENSER is stated as 94.23% and 94.7%, not using and using
data augmentation on the test dataset respectively. In [18] a test accuracy of 93.34% and in [19] of
94.6% was reached. Note that, in [19] data augmentation was used to increase the accuracy.

On the CIFAR-10 dataset the evolved architecture – shown in Fig. 11 (see Appendix B) – reached
an test dataset accuracy of 89.90% with 2,055,914 free parameters. Against the results achieved by
the base algorithm, the accuracy differs by 4.74% by having a comparable amount of free parameters.
The developed architecture compromises two inception, three residual, three convolutional, five
pooling and one dense layer. As shown in Tab. 1, the introduced NAS approach achieved a 13.1%
higher accuracy than in [16]. Besides, our NAS algorithm outperforms the other mentioned multi
population approach in [15], which is reported with 88.82%. In [19] the NAS algorithm reached an
accuracy of 89.32%, quite similar to the proposed approach. In [18] an accuracy of 85.99% has been
reported. This approach tackles multiple objectives at once, namely accuracy, energy consumption,
memory footprint and latency, which might affect the resulting accuracy. The accuracy reported
by DENSER in [17] is 92.51% and is achieved after tweaking the hyperparameter for training the
network. Without this hyperparameter adjustment, the best performing architecture summed up

172

International Journal of Networking and Computing

to an average accuracy of 88.41% over several different runs. The maximum accuracy under this
circumstances are not mentioned in [17].

The above stated results for the MNIST, Fashion-MNIST and the CIFAR-10 dataset might be
further improvable by applying data augmentation or optimizing hyperparameters. Besides adjusting
the depth, the layer types and its configuration, scaling the input resolution could lead to enhanced
results. In [25] the simultaneous scaling of the neural networks depth, width and resolution resulted
in high accuracy on various datasets, including CIFAR-10. Adjusting the Genetic Algorithm more
drastically, could lead to superior results, as e. g. replacing the selection method as well as the
underlying fitness measures (see NSGA-II [26], NSGA-III [27], SEPA-2 [28], SMS-EMOA [29]) or the
whole island model as surveyed in [30].

4.2 Genetic Algorithm with only one Subpopulation

In the following the results achieved by only one subpopulation are presented. Due to the compu-
tational demand, each configuration has been executed only three times for 1,000 generations. For
that reason, statistical measures as mean and standard deviation might lack statistical relevance.
The configurations are summarized in Tab. 2. Obviously, the kind of available layers, the minimum

Table 2: Configurations of the Genetic Algorithm

Config. #1 #2 #3 #4 #5 #6 #7 #8 #9
Add. layers R R, I I R R IF1 R, IF1 IF1 IF1
Min. age 1 1 1 5 1 1 1 1 1
K-folds False False False False 5 False False False False
Pop. size 20 20 20 20 20 20 20 100 20
Seed False False False False False False False False True

required age, till an individual can serve as parent, if k-folds is utilized, the population size and if
seed architectures are preliminary created is adjusted. Only one adjustment has taken place per con-
figuration to determine the impact of the alteration on the results. By investigating and constraining
some layers, an ablation study is performed to see the impact of the residual and inception layer on
the achieved results. Besides, the minimum age for being a parent is investigated to reduce premature
convergence till only one root parent is left in the population. k-folds cross-validation is applied
to enlarge the number of training samples and evaluate the effects on the predictive performance.
Moreover, the population size is adjusted to verify the impact of selecting individuals from a greater
variety across the population. Finally, the consequences of seed architectures are investigated so that
the initial population only consists of promising network individuals.

In the row denoted to layers, only the residual (R), inception (I) and inception with fixed
factorization 1 (IF1) layer are mentioned. The dense, pooling and convolutional layers are present in
each configuration. To speed up the analyses, the activation function has been adjusted to ReLU.
Because the CIFAR-10 dataset depicted the most challenging dataset in the previous experiments and
variation by different configurations of the Genetic Algorithm was most significant, the subsequent
investigations are exclusively performed on that dataset.

The achieved results during the three runs with config. #1 and #2 on the CIFAR-10 dataset
are summarized in Tab. 3. Both configurations accomplish similar results. However, config. #1
outperformed config. #2 regarding maxtest

acc (diff: 0.36%) as well as µtest
acc (diff: 0.01%) by having a

bigger σtest
acc (diff: 0.15%). The losstest (diff: 0.2 × 10−3), µtest

loss (diff: 0.05 × 10−3)) and σtest
loss (diff:

0.05 × 10−3) are quite comparable. N of the best performing architecture identified with config.
#1 is about 116,000 free parameters bigger than the one created with config. #2. µN for the best
architectures created with config #1 as well as the σN are bigger (diff: 38,000 ± 327,840).

In Fig. 5 a) and b) the populations maximum training, validation and test accuracy of each
generation, achieved with config. #1 and config. #2, are shown. Moreover, the mean as well as
the standard deviation are shown in Fig. 5. As expected, the gap between the training and the
test accuracy becomes smaller during the progress of the NAS (with config. #1 diff: 14.13% and

173

NAS based on Genetic Algorithm and Deployed in a k8s Cluster

Table 3: Max., mean and standard deviation of the accuracy and the corresponding loss achieved on
the test dataset. Number of free parameters of the best performing model as well as the mean and
standard deviation of the number of free parameters of each run.

Config.
CIFAR-10

maxtest
accmaxtest
accmaxtest
acc µtest

acc ± σtest
accµtest

acc ± σtest
accµtest

acc ± σtest
acc losstest µtest

loss ± σtest
lossµtest

loss ± σtest
lossµtest

loss ± σtest
loss N µN ± σNµN ± σNµN ± σN

% % ×10−3 ×10−3 ×103 ×103

#1 85.16 84.05 ± 1.22 2.37 2.66 ± 0.25 2089 2154 ± 651.93
#2 84.8 84.04 ± 1.07 2.57 2.71 ± 0.30 1973 2116 ± 324.09
#3 84.73 83.56 ± 1.74 2.39 2.73 ± 0.45 1638 2035.33 ± 355.18
#4 84.38 82.92 ± 1.32 2.56 2.82 ± 0.27 1465 2059.67 ± 726.90
#5 84.5 83.60 ± 1.27 2.74 2.86 ± 0.09 2278 1879.33 ± 345.78
#6 86.22 85.40 ± 0.74 2.25 2.35 ± 0.13 1982 1830 ± 155.82
#7 86.92 85.21 ± 1.63 2.12 2.43 ± 0.28 2447 2118.67 ± 826.92
#8 82.8 81.48 ± 1.09 2.65 2.89 ± 0.24 1700 1796.67 ± 100.17
#9 85.54 85.06 ± 0.74 2.39 2.43 ± 0.06 1792 1945.33 ± 855.37

config. #2 diff: 13.31% at the generation in which the max. accuracy on the test dataset has been
encountered the first time) – this is also the case for all subsequent analyses. With config. #1 the
best result on the test dataset has been achieved in generation 984, whereas the Genetic Algorithm
with config. #2 found the best performing individual in generation 874. This could imply that there
might be still the opportunity to improve with both configurations if the Genetic Algorithm would
be executed more than 1,000 generations. Moreover, averaged over the three runs with config. #1
the population of the Genetic Algorithm exists only of siblings of one root parent in generation 185
and with config. #2 in generation 104. In summary, config. #1 led to better results regarding the
max. and mean accuracy on the test dataset, while the emerged best performing individual with
config. #1 is a little bigger considering the number of free parameters, µN and σN.

Against our expectation, the introduction of the inception layer lead to worse results regarding
the accuracy reached on the CIFAR-10 test dataset. To investigate, if the combination of residual
and inception layer directs to unfavourable results, we removed the residual layer in config. #3. The
achieved results during the three runs with config. #3 on the CIFAR-10 dataset are presented in
Tab. 3.

Compared to the results stated for config. #1, the removal of the residual layer leads to poorer
accuracies on the test dataset. Configuration #1 outperformed config. #3 regarding maxtest

acc (diff:
0.43%) as well as µtest

acc (diff: 0.49%) with a smaller σtest
acc (diff: 0.52%). The losstest (diff: 0.02× 10−3),

µtest
loss (diff: 0.07× 10−3)) and σtest

loss (diff: 0.2× 10−3) are quite comparable. N of the best performing
architecture identified with config. #3 is about 451,000 free parameters smaller than the one created
with config. #1. µN for the best architectures created with config #3 as well as the σN are smaller
(diff: 118,670 ± 296,750).

In Fig. 5 c) the populations maximum training, validation and test accuracy of each generation
achieved with config. #3, are presented. Besides, the mean as well as the standard deviation are
shown in Fig. 5 c). As expected, the gap between the training and the test accuracy becomes
smaller during the progress of the NAS (with config. #3 diff: 13.91% at the generation in which
the max. accuracy on the test dataset has been encountered the first time). With config. #3 the
best result on the test dataset has been achieved in generation 699. Due to the fact, that many
consecutive generations an improvement regarding test accuracy is missing, even a longer execution
(more generations) of the NAS might not result in an improved accuracy. Averaged over the three
runs, with config. #3 the population of the Genetic Algorithm exists only of siblings of one root
parent in generation 98. In summary, config. #3 led to compacter architectures accompanied by a
worse accuracy on the test dataset.

To avoid premature convergence to the siblings of only one root parent, we investigate if a minimal
necessary age for being a parent directs to better results and a higher diversity in the population
during the course of the NAS (see config. #4).

174

International Journal of Networking and Computing

200 400 600 800 1000
Generation

30

40

50

60

70

80

90

100
A

cc
ur

ac
y

[%
]

Accuracy: 85.16%
Generation: 984Avg. generation

till convergence:
185

CIFAR-10

maxtrain
acc

maxvalid
acc

maxtest
acc

µtest
acc

µtest
acc ± σtest

acc

(a) Configuration 1

200 400 600 800 1000
Generation

40

50

60

70

80

90

100

A
cc

ur
ac

y
[%

]

Accuracy: 84.8%
Generation: 874Avg. generation

till convergence:
104

CIFAR-10

maxtrain
acc

maxvalid
acc

maxtest
acc

µtest
acc

µtest
acc ± σtest

acc

(b) Configuration 2

200 400 600 800 1000
Generation

40

50

60

70

80

90

100

A
cc

ur
ac

y
[%

]

Accuracy: 84.73%
Generation: 699Avg. generation

till convergence:
98

CIFAR-10

maxtrain
acc

maxvalid
acc

maxtest
acc

µtest
acc

µtest
acc ± σtest

acc

(c) Configuration 3

200 400 600 800 1000
Generation

40

50

60

70

80

90

100

A
cc

ur
ac

y
[%

]

Accuracy: 84.38%
Generation: 937Avg. generation

till convergence:
100

CIFAR-10

maxtrain
acc

maxvalid
acc

maxtest
acc

µtest
acc

µtest
acc ± σtest

acc

(d) Configuration 4

200 400 600 800 1000
Generation

40

50

60

70

80

90

100

A
cc

ur
ac

y
[%

]

Accuracy: 84.5%
Generation: 887Avg. generation

till convergence:
128

CIFAR-10

maxtrain
acc

maxvalid
acc

maxtest
acc

µtest
acc

µtest
acc ± σtest

acc

(e) Configuration 5

200 400 600 800 1000
Generation

40

50

60

70

80

90

100

A
cc

ur
ac

y
[%

]

Accuracy: 86.22%
Generation: 985Avg. generation

till convergence:
110

CIFAR-10

maxtrain
acc

maxvalid
acc

maxtest
acc

µtest
acc

µtest
acc ± σtest

acc

(f) Configuration 6

Figure 5: Maximum accuracy achieved each generation on training, validation and test dataset (blue
dotted, green dash-dotted, black solid line respectively). Black dashed line: mean maximum accuracy
per individual in each generation, Gray area: standard deviation, Vertical line: average generation,
from which only the gens of one root parent are present, Red arrow: Difference between the max.
test and training accuracy in the corresponding generation.

In Tab. 3 the achieved results during the three runs with config. #4 are summarized. Compared
to the results stated for config. #1, the minimum required age for being a parent leads to worse

175

NAS based on Genetic Algorithm and Deployed in a k8s Cluster

accuracies on the test dataset. Configuration #1 outperformed config. #4 regarding maxtest
acc (diff:

0.78%) as well as µtest
acc (diff: 1.13%) with a smaller σtest

acc (diff: 0.1%). The losstest (diff: 0.19× 10−3),
µtest

loss (diff: 0.16× 10−3)) and σtest
loss (diff: 0.02× 10−3) are quite comparable. N of the best performing

architecture identified is about 624,000 free parameters smaller than the one created with config. #1.
µN for the best architectures created with config #4 is smaller (diff: 94,330) by having a larger σN
(diff: 74,970).

In Fig. 5 d) the populations maximum training, validation and test accuracy of each generation
achieved with config. #4, are presented. The mean as well as the standard deviation are shown in
Fig. 5 d). As expected, the gap between the training and the test accuracy becomes smaller during
the progress of the NAS (with config. #4 diff: 12.87% at the generation in which the max. accuracy
on the test dataset has been encountered the first time). With config. #4 the best result on the
test dataset has been achieved in generation 937. This could imply, that a longer execution (more
generations) of the NAS might result in a better accuracy on the test dataset. Averaged over the
three runs, the population of the Genetic Algorithm exists only of siblings of one root parent in
generation 100. In summary, config. #4 led to compacter architectures accompanied by a worse
accuracy on the test dataset. Unfortunately, the reason for introducing a minimum age still directs
to a fast convergence, in the sense that only siblings of one root parent are present in the population.

Afterwards, we investigated, if the well known k-fold cross-validation might improve the accuracy
achieved on the test dataset. The obtained results are shown in Tab. 3 as config. #5. Compared to
the other already mentioned configurations, superior results are neither for the accuracy, the loss nor
the number of free parameters reported.

In Fig. 5 e) the populations maximum training, validation and test accuracy as well as the mean
and the standard deviation of the test accuracy are shown. The gap between the training and the
test accuracy at the generation in which the max. accuracy on the test dataset has been encountered
the first time is 14.87%. With config. #5 the best result on the test dataset has been achieved in
generation 887. This could imply, that a longer execution (more generations) of the NAS might
result in a better accuracy on the test dataset. In average, the siblings of only one root parent exist
in the population in generation 128. Recapitulatory can be said, that for config. #5 superior results
were missing.

To further analyze the poor results achieved by the introduction of the inception layer, we fix the
kind of factorization to variant 1 – Replacing convolution kernels ≥ 3 by smaller convolution kernels –
and thus, constrain the search space. The obtained results on the CIFAR-10 dataset are shown in
Tab. 3 for config. #6.

Compared to the previously stated results for the other configurations, fixing the kind of factor-
ization led to superior results. By comparing the results with config. #6 to the best config. – till
now config. #1 – the maxtest

acc differ 1.06%, µtest
acc differ 1.35% with a 0.48% smaller σtest

acc . The losstest
(diff: 0.12× 10−3), µtest

loss (diff: 0.31× 10−3) and σtest
loss (diff: 0.12× 10−3) are comparable. N of the

best performing architecture identified with config. #6 is about 107,000 free parameters smaller than
the one created with config. #1. µN for the best architecture created with config #6 as well as the
σN are smaller (diff: 324,000 ± 496,110).

In Fig. 5 f) the populations maximum training, validation and test accuracy as well as the mean
and the standard deviation of the test accuracy are shown. The gap between the training and the
test accuracy at the generation in which the max. accuracy on the test dataset has been encountered
the first time is 11.64%. With config. #6 the best result on the test dataset has been achieved in
generation 985. This could imply, that a longer execution (more generations) of the NAS might
result in a higher test accuracy. Besides, after 110 generations only the siblings of one root parent
are present in the population. In summary led config. #6 to compacter architectures accompanied
by a higher maximum as well as mean accuracy on the test dataset compared to config.#1.

The last three configurations of the Genetic Algorithm have been analyzed in parallel. Config-
uration #7 comprises residual and inception layers with fixed factorization variant 1, to verify, if
a combination of those layers may results in a favourable setting. With config. #8 the premature
convergence to the siblings of only one root parent is investigated by increasing the population size to
100. Lastly, with config. #9 the utilization of seed architectures is analyzed. In config. #9 all initial
individuals are 50 times mutated. After each mutation, the fitness is approximated by training the

176

International Journal of Networking and Computing

resulting neural network only a few iterations (5) with few samples of the dataset (256). Afterwards,
the validation accuracy is determined with 1/10 of the training dataset size.

The reached results with config. #7, #8 and #9 are shown in Tab. 3. The max. accuracy has
been achieved with config. #7. The results obtained by config. #8 are poor, compared to the other
ones in Tab. 3 with the lowest maximum as well as mean accuracy achieved the test dataset. The
number of free parameters for the best performing architecture, µN and its σN are small. With
config.#9 a higher max. and mean accuracy as with config. #1 have been reached. Nevertheless,
the values for the max. and mean accuracy are smaller than those obtained with config. #6 and #7.
For that reason, in the following only the results achieved with config. #7 are compared to those of
config.#6.

In comparison, the maxtest
acc obtained with config. #7 is 0.7% higher than the one with config. #6.

For µtest
acc as well as σtest

acc better results are achieved with config. #6 (diff: 0.2% ± 0.89%). The losstest
of the best performing architecture created with config. #7 is smaller than the one with config. #6
(diff: 0.13× 10−3), whereas µtest

loss and σtest
loss are smaller with config. #6 (0.08× 10−3 ± 0.15× 10−3).

N of the best performing architecture identified with config. #7 is about 465,000 free parameters
bigger than the one generated with config. #6. µN for the best architectures created with config #7
as well as the σN are bigger (diff: 288,670 ± 671,100).

In Fig. 6 a), b) and c) the populations maximum training, validation and test accuracy as well
as the mean and the standard deviation of the test accuracy for config. #7, #8 and #9 are shown,
respectively. The gap between the training and the test accuracy at the generation in which the
max. accuracy on the test dataset has been encountered the first time is 11.03%, 16.27% and 12.4%
for config. #7, #8 and #9, in that order. With config. #7, #8 and #9 the best result on the test
dataset has been achieved in generation 991, 965 and 951. This could imply, that a longer execution
(more generations) of the NAS might result in a higher test accuracy for all three configurations.
After 90 (config. #7), 925 (config. #8) and 113 (config. #9) generations only the siblings of one
root parent are present in the population. In summary, led that config. #7 to bigger architectures
(regarding the free parameters) accompanied by a higher maximum accuracy on the test dataset
compared to config. #6. Nevertheless, the mean accuracy and its standard deviation obtained with
config. #6 are superior to those reached with config. #7. With config. #8 it was possible to avoid
the premature convergence to siblings of only one root parent. However, poor max. and mean
accuracies have been obtained. Furthermore, improvements with config. #9 were missing. Maybe,
the initial seed architectures must be trained for more epochs or a larger training set.

4.3 Recovery from Failure Injection

During the NAS execution one Fitness Evaluator pod crashed once. It took 43.222 s that kubelet
discovered that the pod failed, a new one became launched and the first log messages of the application
appear. Afterwards, we injected failures into the pods of the four microservices explained in Sec. 3.2.
For each microservice we simulated 1,000 times a crash of its pods – one at a time. We measured the
duration between failure injection and till a new pod is launched, runnning in the state Running and
all containers in the pod have the ready state. The results are summarized in Tab. 4.

Table 4: Mean (µ) duration and its standard deviation (σ) to recover from simulated pod failure.
Statistics are calculated by 1,000 pod failure simulations per microservice.

Microservice µµµ [s] σσσ [s]
Fitness Evaluator 3.272 2.011
Genetic Algorithm 1.749 0.339
Database 55.744 27.31
Message broker 43.473 15.342

Due to the fact, that the Genetic Algorithm microservice did not reach any resource limitations and
the higher level Kubernetes resource – the job – does not pin a fixed identity to the corresponding pod,
it was able to recover the fastest from the simulated failures with about 1.749± 0.339 s. Furthermore,

177

NAS based on Genetic Algorithm and Deployed in a k8s Cluster

200 400 600 800 1000
Generation

50

60

70

80

90

100
A

cc
ur

ac
y

[%
]

Accuracy: 86.92%
Generation: 991Avg. generation

till convergence:
90

CIFAR-10

maxtrain
acc

maxvalid
acc

maxtest
acc

µtest
acc

µtest
acc ± σtest

acc

(a) Configuration 7

200 400 600 800 1000
Generation

40

50

60

70

80

90

100

A
cc

ur
ac

y
[%

]

Accuracy: 82.8%
Generation: 965

Avg. generation
till convergence:
925

CIFAR-10

maxtrain
acc

maxvalid
acc

maxtest
acc

µtest
acc

µtest
acc ± σtest

acc

(b) Configuration 8

200 400 600 800 1000
Generation

60

70

80

90

100

A
cc

ur
ac

y
[%

]

Accuracy: 85.54%
Generation: 951

Avg. generation
till convergence:
113

CIFAR-10

maxtrain
acc

maxvalid
acc

maxtest
acc

µtest
acc

µtest
acc ± σtest

acc

(c) Configuration 9

Figure 6: Maximum accuracy achieved each generation on training, validation and test dataset (blue
dotted, green dash-dotted, black solid line respectively). Black dashed line: mean maximum accuracy
per individual in each generation, Gray area: standard deviation, Vertical line: average generation,
from which only the gens of one root parent are present, Red arrow: Difference between the max.
test and training accuracy in the corresponding generation.

the container images were already downloaded on each worker node in the cluster. If the image is
not present on the selected new host node, the recovery time might increase depending on the image
size as well as the network infrastructure. The Fitness Evaluator microservice recovered from
failure in about 3.272± 2.011 s. Compared to the recovery time stated earlier, the failure detection of
kubelet and the creation of a new pod took about 40 s longer. When the pod failed first, the other
compute nodes were busy and creation of the new pod needed to wait till the failed pod is successfully
terminated and the consumed resources are freed. During our experiment, other nodes have been
available so that the creation of the pod is undelayed by resource limitations. In another experiment,
we performed 200 failure injections and limited the number of available nodes to two. The recovery
time increased to 20.725± 13.22 s. The RabbitMQ message broker needed about 43.473± 15.342 s to
detect pod failure and to create a new pod. Due to that a sts waits for a successful termination
of the failed pod till it starts the new pod, the recovery times are much higher. The PostgreSQL
database demanded about 55.744± 27.31 s to recover from failure. This might have the same reason
as mentioned for the message broker. Besides, the database microservice comprises two containers,
as a consequence it takes longer till both containers are ready, especially because of there internal
dependencies. It must be mentioned, that other configurations of the microservices as well as the

178

International Journal of Networking and Computing

cluster could lead to a faster recovery, perhaps with the trade-off unnecessary overhead regarding
healthy checks etc.

4.4 Scalability and Hardware Utilization

In this subsection, first the scalability of the proposed NAS is analyzed. Subsequently, the utilized
hardware during NAS execution is described and discussed.

4.4.1 Scalability

We employed n ∈ [1, 2, 5, 10] subpopulations. Each run of the NAS with n subpopulations is performed
five times. The whole population of each NAS execution sums up to 100 individuals. Furthermore,
the whole population is evolved by 500 generations, i. e. a run consisting of five subpopulations, each
covering 20 individuals and evolved for 100 generations. Therefore, we investigate strong scalability.
Figure 7 shows the metrics measured and calculated.

1 2 5 10
Nodes

2

4

6

8

10

12

Ex
ec

ut
io

n
ti

m
e

[h
]

(a) NAS execution time

1 2 5 10
Nodes

0

2

4

6

8

10

Sp
ee

du
p

(b) Speedup

1 2 5 10
Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

(c) Efficiency

Figure 7: Scalability metrics

In Fig. 7 (a) is the execution time of the fastest NAS run over the number of compute nodes
(represents also the number of subpopulations) illustrated. Figure 7 (b) presents the speedup over
utilized node count. The speedup increases nearly linear by adding more nodes. Note that the
speedup over the number of compute nodes does not proportional increase. Furthermore, in Fig. 7

179

NAS based on Genetic Algorithm and Deployed in a k8s Cluster

(c) we observe that the efficiency can not hold constant over the number of nodes. This might lead
to the conclusion that the proposed approach is scalable, but not strong scalable. Nevertheless, the
utilized hardware, especially the GPU are not on all worker machines the same. This might effect
the speedup as well as efficiency calculation. Due to the random nature of the Genetic Algorithm
it is not guaranteed that the problem size remained fixed during our investigations. In the above
consideration we create 600 individuals and evaluate their fitness. These individuals might be from
run to run more complex and their fitness evaluation are computational more demanding.

4.4.2 Hardware Utilization

For the investigation of the utilized hardware during the NAS execution, we performed ten runs of
our NAS in parallel so that each compute node of our cluster was occupied. Each NAS has been
executed with a population size of 100 individuals and 500 generations. The averaged consumed
hardware is illustrated in Fig. 8.

(a) Average GPU utilization (b) Average GPU memory utilization

(c) Average CPU utilization (d) Average RAM utilization

Figure 8: Hardware utilization

Figure 8 (a) shows the average GPU utilization. The average GPU utilization in this figure
sums up to 61.79%. This value is low, because of the last few hours of the algorithm, when a
decremented number of nodes were busy, caused by already finished NAS runs. By only considering
the period when all nodes were busy, the average GPU utilization increases to 81.46%. In Fig. 8
(b) the average GPU memory utilization is presented. The average GPU memory utilization in this
time period equals 35.68%. This value is also influenced by the last few hours of the algorithm,
when some NAS runs already completed their execution. If exclusively time is analyzed, when
all nodes were busy the average GPU memory utilization elevates to 46.19%. The average CPU
utilization of each microservice (Fitness Evaluator, Postgres database + Postgres operator,
Genetic Algorithm, RabbitMQ message broker) is shown in Fig. 8 (c). Due to the small dataset
size, the whole dataset is stored in GPU memory so that multithreading for loading the data is
not necessary and only one core is utilized in average by the Fitness Evaluator and the Genetic
Algorithm, as long as we only consider the time period till no NAS run has finished. Afterwards,
the average CPU utilization drops to 0.753 and 0.731 cores respectively. Independent of the number
of NAS executions, the average CPU consumption by the PostgreSQL database and its operator
sums up to 0.001 cores and by the RabbitMQ message broker to 0.130 cores. The average RAM
utilization is illustrated by Fig. 8 (d). Because of the configuration of the NAS, that nether the

180

International Journal of Networking and Computing

Fitness Evaluator nor the Genetic Algorithm finish automatically, the average RAM consume
of both microservices did not drop till the end. During the considered period of time, the average
RAM consume of the Fitness Evaluator is 9.972GiB, the Genetic Algorithm is 1.149GiB, the
PostgreSQL database and its operator sum up to 475.843MiB and the RabbitMQ message broker is
194.086MiB.

5 Conclusion and Future Works
First, we highlighted the importance of the proposed research and gave an overview on related work.
Subsequently, the scalable and highly available multi-objective neural architecture search algorithm
has been introduced. Thereby, the hard- and software setup of the cluster as well as each micro service
have been detailed. Furthermore, we reported our achieved test accuracy on MNIST, Fashion-MNIST
and CIFAR-10 dataset (99.75%, 94.35% and 89.90%) and compared the results with other models and
outcomes of various NAS algorithms. The evolved, best performing architectures can be downloaded
from [31]. Besides, we considered the aspect of high availability of each component regarding recovery
time from failure. Furthermore, we have proven that our approach is scalable. The scalability could
be improved by generating more siblings during one generation, as e. g. in case of NSGA-II [26],
NSGA-III [27], SEPA-2 [28] etc. Subsequently, we investigated nine different configurations of the
Genetic Algorithm. Each setting is tested three times. The maximum test accuracies as well as
the mean accuracies, loss and number of free parameters are investigated. The results showed, that
constraining the kind of factorization of the inception layer seems to be favourable. An improvement
by techniques like a minimal age for being a parent of an individual and k-fold cross-validation were
missing. Too large populations should be avoided with our approach. The approach with the seed
architectures for the initial population might be interesting to further analyze. The adjustment of
the training epochs, the fraction of training dataset etc. could be adjusted.

Left for our future works is the application of the NAS algorithm on other datasets and to
improve the results. Furthermore, we want to reduce the computational demands of the proposed
NAS algorithm.

References
[1] A. Baldominos, Y. Saez, and P. Isasi, “Evolutionary convolutional neural networks: An application

to handwriting recognition,” Neurocomputing, vol. 283, pp. 38–52, 2018.

[2] N. Mitschke, M. Heizmann, K. Noffz, and R. Wittmann, “Gradient based evolution to optimize
the structure of convolutional neural networks,” in 25th IEEE International Conference on
Image Processing (ICIP), 2018, pp. 3438–3442.

[3] S. Litzinger, A. Klos, and W. Schiffmann, Compute-Efficient Neural Network Architecture
Optimization by a Genetic Algorithm, 2019, vol. 11728 LNCS.

[4] Z. Zhong, J. Yan, and C. Liu, “Practical network blocks design with q-learning,” CoRR, vol.
abs/1708.05552, 2017. [Online]. Available: http://arxiv.org/abs/1708.05552

[5] E. Real et al., “Large-scale evolution of image classifiers,” 34th International Conference on
Machine Learning, ICML 2017, vol. 6, pp. 4429–4446, 2017.

[6] H. Liu et al., “Hierarchical representations for efficient architecture search,” international
conference on learning representations, 2018.

[7] D. Whitley, S. Rana, and R. B. Heckendorn, “The island model genetic algorithm: On separability,
population size and convergence,” Journal of Computing and Information Technology, vol. 7, pp.
33–47, 1998.

[8] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

181

http://arxiv.org/abs/1708.05552
http://yann.lecun.com/exdb/mnist/

NAS based on Genetic Algorithm and Deployed in a k8s Cluster

[9] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms.

[10] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute for advanced research).”
[Online]. Available: http://www.cs.toronto.edu/~kriz/cifar.html

[11] A. Klos, M. Rosenbaum, and W. Schiffmann, “Scalable and highly available multi-objective
neural architecture search in bare metal kubernetes cluster,” in 2021 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), 2021, pp. 605–610.

[12] Y. Jaâfra, J. L. Laurent, A. Deruyver, and M. S. Naceur, “A review of meta-reinforcement
learning for deep neural networks architecture search,” CoRR, vol. abs/1812.07995, 2018.
[Online]. Available: http://arxiv.org/abs/1812.07995

[13] P. Ren, Y. Xiao, X. Chang, P.-y. Huang, Z. Li, X. Chen, and X. Wang, “A comprehensive
survey of neural architecture search: Challenges and solutions,” ACM Comput. Surv., vol. 54,
no. 4, May 2021. [Online]. Available: https://doi.org/10.1145/3447582

[14] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A survey,” Journal
of Machine Learning Research, vol. 20, no. 55, pp. 1–21, 2019. [Online]. Available:
http://jmlr.org/papers/v20/18-598.html

[15] P. Yotchon and Y. Jewajinda, “Hybrid multi-population evolution based on genetic algorithm
and regularized evolution for neural architecture search,” in 17th International Joint Conference
on Computer Science and Software Engineering (JCSSE), 2020, pp. 183–187.

[16] J. Hajewski and S. Oliveira, “A scalable system for neural architecture search,” in 10th Annual
Computing and Communication Workshop and Conference (CCWC), 2020, pp. 0053–0060.

[17] F. Assunção, N. Lourenço, P. Machado, and B. Ribeiro, “Denser: deep evolutionary network
structured representation,” Genetic Programming and Evolvable Machines, vol. 20, no. 1, p.
5–35, Sep 2018. [Online]. Available: http://dx.doi.org/10.1007/s10710-018-9339-y

[18] A. Marchisio et al., “Nascaps: A framework for neural architecture search to optimize the
accuracy and hardware efficiency of convolutional capsule networks,” Proceedings of the
39th International Conference on Computer-Aided Design, Nov 2020. [Online]. Available:
http://dx.doi.org/10.1145/3400302.3415731

[19] B. Ma, X. Li, Y. Xia, and Y. Zhang, “Autonomous deep learning: A genetic dcnn designer
for image classification,” Neurocomputing, vol. 379, pp. 152–161, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231219313797

[20] C. Szegedy et al., “Rethinking the inception architecture for computer vision,” IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826, 2016.

[21] M. Luksa, Kubernetes in Action. Manning Publications, 2018, ISBN: 9781617293726. [Online].
Available: https://books.google.de/books?id=8bE5MQAACAAJ

[22] “Kubernetes documentation,” https://kubernetes.io/docs/home/, accessed: 2021-03-30.

[23] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST database of handwritten digits,” http:
//yann.lecun.com/exdb/mnist/, accessed: 2021-02-13.

[24] “Fashion-mnist,” https://github.com/zalandoresearch/fashion-mnist, accessed: 2021-02-13.

[25] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,”
in Proceedings of the 36th International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15
Jun 2019, pp. 6105–6114. [Online]. Available: https://proceedings.mlr.press/v97/tan19a.html

182

http://www.cs.toronto.edu/~kriz/cifar.html
http://arxiv.org/abs/1812.07995
https://doi.org/10.1145/3447582
http://jmlr.org/papers/v20/18-598.html
http://dx.doi.org/10.1007/s10710-018-9339-y
http://dx.doi.org/10.1145/3400302.3415731
https://www.sciencedirect.com/science/article/pii/S0925231219313797
https://books.google.de/books?id=8bE5MQAACAAJ
https://kubernetes.io/docs/home/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://proceedings.mlr.press/v97/tan19a.html

International Journal of Networking and Computing

[26] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic
algorithm: Nsga-ii,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197,
2002.

[27] K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using reference-
point-based nondominated sorting approach, part i: Solving problems with box constraints,”
IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 577–601, 2014.

[28] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength pareto evolutionary
algorithm,” in EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control
with Applications to Industrial Problems, 2002, pp. 95–100.

[29] N. Beume, B. Naujoks, and M. Emmerich, “Sms-emoa: Multiobjective selection based
on dominated hypervolume,” European Journal of Operational Research, vol. 181, no. 3,
pp. 1653–1669, 2007. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0377221706005443

[30] E.-G. Talbi, S. Mostaghim, T. Okabe, H. Ishibuchi, G. Rudolph, and C. A. Coello Coello, Parallel
Approaches for Multiobjective Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 349–372. [Online]. Available: https://doi.org/10.1007/978-3-540-88908-3_13

[31] A. Klos, “Example application of the best performing, evolved neural networks during neural
architecture search,” Mar. 2021. [Online]. Available: https://doi.org/10.5281/zenodo.4654465

183

https://www.sciencedirect.com/science/article/pii/S0377221706005443
https://www.sciencedirect.com/science/article/pii/S0377221706005443
https://doi.org/10.1007/978-3-540-88908-3_13
https://doi.org/10.5281/zenodo.4654465

NAS based on Genetic Algorithm and Deployed in a k8s Cluster

A Configuration of the Neural Architecture Search

Table 5: Configuration of the proposed NAS. BN denotes batch normalization.

Subpopulation Value
Subpopulation count 5
Number of Individuals 20
Migration period Every 20 generations
Migration Value
Potential migrants selection 30% with highest fitness value
Final migrant selection Roulette wheel: 5% of population size

Fitness measure
Accuracy on test dataset till threshold
exceeded by worst individual, then

number of free parameters
Evolution Value
Initial population 1,000 random mutations

Mutation operator: Probability

Insert layer: 20%
Switch two layers: 10%

Delete layer: 20%
Adjust layer: 40%

Crossover rate 10%
Crossover kind Single point
Termination criterion 1,000 generations
Parent selection Roulette wheel

Replacement strategy
Individual with lowest fitness score,
if the new individual has higher

fitness value
Fitness measure Same as for migration
Activation function LeakyReLU

Regularization Dense: Dropout: 0.5
Conv: BN: Momentum:0.99

Training parameter Value
Number of epochs 100
Early stopping No improve after six epochs
Loss function Mean squared error
Batch size 256
Optimizer Adam
Learning rate 10−3

Weight decay 10−5

Dataset Value
Augmentation Standardization: Mean: 0, Deviation: 1

Fitness threshold
MNIST: 99.6%

Fashion MNIST: 94%
CIFAR10: 90%

Training/Validation ratio 10/1

184

International Journal of Networking and Computing

B Best Evolved Architectures

Input

Convolutional
Kernel size: 5x2

Stride: 1x1
Filter: 101

Convolutional
Kernel size: 5x2

Stride: 1x1
Filter: 101

Convolutional
Kernel size: 5x3

Stride: 2x2
Filter: 34

Convolutional
Kernel size: 1x1

Stride: 1x1
Filter: 78

Convolutional
Kernel size: 1x1

Stride: 1x1
Filter: 41

Pooling
Kernel size: 3x7

Stride: 2x1

Convolutional
Kernel size: 1x1

Stride: 2x1
Filter: 90

Convolutional
Kernel size: 1x1

Stride: 1x1
Filter: 47

Convolutional
Kernel size: 4x4

Stride: 1x1
Filter: 78

Convolutional
Kernel size: 4x1

Stride: 2x1
Filter: 78

Convolutional
Kernel size: 1x4

Stride:2x1
Filter: 78

Convolutional
Kernel size: 2x2

Stride: 1x1
Filter: 41

Convolutional
Kernel size: 2x2

Stride: 2x1
Filter: 41

Convolutional
Kernel size: 4x3

Stride: 1x1
Filter: 116

Convolutional
Kernel size: 4x3

Stride: 2x1
Filter: 116

Dense
Neurons: 10

Filter Concat

Pooling
Kernel size: 4x4

Stride: 2x1

Convolutional
Kernel size: 1x5

Stride: 3x3
Filter: 23

Figure 9: Best neural network architecture evolved for MNIST dataset.

185

NAS based on Genetic Algorithm and Deployed in a k8s Cluster

Input

Convolutional
Kernel size: 2x2

Stride: 1x1
Filter: 88

Convolutional
Kernel size: 2x2

Stride: 1x1
Filter: 88

Convolutional
Kernel size: 1x1

Stride: 1x1
Filter: 9

Convolutional
Kernel size: 1x1

Stride: 1x1
Filter: 114

Pooling
Kernel size: 3x5

Stride: 1x1

Convolutional
Kernel size: 1x1

Stride: 1x1
Filter: 17

Convolutional
Kernel size: 1x1

Stride: 1x1
Filter: 105

Convolutional
Kernel size: 2x2

Stride: 1x1
Filter: 9

Convolutional
Kernel size: 2x1

Stride: 1x1
Filter: 9

Convolutional
Kernel size: 1x2

Stride:1x1
Filter: 9

Convolutional
Kernel size: 4x4

Stride: 1x1
Filter: 114

Convolutional
Kernel size: 4x4

Stride: 1x1
Filter: 114

Pooling
Kernel size: 5x4

Stride: 3x3

Dense
Neurons: 10

Filter Concat

Dense
Neurons: 130

Figure 10: Best neural network architecture evolved for Fashion-MNIST dataset.

186

International Journal of Networking and Computing

Input

Convolutional
Kernel size: 5x6

Stride: 2x1
Filter: 124

Convolutional
Kernel size: 1x1

Stride: 1x1
Filter: 23

Convolutional
Kernel size: 1x1

Stride: 1x1
Filter: 61

Pooling
Kernel size: 3x2

Stride: 1x1

Convolutional
Kernel size: 1x1

Stride: 1x1
Filter: 24

Convolutional
Kernel size: 1x1

Stride: 1x1
Filter: 103

Convolutional
Kernel size: 1x1

Stride: 1x1
Filter: 23

Convolutional
Kernel size: 3x3

Stride: 1x1
Filter: 61

Convolutional
Kernel size: 3x3

Stride: 1x1
Filter: 61

Filter Concat

Convolutional
Kernel size: 3x1

Stride: 1x1
Filter: 23

Convolutional
Kernel size: 3x5

Stride: 1x1
Filter: 90

Convolutional
Kernel size: 3x5

Stride: 1x1
Filter: 90

Convolutional
Kernel size: 4x7

Stride: 1x1
Filter: 126

Convolutional
Kernel size: 4x7

Stride: 1x2
Filter: 126

Convolutional
Kernel size: 3x3

Stride: 1x1
Filter: 45

Convolutional
Kernel size: 3x3

Stride: 3x1
Filter: 45

Convolutional
Kernel size: 4x4

Stride: 2x1
Filter: 92

Convolutional
Kernel size: 1x1

Stride: 1x1
Filter: 78

Convolutional
Kernel size: 1x1

Stride: 1x1
Filter: 84

Pooling
Kernel size: 7x3

Stride: 1x2

Convolutional
Kernel size: 1x1

Stride: 1x2
Filter: 26

Convolutional
Kernel size: 1x1

Stride: 1x1
Filter: 6

Convolutional
Kernel size: 4x3

Stride: 1x1
Filter: 78

Convolutional
Kernel size: 4x1

Stride: 1x2
Filter: 78

Convolutional
Kernel size: 1x3

Stride:1x2
Filter: 78

Convolutional
Kernel size: 2x4

Stride: 1x1
Filter: 84

Convolutional
Kernel size: 2x4

Stride: 1x2
Filter: 84

Filter Concat

Pooling
Kernel size: 1x7

Stride: 2x3

Pooling
Kernel size: 3x4

Stride: 1x2

Pooling
Kernel size: 1x2

Stride: 1x2

Pooling
Kernel size: 5x1

Stride: 3x1

Pooling
Kernel size: 2x1

Stride: 3x3

Convolutional
Kernel size: 5x1

Stride: 1x2
Filter: 58

Dense
Neurons: 744

Dense
Neurons: 10

Figure 11: Best neural network architecture evolved for CIFAR-10 dataset.

187

	Introduction
	Related Work
	Neural Architecture Search Algorithm and Components
	Neural Architecture Search Algorithm
	Neural Architecture Search Components

	Results and Discussion
	Island Model Genetic Algorithm
	Genetic Algorithm with only one Subpopulation
	Recovery from Failure Injection
	Scalability and Hardware Utilization
	Scalability
	Hardware Utilization

	Conclusion and Future Works
	Configuration of the Neural Architecture Search
	Best Evolved Architectures

