
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 12, Number 1, pages 131–163, January 2022

Performance Models for Heterogeneous Iterative Programs

Aparna Sasidharan

Ansys,Inc
Lebanon,NH, USA

Received: July 25, 2021
Revised: October 22, 2021

Accepted: November 29, 2021
Communicated by Susumu Matsumae

Abstract

This article describes techniques to model the performance of heterogeneous iterative pro-
grams, which can execute on multiple device types (CPUs and GPUs). We have classified iter-
ative programs into two categories - static and dynamic, based on their workload distributions.
Methods are described to model their performance on multi-device machines using linear regres-
sion from statistics. Experiments were designed to capture the behavioral response of different
types of iterative programs to variations in regression variables. Experiments were divided into
two sets - training and validation. Training sets were used to train and compare performance
models, and validation sets were used to determine the accuracy of predictions. Performance
models were developed for the execution time and the energy consumption of programs.

Keywords: Hybrid Programming Models, Multi-GPU architectures, Unified Memory, Perfor-
mance Models, Statistics, Energy Models, Iterative Programs

1 Motivation

Several large applications have benefited from using GPUs to offload their compute-intensive pro-
gram regions [20]. In this article we attempt to quantify the performance of heterogeneous programs
in-terms of their resource usage. Performance models can expose benefits and flaws in programming
models by modeling their effectiveness in translating a parallel computation to a program. Algo-
rithms can be analyzed for scalability on different machines by comparing their performance models
for each machine. Developing a performance model for computer programs is a non-trivial task con-
sidering the numerous hardware resources and programming methodologies available today. A large
program is often composed of several libraries and has complex load distributions. Most of the work
on performance models for software is focused on applications or particular algorithms [6]. Rather
than build a model for an application, we have focused on a programming model and host-device
architecture. Another application with similar algorithms, following the same programming model
and executing on similar machines will have the same performance model (variables and exponents);
with different coefficients. Complexity analysis of parallel algorithms usually cover their dependence
on data sizes and number of processes [29]. Theoretical analysis can improve the implementation of
an algorithm by providing growth rates for computation and communication costs, including costs
for contention and data movement. But the implementations of an algorithm may show variation
in performance across different machines which is beyond the scope of theoretical analysis. For
example, the constants in the growth rates provided by complexity analysis may differ widely across

131

Performance Models for Heterogeneous Iterative Programs

machines. Performance models are good tools for analyzing the effects of memory access patterns
which are significant for parallel programs with large number of threads. The programming model
defines interactions within and across devices and the sequence of operations that lead to a cor-
rect program. As far as statistical methods are concerned, we have relied on regression [21], [23].
The data collected from program execution on non-shared machines follow a normal distribution,
with definite mean and variance. Measurements from computer programs satisfy requirements for
statistical models, which makes statistics a useful tool for analyzing them. We have restricted the
discussion to iterative programs, where the primary resource is memory.

Section 2 describes the programming model and section 3 the methods used to build performance
models. Sections 4, 5 and 6 describe the programs and their performance models. Sections 7, 8
and 9 discuss conclusions, future work and related work.

2 Hybrid Programming Model

There are several programming models in literature that use mixed devices where a few devices are
hosts and others are accelerators [3] [27] [31] [8] [38] [7]. Due to their flexibility in handling control
flows, host devices are typically CPUs. Historically, hybrid (mixed device) programs have followed
offload model [24], where host devices offload kernels to execute on GPUs. Recently, many-core
CPUs have been used as offloading devices [24]. Most hybrid programming models are asynchronous,
where host devices allocate memory for the data used in a program and schedule them for copying
to devices. The kernels are scheduled in streams and there can be multiple streams scheduled to
execute on a device. Although streams may execute in any order, the input to streams and output
from streams are co-ordinated by hosts so that the total computation maintains program order.
Hosts may also perform computations that are applied to the input to or output from accelerators.
Therefore the same host can be used to co-ordinate multiple devices, or multiple hosts can be
used for the same accelerator device. We have considered a simple subset of these programming
models where the role of a host is reduced. The entire memory required for the program resides
predominantly on GPUs and hosts access data by mapping pages to their physical memories. We
intend to extend this model to accommodate more complex memory allocation schemes. The control
flow has been simplified - host processes spawn a thread and initialize a stream for each device
connected to them. Threads schedule kernels independently to streams. Scheduling overheads are
low for this model since a single stream is assigned to a GPU and streams are handled in parallel on
host processes by separate threads. Memory copies between hosts and devices use unified memory
paging mechanism, which makes them implicit [30]. With currently available machines and problem
sizes, a distributed memory architecture was necessary with groups of GPUs connected through host
CPUs. The programming model is illustrated in figure 1 and the host-device architecture is provided
in figure 2.

2.1 Memory Model and Device Architecture

A host device and the GPUs connected to it form a fully connected graph, where vertices are devices
and edges are connections, shown in figure 2. An edge exists between any two devices A and B if they
can access data residing in each other’s memories. Depending on the networks used, the latencies
of these connections are likely to be different. Edges between peer GPUs are shown in solid lines
and edges between a host device and its GPUs are shown in dotted lines. Any two host-GPU
groups are connected through their hosts. The GPUs in a group are configured to use RDMA to
access the memories of peer GPUs (GPUDirect) [39]. Peer GPU memory accesses may transfer data
using GPUDirect if possible or migrate pages to local memory. For a single host-device group, the
entire program is a sequence of memory accesses of varying latencies and computations performed
on them. From the perspective of the host process that spawned the threads, computations need to
follow program order for correctness. Streams may be scheduled in any order on the devices. The
host process must use barriers, signal-wait or join constructs to co-ordinate depenedencies between
kernels. If the host process accesses data residing on GPUs, it will not have the correct version
until the kernels attached to the data have completed execution. A join or barrier ensures that all

132

International Journal of Networking and Computing

Figure 1: Hybrid Programming Model

Figure 2: Device Architecture

133

Performance Models for Heterogeneous Iterative Programs

memory accesses issued during prior fork-join sections have flushed values from caches to memory
and that the address locations have final values consistent with program order. The coherency of
shared pages is handled by the unified mechanism [30] and the operating system. This programming
model did not add any non-determinism to its programs. However, a parallel program that performs
floating point operations may produce values different from its sequential execution due to lack of
associativity in floating point computations and rounding errors [29].

3 Performance Model

We have used regression to build the performance models. Given a response y and n input variables
X, where XT = {X1, X2, ..., Xn}, y can be modeled as a function of X :

ŷ = f(X) (1)

where ŷ is the value of the response computed by some regression function f . Linear regression
uses a linear approximation for the function f . Replacing f(X) in equation 1 by a linear approxi-
mation, we get equation 2, where the R.H.S is a hyperplane in n-dimensional space with coefficients
Bi and intercept B0. The coefficients are the slopes of the hyperplane in each dimension and B0 is
the point where the hyperplane intersects the axes:

ŷ = B0 +

i=n∑
i=1

BiXi (2)

Equation 2 is a general form that includes higher degree polynomials (degree of > 1). Higher
degree terms are included by replacing Xi = Xai

i , where ai are integers. Most of the models
considered in this article have included interactions between variables. Interaction terms are product
terms added to equation 2. For example, the product term X1X2 models the combined effects of
X1 and X2. The addition of interaction terms would modify equation 2 to the following :

ŷ = B0 +

i=n∑
i=1

BiXi +

k=n,j=n∑
k=1,j=1

BjkXkXj +

i=n,j=n,k=n∑
i=1,j=1,k=1

BijkXiXjXk + ... (3)

The metrics used to evaluate models are defined using residuals or differences between computed
and measured values of the response variable (y), i.e |ŷ− y|. The most commonly used metric is the
Residual Sum of Squares (RSS). The coefficients computed by linear regression are the set of values
that minimize this metric for a given training data. Therefore, the coefficients are considered as
generated from a multivariate normal distribution with quantities such as mean, variance and error
defined on them (column Stand.Error in the tables) [21]. Besides linear regression, Generalized
Additive Models (GAM) can be used to model the programs discussed in this article. GAMs follow
a different approach, where the response is modeled as a sum of functions [23], minimizing for each
function seperately. It is useful if dependent variables have high-order exponents (>= 3). For most
hybrid programs with offloading and typical responses measured from them, high-order terms are
not common. Most of the relationships between responses and variables are linear, quadratic or
logarithmic, with high chances of interactions.

We used the method of least squares to solve the linear regression. Experiments were divided
into two groups - training and validation. The data gathered from training experiments were used
to train and validation data were used to verify the models. We used a large number of observations
relative to the number of variables to train the models so that predicted values in the population
are likely to be close to ideal predictions. Residual Standard Error (RSE), which is a derivative
of RSS, was used to quantify the fitness of models. The lower the RSE of a model, the smaller
its difference between predictions and measurements of a response variable, leading to a better fit.
The significance of a variable (Xi) to a model is reported as the result of a null-hypothesis that a
particular coefficient is zero (t− value and Pr(> |t|) in the tables). If a variable has high Pr(> |t|),
then its contribution may not be significant to the response and it may be possible to build a

134

International Journal of Networking and Computing

model by dropping it. In such scenarios, we have used tests such as Anova and cross-validation for
comparing models. Anova uses a metric called F-statistic (columns F and Pr(> F) in the tables)
to quantify the significance of a group of variables. We have reported these metrics wherever Anova
was used along with the degrees of freedom for each model (column Res.df in the tables) [21]. We
used raw data in the models without applying any transformations because the input data were not
correlated. Standardization of input data was not required for least squares. A model with the best
fit was considered acceptable. This decision was made based on its RSE and predictions for test
data (not training data).

4 Heterogenous Iterative Programs

We have only considered iterative programs in this article, i.e programs which perform a repetitive
sequence of computations until a criterion is met. The primary resource for these programs is
memory since they access data repeatedly with scope for reuse. They are interesting test cases
for performance modeling on heterogeneous machines because they capture the effects of memory
hierarchies and memory types. For convenience, we have classified heterogeneous iterative programs
into two groups based on their load and data reuse. We use the term load to quantify the work
done by a program in any iteration, e.g for matrix multiplication, load would mean the sizes of input
matrices.

1. Static : Programs belonging to this group have constant loads. Once its data is partitioned,
a program can execute to completion by reusing partition information and data. Such pro-
grams do not have overheads from load balancing. Most iterative programs that use fixed size
matrices (meshes) fall into this category [25].

2. Dynamic : Programs in this group have workloads that evolve during their execution. They
may need load balancing for scalable performance. Examples include n-body simulations [5]
and mesh refinement [15].

Both categories of programs can be analyzed using the same techniques. But the experiment
design needed for building performance models are different for each. The performance of static
programs can be analyzed by measuring their load and execution time per iteration. For dynamic
programs, there can be a range of values for load in a single execution of the program. The load and
execution time per iteration take the form of distributions with mean and variance. Load balancing
will add overheads to the execution time per iteration whenever it is invoked.

5 Static Iterative Programs

The program considered in this section is an implementation of Lagrange force computation on a
structured mesh based on a DOE benchmark [25].

The base program was re-written entirely in the programming model described here. It takes
mesh dimensions as input and generates a structured mesh of hexahedrons in 3 dimensions. Each
hexahedron (element) has 8 corner nodes, with nodes shared between neighboring elements. Each
element maintains the ids of nodes that constitute it. Two primary data structures were used by the
kernels : element and node arrays. Elements and nodes were assigned unique global ids. These data
structures were partitioned equally across GPUs with a single partition assigned to a GPU. Elements
and nodes had different decompositions across GPUs, which created peer memory accesses in the
kernels. The program is iterative and runs for a fixed number of iterations. Kernels were written
entirely using Nvidia CUDA10.0 and driver functions used by hosts were implemented in c++ [42].
The independent threads on the hosts were spawned using pthreads [1]. Let n be the number of
mesh elements per GPU and T the number of threads per GPU. All algorithms implemented as
CUDA kernels in this program had computational complexity O(n

T), linear in the number of mesh
elements n. We implemented two versions of this program :

135

Performance Models for Heterogeneous Iterative Programs

Algorithm 1 Sedov Blast Simulation

1: procedure Sedov(K)
2: n← getNumGPUs
3: for doi← 1,K
4: spawn(n, InitializeNodesKernel)
5: join(n)
6: spawn(n,ComputeV olumeForcesKernel)
7: join(n)
8: spawn(n,UpdateNodeQuantitiesKernel)
9: join(n)

10: spawn(n,UpdateElementPropertiesKernel)
11: join(n)
12: spawn(n,CalculateConstraintsKernel)
13: join(n)
14: end for
15: end procedure

1. Shared Memory : single host-device group

2. Distributed Memory : multiple host-device groups

The pseudo-code for the shared memory version is provided in algorithm 1. The spawn function
in the pseudo-code spawns pthreads on the host process, one for each GPU. Each spawn function has
a corresponding join function where host threads synchronize. The pseudo-code for the distributed
memory version of the program is provided in algorithm 2. It uses the same CUDA kernels with minor
changes for identifying local and remote nodes. Exchange functions are invoked on host processes in
every iteration to send/recv remote node data. Both programs have used the unified memory [30]
implementation provided by CUDA. A single address space is used for a host and devices connected
to it. Memory allocation follows first-touch policy and page faults and remote atomics may lead to
page migration between devices. The distributed memory version was implemented by spawning an
MPI process on each host and pthreads within each MPI process. Packing and unpacking of MPI
communication buffers on host processes access data residing on device memories. This could lead
to page migration from GPU memories to host memories and vice versa. The program synchronized
at the end of every iteration where host processes computed global reductions of constraints [25].

5.1 Shared Memory

This section describes methods used to build the performance model for a shared memory imple-
mentation which runs on a single host-device group. The response variable modeled is execution
time/iteration. The variables considered are the following :

1. Total Memory Usage (X1)

2. Number of GPU Threads (X2)

3. Number of Peer GPU Memory Accesses (X3)

The variable X3 was measured using an auxiliary program that computed the edge-cut of par-
titions. We used the maximum edge-cut as X3 since GPUs execute independently and synchronize
at join primitives. X1 refers to the total persistent memory allocated across all GPUs in a group.
Thread scheduling policy has been previously found to be an important factor in determining the
execution time of kernels on GPUs [16]. We have ignored other possible variables such as cache
sizes, page sizes and page table sizes. These factors get covered by the variable for memory usage
and its interactions. R [34] was the software used to build the statistical model. The errors for each
coefficient as well as the RSE for the model [21] are reported.

136

International Journal of Networking and Computing

Algorithm 2 Distributed Sedov Blast Simulation

1: procedure Sedov(K)
2: n← getNumGPUs
3: for doi← 1,K
4: spawn(n, InitializeNodesKernel)
5: join(n)
6: spawn(n,ComputeV olumeForcesKernel)
7: join(n)
8: spawn(n,UpdateNodeQuantitiesKernel)
9: join(n)

10: ExchangeNodePositions()
11: ExchangeNodeVelocities()
12: ExchangeNodeAccelerations()
13: spawn(n,UpdateElementPropertiesKernel)
14: join(n)
15: spawn(n,CalculateConstraintsKernel)
16: join(n)
17: ReduceConstraints()
18: end for
19: end procedure

5.1.1 Experiments

All evaluations were performed on Bridges GPU nodes provided by XSEDE [44], which consist of two
types of compute nodes : two CPUs (Intel Broadwell E5-2683 v3) and two Tesla P100 GPUs [46] or
two CPUs (Intel Harwell E5-2695 v3) and four Tesla K80 GPUs [45]. We used both types of compute
nodes in our experiments. All experiments were performed for a fixed number of iterations (> 100)
and the execution time per iteration was measured. Each experiment was repeated 5 times and all
repetitions were included in the training set. A total of 275 measurements were used for training the
model, with total memory usage [1-20GB], number of threads [512-3584] (Tesla P100) and [512-4992]
(Tesla K80). Mesh dimensions were varied from 160X160X160 (4 million elements and nodes) to
640X320X320 (65 million elements and nodes) on 2 GPUs (Tesla P100)/4 GPUs (Tesla K80). The
GPUs and CPU in a group were connected using high-bandwidth NVlink1 [44]. Memory usage is
reported in gigabytes(GB) and execution time/iteration is reported in milliseconds(ms).

5.1.2 Variable Selection

We built the following three models and chose the most suitable one.

1. Model A : X1,X2 and X3 without any interaction terms.

2. Model B : X1,X2 and the interaction between X1 and X2

3. Model C : X1,X2,X3 and all interaction terms.

We used a quadratic dependence for total memory usage based on the scatter plot in figure 3
and linear dependence for the other variables for all models. Model A had an RSE of 181.4 and
p-value of < 2.2e− 16 for training data. It was chosen after considering other single variable models
and comparing them using Anova [23];it confirmed the significance of all three variables in the
final model. Model B dropped X3 and included X1X2 and X12X2. The RSE for training data
for Model B was 138.3 with p-value < 2.2e − 16 which showed the significance of the interaction
terms. It modeled the effects of threads accessing caches and memory in different ways and the
contention between them for resources. Model C included all interaction terms. This lowered the
RSE for training data to 136.5 with p-value 2.2e − 16. The coefficients of Model C for Tesla P100
are provided in table 1.

137

Performance Models for Heterogeneous Iterative Programs

Figure 3: Memory Usage vs Time/iteration

Estimate Stand.Error t-value Pr(> |t|)
Intercept 1.402e+03 1.374e+02 10.206 < 2e− 16

X1 1.636e+04 2.215e+03 7.386 2.00e− 12
X12 -7.938e+02 1.374e+03 -0.578 0.563863
X2 3.155e-03 5.745e-02 0.055 0.956247
X3 -7.471e-04 7.006e-04 -1.066 0.287265

X1X2 3.297e+00 9.264e-01 3.559 0.000442
X12X2 2.643e+00 5.745e-01 4.601 6.54e-06
X1X3 2.056e-02 8.807e-03 2.334 0.020335
X12X3 7.894e-03 4.085e-03 1.932 0.054410
X2X3 5.460e-07 2.930e-07 1.863 0.063533

X1X2X3 -1.063e-05 3.683e-06 -2.887 0.004207
X12X2X3 -3.345e-06 1.709e-06 -1.958 0.051284

Table 1: Coefficients for Tesla P100 for Shared Memory Program

138

International Journal of Networking and Computing

From the table, the terms X12 and X2 may not be significant in isolation, but significant in
combination with each other and X3 (Pr(> |t|) values). The terms X1X2 and X12X2 include
overheads such as page faults, cache misses and limits in device memory bandwidth caused by
threads sharing resources while satisfying their memory requests. The terms containing X3 model
the cost of accessing peer device memories through NVLINK (GPUDirect), including overheads such
as page faults, page migrations (if any), cache misses and resource contention. For example, X2X3
covers the cost of X2 threads issuing a maximum of X3 peer memory requests. Since local and peer
memory accesses belong to different pages, it could lead to increased page faults and cache misses,
depending on the total memory usage (number of pages) of the program. We have modeled these
contributions to the response by including interactions between number of threads and number of
peer memory accesses (X2X3), total memory usage and number of peer memory accesses (X1X3
and X12X3) and all three factors (X1X2X3 and X12X2X3). The results from Anova are tabulated
in table 2. When comparing two models, F-statistic reports the result of the null-hypothesis that the

Model Res.Df RSS F Pr(> F)
A 270 8881181
B 269 5145468 200.5555 < 2e− 16
C 263 4898857 2.2066 0.0428

Table 2: Anova Table for Shared Memory Models

new variables in a model are insignificant. If the probability of this null-hypothesis being true is low,
then the new variables are considered significant. The columns F and Pr(> F) in table 2 report
the results of comparing two consecutive models. Between models A and B, B is clearly better than
A, because its p-value is 2e − 16. Between models B and C, it is not clear from Anova whether C
has an advantage over B, although its p-value is low. We validated our findings from Anova using
cross-validation. The set of 275 observations were divided into 232 training data and 43 validation
data. The models were built using training data and RSE was measured for the validation set. The
model with the lowest error in the validation set was Model C. Once Model C was selected, we built
the full model using the entire observation set. The graph in figure 4 shows predicted fit values and
training data as a function of X1 for Model C (Tesla P100). The coefficients for Model C for Tesla
K80 are tabulated in table 3 for the same training data.

Estimate Stand.Error t-value Pr(> |t|)
Intercept 1.987e+03 5.144e+02 3.864 0.000141

X1 1.410e+04 8.274e+03 1.704 0.089577
X12 -9.797e+03 5.136e+03 -1.908 0.057549
X2 3.479e-01 1.804e-01 1.929 0.054843
X3 1.416e-03 1.753e-03 0.808 0.420098

X1X2 1.454e+01 2.900e+00 5.013 9.87e-07
X12X2 6.652e+00 1.798e+00 3.699 0.000263
X1X3 6.421e-02 2.203e-02 2.914 0.003873
X12X3 2.349e-02 1.027e-02 2.287 0.023020
X2X3 -4.353e-08 6.147e-07 -0.071 0.943597

X1X2X3 -2.152e-05 7.719e-06 -2.788 0.005700
X12X2X3 -1.817e-06 3.589e-06 -0.506 0.613219

Table 3: Coefficients for Tesla K80 for Shared Memory Program

Tables 1 and 3 cannot be used to deduce hardware differences between Tesla K80 and Tesla
P100 since the number of devices are not the same for the experiments. Instead, the two device
groups (4 Tesla K80 and 2 Tesla P100) [45], [46] can be compared by comparing their models. The

139

Performance Models for Heterogeneous Iterative Programs

Figure 4: Model C:Predicted and Measured Responses (Tesla P100)

coefficients and their p-values for Model C are quite different for these device groups. For example,
the coefficients of the interaction terms X1X2, X12X2, X1X3 and X12X3 are higher for K80
compared to P100, which shows higher costs for these components for this device group. From
experience, we found the large test cases (high memory usage) to be considerably slower on K80,
despite using 4 K80 devices compared to 2 P100 devices. Therefore, P100 may be a better choice of
device for large test cases which access several giga bytes of memory (local and remote).

5.1.3 Testing the Model

Model C described in the previous section was put to test by comparing its predicted values against
measured test data from 15 experiments. All tests were performed on Tesla P100. The graph in
figure 5 shows the comparison. The predicted values used in the graph are the fit values. The model
predicts values within a confidence interval of 95 percent (lower,upper). Measured values and those
predicted by the model are tabulated in table 4. From the observations in table 4 it can be seen that
Model C generates good predictions of time/iteration for the shared memory program. The scaled
residual error for test data was 136.4802 which was close to the RSE for training data (136.5).

To validate the model built using linear regression, it was compared against a similar model
built using GAM. The models predicted close values for test data. It validated the strength of the
linear regression model and also helped to understand relationships between variables. What we
also encountered is a shortcoming of linear regression - few test cases can cause large errors. Model
A (without any interactions) produced good predictions for most inputs. Its predictions were not
good enough for test cases with high/low memory usage. Interactions improved predictions for the
entire input range, which lead to overall reduction in the errors for these models (B and C).

5.2 Distributed Memory

Unlike the shared memory experiments, this performance model was built by measuring three re-
sponses from every experiment - computation time, communication time and total time. Suppose
there are N host-GPU groups, with D GPUs per group. Let Titer be the total number of iterations,

140

International Journal of Networking and Computing

time/iteration(ms) fit lower upper
99.35773 101.9065 -23.55771 227.3708
162.59791 135.0566 32.15234 237.9609
221.56805 145.5342 63.80132 227.2671
1118.74100 1082.8179 1003.0477 1162.5882
1618.76647 1524.496 1470.17118 1578.8209
99.89656 136.9941 35.58081 238.4074
130.49190 163.3681 80.19015 246.5461
185.71135 177.3275 111.26249 243.3926
865.64931 1038.4937 974.0151 1102.9724
1375.52520 1507.2771 1463.36609 1551.1881
153.12473 207.1693 131.07085 283.2677
200.82306 219.9911 157.57611 282.4062
317.62413 240.9142 191.34036 290.488
882.75143 949.8453 901.46189 998.2288
1623.64608 1472.8393 1439.88933 1505.7892

Table 4: Predictions for Shared Memory Program

Figure 5: Model Test: Predicted and Measured Responses (Tesla P100)

141

Performance Models for Heterogeneous Iterative Programs

Tcompijd
be the computation time measured in the jth iteration on the dth GPU belonging to the

ith host. Then the total computation time Tcomp is :

Tcomp = max
i=1,N

∑
j=1,Titer

max
d=1,D

Tcompijd
(4)

Communication time is the time taken for the following operations :

1. Copy required data from GPUs to communication buffers allocated on CPUs.

2. Post non-blocking MPI send/receive messages and wait for completion of data exchange.

3. Update GPU data structures with received data.

Let Tcommij be the communication time measured in the jth iteration on the ith host process.
Then, the total communication time Tcomm is :

Tcomm = max
i=1,N

∑
j=1,Titer

Tcommij
(5)

The third response was the total time, which was measured on CPUs as the total time taken to
execute all iterations. Let Ti be the total time measured on the ith host. The total execution time
Ttot of the program is :

Ttot = max
i=1,N

Ti (6)

We considered the three responses as separate and used them to build three models - compu-
tation, communication and program model. We used Model C from the previous section for the
computation model. To better understand factors affecting host-host communication and host-GPU
page transfers, communication time/iteration was used as a separate response. We built a simple
communication model since we used a small cluster for our experiments. Factors such as network
topology and congestion have not been considered [29]. We built a separate program model using
the third response (total time/iteration). Since least squares tries to find the hyperplane that best
fits the data, the values of coefficients can be quite different when separate models are added vs
constructing a full model with all variables and their interactions.

5.2.1 Experiments

All experiments in this section were performed on bridges GPU cluster provided by XSEDE [44].
An MPI process was placed on each host CPU. A host-GPU group consisted of a CPU (Intel
Broadwell E5-2683 v3) and two Tesla P100 GPUs. NVLink1 was used for communication within a
group and PCIe across groups. Maximum of 4 such groups were used for these experiments. 500
observations were used to build the performance model. All values for memory usage are reported
in gigabytes(GB) and time/iteration is reported in milliseconds(ms). The total number of GPUs
were varied from 2 to 8. The number of threads per GPU was varied in the range [512-2048]. Mesh
sizes were varied to cover a range of memory sizes [1-20GB] per group of GPUs. The largest mesh
size was 131 million elements and nodes, which required a total memory of 40GB (allocated on
GPUs).

5.2.2 Variable Selection

The primary variable considered for the communication model is communication buffer size. This
variable factors in the network bandwidth and the time taken to transfer a certain number of bytes
between two host processes. Besides buffer sizes, we have also included the total memory usage on
GPUs to cover the costs of filling buffers and updating GPU data structures. Since GPUs execute
asynchronously, the total number of GPUs used in the experiments was added as a variable. This
would include costs such as synchronization between hosts and devices and the cost of initiating

142

International Journal of Networking and Computing

MPI messages. Therefore, communication follows a logP [29] model with number of GPUs (message
setup) and maximum number of inter-process edges (bandwidth) as parameters. We used maximum
instead of sum of inter-process edges in this model, assuming messages are sent or received in parallel
and the time taken for completion of data exchange depends on the largest message. The coefficients
for this model are provided in the table 5. X1 is the memory usage per host-GPU group, X4 is the
maximum number of inter-process edges in any group and X5 is the number of GPUs.

Estimate Stand.Error t-value Pr(> |t|)
Intercept -2.082e+01 4.112e+00 -5.064 5.79e− 07

X1 -2.569e+02 6.414e+01 -4.005 7.14e− 05
X12 -4.261e+01 3.358e+01 -1.269 0.205
X4 1.702e-04 1.074e-05 15.847 < 2e− 16
X5 7.918e+00 1.062e+00 7.453 4.03e-13

Table 5: Coefficients for Communication Model

The graph in figure 6 shows training data and predicted fit values as a function of communication
buffer sizes (X4). The number of inter-process edges was computed using the auxiliary program.
We chose the model in table 5 after considering models with X4 only and X4 and X5. The models
were compared using Anova and cross-validation. Anova test showed X4 and X5 as significant
variables, but it was not clear whether to include X1. The model with 3-variables had the lowest
RSE during cross-validation tests. We divided the set of 500 observations into 400 training data and
100 validation data for cross-validation.

Figure 6: Communication Time/Iteration(ms) vs Maximum Message Size

The graph in figure 7 shows training data and predicted fit values from Model C (section 5.1)
as function of X1. The variables it considered are total memory usage per group, number of GPU
threads and maximum number of peer memory edges across all node partitions. Since partitions are
load balanced, the slowest GPU is likely to have higher peer GPU memory accesses.

143

Performance Models for Heterogeneous Iterative Programs

Figure 7: Computation Time/Iteration(ms) vs Maximum GPU memory usage per host-GPU
group(GB)

The full model considered five variables. The end-end data flow in the program is covered by
these variables. Consider a critical path in the program where a GPU in group i requires data from
a GPU in group j. The host process in group j copies data from its GPUs to communication buffers
by mapping the required pages to its physical memory and posts MPI messages to communicate
them to remote hosts. When messages are received, the host process in group i updates its GPU
data structures with received data. The variables that directly affect this critical path are maximum
number of inter-process edges, number of GPUs and memory usage on GPUs. Other variables affect
this data flow indirectly. The availability of a GPU to the host depends on when it completes its
computation kernels, which in turn depends on the number of GPU threads and maximum number
of peer memory edges. The variables are enumerated below:

1. Memory usage on GPUs : maximum memory usage per host-GPU group (X1).

2. Number of GPU threads : (X2).

3. Peer memory edges : maximum peer GPU memory accesses within any host-GPU group
(RDMA) (X3).

4. Inter-process memory edges : maximum host-host edges across all inter group edge-cuts (net-
work) (X4).

5. Total number of GPUs : (X5).

The coefficients for the full model are provided in the table 6. The graph in figure 8 shows
measured total time/iteration and predicted fit values from the full model for training data. The
full model was chosen after considering models without X4 and/or X5 (ignoring inter-group com-
munication). We compared these models with the full model using Anova and cross-validation tests.
Since the communication cost was a small fraction of the total cost, Anova tests did not suggest X4
or X5 as significant variables. However, during cross-validation, a model with X4 and X5 had the

144

International Journal of Networking and Computing

Estimate Stand.Error t-value Pr(> |t|)
Intercept 8.371e+02 6.392e+01 13.096 < 2e− 16

X1 2.851e+04 5.279e+03 5.401 1.03e-07
X12 1.077e+04 2.590e+03 4.158 3.80e-05
X2 -1.376e-01 2.005e-02 -6.865 2.01e-11
X3 4.253e-04 4.472e-04 0.951 0.342100
X4 3.697e-04 5.183e-04 0.713 0.475939
X5 -1.299e+01 9.075e+00 -1.432 0.152879

X1X2 9.392e-02 9.739e-01 0.096 0.923214
X12X2 -7.273e-02 8.172e-01 -0.089 0.929113
X1X3 -6.958e-02 2.197e-02 -3.167 0.001635
X12X3 -7.574e-03 2.612e-03 -2.899 0.003911
X2X3 2.941e-07 7.284e-08 4.037 6.28e-05
X1X4 6.403e-02 2.254e-02 2.841 0.004688
X12X4 1.194e-02 3.566e-03 3.349 0.000874
X1X2X3 1.665e-06 1.121e-06 1.485 0.138153
X12X2X3 2.183e-06 7.332e-07 2.977 0.003050

Table 6: Coefficients for Full Model

lowest RSE. We retained both variables in the full model and included interaction terms between
X1 and X4. These terms include cache misses, page faults and page migrations between CPU
and GPU. We intend to improve this model by training on a larger cluster with a higher range for
communication data.

Figure 8: Time/Iteration (ms) vs Memory Usage per group (GB) for Full Model

145

Performance Models for Heterogeneous Iterative Programs

5.2.3 Validating the Full Model

The full model with 5 variables was validated using test data. The graph in figure 9 and the
observations in table 7 compare measured execution time per iteration for test data and their fit
values. The fit values were predicted within a confidence interval of 95 percent. The RSE for test
data was 116.5921 which was close to the RSE for training data (116.6).

time/iteration(ms) fit lower upper
46.057262 173.3884 124.82432 221.9524
286.45206 373.596 351.65627 395.5357
620.197656 837.9877 796.66996 879.3053
1680.902432 1696.7846 1482.69508 1910.8741

83.24181 225.3706 178.24071 272.5004
314.151184 434.7377 410.98099 458.4943
243.856856 311.1511 276.63363 345.6687
442.949606 484.1703 467.44523 500.8953
51.570538 138.686 100.76018 176.6119
59.516424 198.9536 158.64701 239.2601
369.134176 396.0422 377.01229 415.0721
50.438426 117.5954 84.08812 151.1026
367.567462 462.943 445.59438 480.2915
487.82655 765.6987 726.07988 805.3175
401.660898 320.0431 288.86461 351.2217
603.316294 614.5687 586.39621 642.7411
742.213366 798.5749 714.69392 882.4558
760.788466 1035.4734 984.11449 1086.8323
696.21977 605.0783 561.3897 648.7669

Table 7: Predictions from Full Model

We compared the full model built using linear regression against a similar model built with GAMs.
The two models predicted close values for the training and test data considered here. Another option
was to use multivariate regression [21] to model the computation and communication times, since
both responses were measured from the same experiments. But we did not follow that option because
the dependent variables for computation and communication are different.

6 Dynamic Iterative Programs

Algorithm 3 Monte Carlo Simulation

1: procedure MonteCarlo(K,m,f)
2: n← getNumGPUs
3: spawn(n,MCSimulation,K,m, f)
4: join(n)
5: end procedure

As a representative program in this category, we used a Monte Carlo simulation that tracks
particles dispersed in a mesh. The mesh is static and partitioned during initialization. The number
and location of particles is dynamic and changes as the simulation evolves. We implemented a
CUDA11.0/C++ version of this program based on Quicksilver, which is a DOE benchmark [36].
We used a structured mesh with hexahedrons, where each element had 6 faces, 24 facets and 14
nodes. The mesh was partitioned into d equal sized blocks, where d was the number of GPUs. Each

146

International Journal of Networking and Computing

Figure 9: Time/Iteration (ms) vs Memory Usage per group (GB) for Test Data

Algorithm 4 MC Simulation Kernels

1: procedure MCSimulation(K,m,f)
2: n← getNumGPUs
3: for doi← 1,K
4: for doj ← 1,m
5: ParticleTrackingKernel
6: end for
7: Barrier(n)
8: if theni%f == 0
9: PopulationControl

10: Barrier(n)
11: end if
12: end for
13: end procedure

147

Performance Models for Heterogeneous Iterative Programs

GPU generated its partition of the mesh and the particles distributed in it. The particles were
initialized with random co-ordinates and velocity values and assigned to mesh elements containing
them. A single iteration of the program performed m tracking iterations. The number of particles
was modified by adding or deleting particles based on a desired particle population (population
control) every f iterations. The pseudo-codes in algorithms 3, 4 and 5 describe the simulation for
K iterations. This article discusses a shared memory version of this program. This program was
used to create performance models for execution time, power and energy consumption. Let Tijk be
the time taken to track a maximum of nik particles during the jth tracking iteration of iteration i
on GPU k (1 <= k <= d). Let Lik be the time taken by the ith population control iteration on
GPU k. The total execution time Ttot of the program is given by equation 7 :

Ttot =

i=K∑
i=1

k=d
max
k=1

(

j=m∑
j=1

Tijk) +

i=K
f∑

i=1

k=d
max
k=1

Lik (7)

Algorithm 5 Population Control

1: procedure PopulationControl
2: n← getNumGPUs
3: MigrateParticlesKernel
4: Barrier(n)
5: m← getNumParticles
6: r ← getRandomNumber
7: if thenr ≤ m
8: DeleteParticlesKernel(r,m)
9: else

10: AddParticlesKernel(r,m)
11: end if
12: end procedure

6.1 Algorithm Analysis

This section describes the algorithms implemented in the program. Let M be the number of mesh
elements and N the number of particles at any instant on any GPU. Let T be the number of threads
used by a GPU. Particles are assigned to threads in a load balanced manner, with load imbalance of
at most one entity. The computational complexity of the particle tracking algorithm is O(N

T), linear
in the number of particles. The computational complexity of the algorithms used for population
control (addition and deletion) is also O(N

T).

The computation that determines particle-element intersections depends on mesh size and num-
ber of particles. We implemented an algorithm that uses kd-trees to compute intersections between
two entity types distributed in the same 3-dimensional space. Empty kd-trees were built recursively
on the CPU for a fixed number of leaf nodes. Tree nodes were split based on the geometry of the
domain and neither the mesh nor the particle data structures were accessed during their construc-
tion. Empty leaves were copied to GPUs, which determined membership of particles and mesh
elements in tree leaves and computed intersections. We used kd-trees with leaves of granularity D.
A particle kd-tree built using the geometry of the domain and leaf size D may not be balanced [9].
The granularities of leaves would take a range of values [0 −D]. The lower bounds discussed here
are for uniform distributions of particles and mesh elements. For other distributions, the computa-
tional complexity will be a constant factor of these lower bounds, since the algorithms depend on
the number of leaves and not the intermediate nodes.

The mesh kd-tree has dMD e leaves and the particle kd-tree has at least dND e leaves. The algorithms
which determine membership of entities in leaves have to search for enclosing leaf nodes. The
complexity of these algorithms depends on the search method. The computational complexity is at

148

International Journal of Networking and Computing

least O(M
T ∗

M
D) and O(N

T ∗
N
D) if the algorithm uses linear search. The complexity can be improved

to O(M
T ∗ log(M

D)) and O(N
T ∗ log(N

D)) if binary search is used after sorting the leaves.
The algorithm for computing intersections between particles and mesh elements depends on

M and N . The dND e leaves were assigned to threads in a load balanced manner. Each thread
first determined intersections at the granularity of tree leaves. Intersections between leaves were
determined using their bounding box extents without accessing the particle or mesh data structures.
Intersections at the granularity of leaves has computational complexity of at least O(N

D∗T ∗ log(M
D))

if binary search is used. The computation that determines intersections between entities depends on
the number of intersecting mesh leaves per particle leaf and D. The maximum number of intersecting
mesh leaves per particle leaf can be bounded by the ratio of the lengths of the coarsest particle leaf
and the finest mesh leaf bounding boxes. This ratio is determined by the depths of the two trees and
can be approximated by dNM e for uniform distributions. The computation of intersections between

entities has complexity O(N
D∗T ∗

N
M ∗D

2). The total computational complexity of the intersection

algorithm is at least O(N
D∗T ∗ log(M

D)) +O(N
D∗T ∗

N
M ∗D

2). Computing intersections at two different
granularities and using GPUs for all computations reduced the computational complexity of an
algorithm that would have taken O(M ∗N) work in the worst case. We haven’t formally included
the computational complexity of the algorithms in any of the models discussed in this article. The
quadratic term for memory accesses in the models works only if the algorithms have linear complexity.

6.2 Experiment Design

The simulation was initialized by creating particles at random locations. During population control
the GPUs generated different random values for particle counts independently. The execution times
of the particle algorithms described in the previous section follow normal distributions. For each
experiment, it can be shown that the execution time per iteration will not differ greatly from the
execution time per iteration for the mean particle count for that experiment [35]. Therefore, it
was sufficient to measure the sample means of particle count and execution time per iteration per
experiment. All experiments were performed on a single compute node with 8 NVIDIA Volta
V100 GPUs [47] and one Intel Xeon Gold 6248 CPU, provided by XSEDE [44]. The GPUs were
connected using NVLINK. Mesh sizes were varied in the range [1000000-64000000] elements and the
total number of particles were varied in the range [100000-51200000]. The program was executed for
a maximum of 200 iterations. Each iteration (time/iteration in the tables) consisted of 100 tracking
iterations. Population control was performed every 20 iterations. The number of GPUs was varied
in the range [1-8] and each experiment was repeated 3 times. The number of kd-tree leaves was
varied in the range [512-16384], which kept the value of d quite low (maximum 3900). A total of
450 experiments were used in the training set and 40 experiments were used in validation set. All
values for memory usage are reported in megabytes (MB) and values for mean execution time per
iteration are reported in seconds (s).

6.3 Variables

In our experiments, the fraction of time spent in particle tracking was almost always > 50% of the
total time. We built a performance model for the particle tracking kernel and skipped population
control. Population control is likely to become significant in distributed memory versions of the
program. Both particles and mesh elements were stored in arrays. We chose the following variables
to model the execution time of this kernel :

1. Mesh Memory Usage (X1)

2. Particle Memory Usage (X2)

3. Number of threads (X3)

The response variable used was the mean time per tracking iteration. The total memory allocated
in any iteration is the sum of the memory allocated for the mesh and the particles in that iteration.

149

Performance Models for Heterogeneous Iterative Programs

Since some particles escape the mesh partition, the active particle memory is less than that allocated.
Particle tracking performed the following memory operations :

1. Particle Memory : read and write particle co-ordinate values.

2. Mesh Memory : read the mesh element to which the particle belongs, along with its facets and
nodes.

Particle memory allocation also follows a normal distribution with definite mean and variance.
For each experiment, it was sufficient to measure the sample mean of this distribution as values of
X2.

6.4 Models

Performance models for execution time, maximum power and energy consumption are discussed in
this section.

6.4.1 Execution Time

We first built a model (Model 1) for execution time by dropping X1. The coefficients for this model
are tabulated in table 8 and measured and predicted values are plotted in figure 10. The RSE for
this model was 0.035 and p-value was < 2.2e− 16 for training data.

Estimate Stand.Error t-value Pr(> |t|)
Intercept 2.503e-01 3.749e-03 66.764 2e-16

X2 5.165e+00 1.628e-01 31.728 < 2e− 16
X22 -5.143e-01 1.946e-01 -2.643 0.00851
X3 -9.757e-05 2.634e-06 -37.050 < 2e− 16

X2X3 -1.912e-03 8.744e-05 -21.863 < 2e− 16
X22X3 2.941e-04 9.985e-05 2.946 0.00339

Table 8: Coefficients for 2-variable Performance Model

Model Res.Df RSS F Pr(> F)
1 456 0.56192
2 444 0.53633 1.7655 0.05145

Table 9: Anova Table for Tracking Time Models

Although the tracking kernel does not directly depend on the mesh data structure, it affects cache
usage in the kernel. The cache misses caused in X2 accesses by X1 will be captured by the coefficients
of terms containing X2. We built a second model by adding X1 and its interactions (Model 2). The
RSE for this model was 0.035 and its p-value was < 2.2e− 16. The addition of X1 modeled the cost
of accessing the mesh data structure and the overheads caused in its accesses by X2 and X3, but it
did not improve predictions. We compared models 1 and 2 using Anova. The results of comparison
using Anova are tabulated in table 9. From table 9, X1 can be considered as a significant variable.
However, for all discussions in this article, we have used Model 1 because the dominant data structure
in the tracking kernel is the particle array and the association between particles and mesh elements
is random. Lack of reuse in the mesh data structure can cause capacity misses in caches, but it
does not affect the spatial locality in particle array accesses. The graph in figure 10 shows a plot
of measured and predicted values for the training set for Model 1. The coefficients for interactions
between X2,X1 and X3, can be improved by using data layouts that increase cache reuse in mesh
array accesses. Threads sharing the same cache are likely to benefit from accessing adjacent particles
and mesh elements.

150

International Journal of Networking and Computing

Figure 10: Mean Time per iteration(s) vs Mean Particle Memory(MB)

6.4.2 Energy Consumption

The energy consumption of a computational device can be divided into energy consumed by arith-
metic circuits, static random access memories (SRAM) and dynamic random access memories
(DRAM) [33]. The energy used by these components is further divided into idle and dynamic ener-
gies. Idle energy depends on the constant idle power drawn by the device as long as it is switched
on. Dynamic energy is the additional energy consumed by the device to perform arithmetic and
memory operations. Total energy can be computed as the product of the mean power drawn by a
device and the duration for which it is used.

We used the following approach to model the energy consumed by a program written using the
programming model discussed in section 3. Let Es be the energy consumed by a program that runs
for Ts seconds using d devices. Let Pidlei and Pdynamici be the idle and dynamic power drawn by the
ith device. Eidlei and Edynamici are defined as the idle and dynamic energies consumed by device
i. Let Tsi be the duration for which the ith device is used by the program. The energy models are
described by equations 9, 10 and 11. Assuming devices run asynchronously, the execution time
Ts of the program is the maximum execution time measured across all devices (CPUs and GPUs),
shown in equation 8. For programs discussed in this article, Ts and Es are time and energy values
per iteration.

Ts =
i=d
max
i=1

Tsi (8)

Es =

i=d∑
i=1

(Eidlei + Edynamici) (9)

Eidlei = Tsi ∗ Pidlei (10)

Edynamici = Tsi ∗ Pdynamici (11)

151

Performance Models for Heterogeneous Iterative Programs

We have assumed Pidlei of a device as a constant. Dynamic power depends on the computational
and communication complexities of parallel algorithms, their implementations and device parame-
ters. We have ignored the energy consumed by the host CPU in this model since it did not perform
any significant computation. We first built a model for the maximum power (Pidlei + Pdynamici)
drawn by the GPUs. Nvprof [16] was used to sample maximum wall power. All CUDA kernels were
considered to determine variables for this model. The number of arithmetic operations and memory
accesses in any kernel depends on the number of particles and mesh elements. The number of active
hardware components can be approximated by the number of GPU threads per device. Therefore,
the variables X1, X2 and X3 and interactions between them can be used to model dynamic power
consumption. We have used linear dependence between memory sizes (accesses) and maximum
power. The RSE for this three-variable model was 5788 and p-value was < 2.2e − 16 for training
data. It provided a better fit compared to a two-variable model with X2 and X3. From the coeffi-
cients in table 10, the terms X1 and X1X2 don’t seem to be significant and can be dropped. The
term X1X2X3 has higher significance and models the cost of both data structures being accessed
together in a kernel by X3 threads. Across all kernels, maximum power is drawn at the instant
when the maximum hardware componets are active. This is likely to happen when the maximum
number of memory accesses are issued by all threads in a device. Maximum power consumption is
reported in milliwatts(mW). We have ignored the kd-trees and used only mesh and particles data
structures to determine maximum power. The graph in figure 11 shows the plot of measured and
predicted values of maximum power drawn by each GPU for training data. The X-axis in graph 11
is the mean particle memory size. Trend lines have been added for different values of GPU threads.

Estimate Stand.Error t-value Pr(> |t|)
Intercept 7.111e+04 1.179e+03 60.320 < 2e− 16

X1 3.414e-01 5.005e-01 0.682 0.495431
X2 2.143e+01 4.626e+00 4.634 4.73e-06
X3 9.956e+00 7.960e-01 12.508 < 2e− 16

X1X2 1.511e-03 2.028e-03 0.745 0.456629
X1X3 1.128e-03 3.304e-04 3.414 0.000698
X2X3 -2.322e-03 2.689e-03 -0.864 0.388171

X1X2X3 -1.573e-06 1.197e-06 -1.314 0.189488

Table 10: Coefficients for 3-variable Power Model

For the energy model, we used the mean power values sampled by nvprof. A product of mean
power and mean time per tracking iteration will be a measure of mean energy per tracking iteration
per GPU with high probability. The mean power per device was added as variable X4. The
coefficients for the energy model are provided in table 11. The measured and predicted values of
mean energy per tracking iteration per GPU for training data are plotted in the graph in figure 12.
The RSE for this model was 1316 and p-value was < 2.2e− 16 for training data.

The mean energy per tracking iteration is reported in millijoules(mJ). The total mean energy
per tracking iteration can be computed by multiplying the predicted energy values by the number
of GPUs.

6.5 Model Validation

A set of 40 experiments were used to validate the models. The values for mesh size and particle
count used in these experiments were different from those used in the training set.

6.5.1 Execution Time

Table 12 has the measured and predicted fit values (95 percent confidence interval) for mean tracking
time per iteration. Some of the predicted values for lower fit values are negative. This can be avoided

152

International Journal of Networking and Computing

Figure 11: Maximum Power Consumption(mW) vs Mean Particle Mem(MB)

Estimate Stand.Error t-value Pr(> |t|)
Intercept 1.062e+05 5.187e+03 20.476 < 2e− 16

X2 4.277e+06 3.277e+05 13.051 < 2e− 16
X22 2.159e+06 3.214e+05 6.719 5.72e-11
X3 -5.787e+01 2.651e+00 -21.831 < 2e− 16
X4 -1.246e+00 7.317e-02 -17.034 < 2e− 16

X2X3 -2.196e+03 1.602e+02 -13.705 < 2e− 16
X22X3 -1.004e+03 1.596e+02 -6.291 7.67e-10
X2X4 -5.486e+01 4.578e+00 -11.985 < 2e− 16
X22X4 -3.063e+01 4.495e+00 -6.815 3.13e-11
X3X4 7.092e-04 3.663e-05 19.360 < 2e− 16

X2X3X4 2.874e-02 2.231e-03 12.886 < 2e− 16
X22X3X4 1.437e-02 2.222e-03 6.468 2.66e-10

Table 11: Coefficients for 3-variable Energy Model per iteration per GPU

153

Performance Models for Heterogeneous Iterative Programs

Figure 12: Mean Energy per Iteration(mJ) vs Mean Particle Mem(MB)

Figure 13: Validation Tests for Mean Tracking Time per Iteration

154

International Journal of Networking and Computing

mean time/iteration(s) fit lower upper
0.0015180 0.0005636855 -0.0083176986 0.009445070
0.00293745 0.0015938210 -0.0071198664 0.010307508
0.00534056 0.0035872691 -0.0048113722 0.011985910
0.00661307 0.0045811382 -0.0036652068 0.012827483
0.0125028 0.0146092272 0.0077065583 0.021511896
0.00268073 0.0012551619 -0.0055000981 0.008010422
0.00495556 0.0043324235 -0.0022368314 0.010901678
0.010019 0.0112227041 0.0050544954 0.017390913
0.0122708 0.0142292807 0.0082290804 0.020229481
0.0240905 0.0479666805 0.0435089576 0.052424403
0.00689969 0.0047158626 -0.0035100869 0.012941812
0.00697341 0.0047453477 -0.0034761462 0.012966842
0.0102853 0.0073644974 -0.0004728519 0.015201847
0.0104714 0.0074973320 -0.0003211594 0.015315823
0.0204006 0.0153503870 0.0085320038 0.022168770
0.0132328 0.0153907370 0.0094542578 0.021327216
0.0134883 0.0156974431 0.0097776791 0.021617207
0.0199637 0.0241506441 0.0186725259 0.029628762
0.0196578 0.0238995052 0.0184088126 0.029390198
0.0395256 0.0501024540 0.0457179332 0.054486975
0.00369186 0.0022737125 -0.0063311074 0.010878532
0.00376819 0.0022940840 -0.0063074964 0.010895664
0.00557681 0.0036958279 -0.0046860217 0.012077678
0.00558542 0.0036803723 -0.0047038656 0.012064610
0.0110117 0.0079523051 0.0001979377 0.015706672
0.0069363 0.0070945963 0.0006887255 0.013500467
0.00699061 0.0070513170 0.0006429128 0.013459721
0.0105739 0.0118109752 0.0056759821 0.017945968
0.0106016 0.0117629571 0.0056252589 0.017900655
0.020857 0.0254538591 0.0200404339 0.030867284

0.00203546 0.0009772452 -0.0078364205 0.009790911
0.00209728 0.0010003949 -0.0078094958 0.009810286
0.00304786 0.0017169165 -0.0069769527 0.010410786
0.00304273 0.0016969942 -0.0070000793 0.010394068
0.00573539 0.0038266488 -0.0045350166 0.012188314
0.00365392 0.0026818858 -0.0039866212 0.009350393
0.00374118 0.0027572193 -0.0039067316 0.009421170
0.00556004 0.0051340477 -0.0013874379 0.011655533
0.00560097 0.0051739338 -0.0013451824 0.011693050

0.01084 0.0121578217 0.0060423350 0.018273308

Table 12: Predictions from Performance Model

155

Performance Models for Heterogeneous Iterative Programs

by taking logarithms. The predicted values were found to be quite close to measured values as shown
in figure 13. The RSE for validation data was 0.035, close to the RSE for training data.

6.5.2 Maximum Power

Figure 14: Validation Tests for Maximum Power

Table 13 has measured and predicted fit values for maximum power drawn by any GPU during
the execution of the program. All predicted values are reported within a confidence interval of 95
percent. The measured and predicted fit values are also plotted in figure 14. The RSE for power
model for validation data was 5788.197, close to the RSE for training data. The predictions for
maximum power can be improved with more training data.

6.5.3 Energy Consumption

The measured and predicted values for energy consumed per tracking iteration per GPU are tabu-
lated in table 14 and plotted in figure 15. All values are predicted within a confidence interval of
95 percent. The predicted values for energy are quite close to measured values. The RSE for power
model for validation data was 1316.058, close to the RSE for training data.

7 Conclusions

Performance and energy models were built for hybrid programs by following a programmer’s ap-
proach of viewing host-device programs as composed of different types of memory accesses. The
models helped to understand relationships between total execution time and different types of mem-
ory accesses and energy consumption of programs. They were also useful as tools to compare different
devices and evaluate the programming model and machine architecture. For example, there are cer-
tainly gains from keeping GPUs independent and exposing their memories to peer GPUs. It removed
the explicit cost of copying data between host and devices by caching pages. But what we observed
in the experiments and models is that allocating the entire memory on devices can cause overheads

156

International Journal of Networking and Computing

maxpower(mW) fit lower upper
81829 91927.30 90461.15 93393.45
83807 92357.50 90951.79 93763.20
88077 94547.97 93374.76 95721.18
89039 94626.56 93462.15 95790.98
133080 113497.95 109944.73 117051.17
77074 81593.43 80514.81 82672.05
78464 81878.97 80851.98 82905.95
91922 83239.70 82400.15 84079.24
83271 83329.91 82500.59 84159.23
109153 95048.04 92508.54 97587.54
86367 92122.24 90683.84 93560.64
87328 92292.94 90878.58 93707.30

90691.5 93518.94 92258.98 94778.90
99754 94856.54 93717.17 95995.91
121719 103207.36 101585.68 104829.04
78464.5 81922.61 80892.54 82952.67
78464.5 82028.27 81017.54 83039.00
78945 82860.82 81978.83 83742.81

90900.5 83620.64 82823.19 84418.09
106200 89001.13 87849.29 90152.96

85192.75 91822.40 90340.85 93303.96
85885.75 91909.33 90440.54 93378.11
87581.75 92538.82 91157.87 93919.78
88287.75 93211.03 91913.49 94508.58
94274.25 97541.15 96435.98 98646.32

77996 81624.07 80544.86 82703.28
78009.5 81671.22 80601.46 82740.97
78370.25 82103.96 81110.55 83097.37
78610.5 82487.50 81557.28 83417.73
81466 85201.99 84414.15 85989.83

80426.625 91664.80 90159.87 93169.72
81314.625 91709.78 90211.60 93207.95
84083.5 92028.36 90576.80 93479.92

83942.125 92366.41 90961.94 93770.88
90980 94566.91 93395.83 95737.99

75580.125 81466.95 80360.88 82573.02
76060.75 81493.55 80392.89 82594.22
76841.625 81710.03 80650.05 82770.01
77616.375 81904.26 80881.10 82927.41
77622.875 83267.75 82431.40 84104.10

Table 13: Predictions from Power Model

157

Performance Models for Heterogeneous Iterative Programs

mean energy/iteration(mJ) fit lower upper
108.936903362 368.6066 -432.703829 1169.9170
218.943481989 339.8362 -217.547933 897.2203
410.2418989112 413.7265 20.508367 806.9447
514.2982555079 471.7241 123.802601 819.6456
929.78885106 978.8382 534.721617 1422.9549

192.3244970309 143.6491 -179.317111 466.6153
361.862176762 114.6940 -249.437475 478.8255
737.59787829 463.2939 80.050729 846.5371
905.341341912 634.6731 250.093133 1019.2531
1718.835252645 3144.8458 2923.612331 3366.0793
535.7821105483 481.3755 130.688834 832.0621
546.08156563215 481.0291 147.394458 814.6637
813.3291767315 677.6897 367.336971 988.0424
818.700963872 676.5948 357.869026 995.3206
1575.255483681 1179.5721 876.025678 1483.1186
987.329841932 578.4775 127.452160 1029.5028
1004.699495142 618.8817 180.548728 1057.2147
1482.8975470715 1210.2213 824.196339 1596.2463
1446.418171908 1298.1803 962.359319 1634.0014
2867.598287868 3124.5946 2901.418580 3347.7706
272.4124736745 386.7212 -220.084338 993.5267
280.2449628556 377.0485 -184.636723 938.7337

426.708292657625 423.4788 15.783272 831.1744
422.7347189409 430.7239 -25.392385 886.8401
835.40534589575 673.6071 264.451497 1082.7627
501.62255143875 413.8621 94.588258 733.1360
508.3510074632 342.8000 5.560508 680.0395
771.01444925975 617.1062 283.829533 950.3829
769.996831896 660.9652 342.427035 979.5034

1505.2565206675 1607.5060 1340.761559 1874.2504
140.6791590001 450.6951 -581.914695 1483.3049

146.18697 435.8396 -542.413859 1414.0930
221.11889797365 388.6878 -326.527064 1103.9027
216.850460697875 415.7200 -409.670639 1241.1106
419.394665529238 461.9734 -176.998191 1100.9450
251.0084642568 772.9187 271.591730 1274.2457
261.59687673045 560.1559 171.054974 949.2569
389.5473695789 679.5373 308.130099 1050.9445

395.984315261587 571.5765 237.923025 905.2301
761.73927955 1071.8061 734.740429 1408.8717

Table 14: Predictions for Energy Model/device

158

International Journal of Networking and Computing

Figure 15: Validation tests for Mean Energy per Iteration

for large test cases through page faults and cache misses. Increasing the number of peer GPUs per
group also caused overheads for programs by increasing page faults on the shared CPU. In our energy
models we observed the dependence on memory accesses and overheads such as cache misses and
page faults. For both types of iterative programs, the models seem to predict execution time quite
well, for the entire memory range. Although the dynamic iterative program had two data structures,
the tracking kernel did not involve close interaction between them, which made experiment design
and the model quite simple. Modeling the interplay between multiple dynamic data structures will
require careful experiment design. The communication and power models need improvement.

8 Future Work

One of the future directions is to explore other programming models for heterogenuous programs
along with different memory allocation schemes. One of the dominant factors found in the per-
formance models is the relationship between memory usage and time per iteration and energy per
iteration. It is possible to extend the programming model considered in this article by allocating
some percentage of total memory on the host and staging memory allocation on devices, so that
devices are always operating in their best range, in terms of memory. Since cache misses and page
faults were found to be significant factors in determining the total execution time, the effort should
be to design memory allocation and data layout schemes that minimize these overheads. Space-
filling curves [37] are an option for partitioning and data layout that improves spatial locality in
kernels. Better spatial locality affects both execution time and dynamic power by increasing cache
hits. Future work also includes extending performance models for dynamic iterative programs to
include load balancing costs. The power (energy) models have to be extended to include host CPUs.
Trade-offs between maximum power and execution time per iteration can be determined to obtain a
set of desirable operating ranges for the resources used by a program that runs for several iterations.
The performance models will be used to study scalability of applications. It will also be used to
decide resource allocation (type and number of devices) for applications by considering both exe-
cution time and maximum power consumption. We have not included strong scaling predictions in

159

Performance Models for Heterogeneous Iterative Programs

this article because the cluster size was limited. Future work includes training experiments on larger
number of host-GPU groups, improving the models and using them for strong scaling predictions.

9 Related Work

The most common method to build performance models is by expressing a program as a sequence
of sub-programs with known analytical models. These models are then composed to build a full
analytical model for the program, as a function of its parameters [6]. This technique has been used
quite extensively for scalability studies of parallel algorithms on several large machines. They have
been used to model communication performance for different network hardware at scale [48]. There
are several issues with this technique :

1. It is not always possible to express large programs as sequences of known sub-programs. Some
programs may have complex interactions between sub-programs.

2. Analytical models depend heavily on the algorithms used and it is sometimes a non-trivial
task to extract dependent parameters for all algorithms in a large application. They may also
give undue importance to some parameters, while ignoring others. It may be difficult to isolate
and identify significant dependencies from analytical models.

Several papers have discussed the use of statistical methods to model the performance of pro-
grams [11] [4] [26] [13] [22] [28] [10]. Most models have used linear regression as their method of
choice. Some of these statistical models did not differ much from analytical models in the way they
modeled the problem. It almost seemed like they were searching for the analytical model of the algo-
rithm using methods from statistics. Some approaches have used a combination of known analytical
and statistical models to build performance models. Most of these techniques were used to identify
scalability bugs in algorithms by using a training set at lower number of processes and predicting
performance at large scale [12] [40]. Some methods depended on profiling tools to collect detailed
runtime data and used them to populate training data [41]. A related topic is the use of simulators
to mimic and model the performance of processors or accelerators. This method is often used to
model the performance of new hardware and they focus less on applications. The programs used
to build these models are usually very simple and they take several hours or even days to generate
simulated data [43] [2]. There has recently been a lot of work in connecting multiple GPUs into
a peer group that can access each other’s memories via RDMA [39] or communicate directly using
MPI [32]. Much of the current work in the domain of GPU computing is around the possibility of
an autonomous multi-GPU machine. The overheads of such a machine have not been studied much.
It is also not clear how a well-written scalable program would compare on a CPU-GPU architecture
verses an autonomous architecture. [18] has developed theoretical lower-bounds for communication
and energy for different representative programs on CPUs and GPUs. Several papers have discussed
models for power using linear regression [33]. Roofline power models for GPUs are described in
[14], [19]. However, they have used relatively simple micro benchmarks as test cases for their mod-
els. Complex programming models and modern machine architectures have not been considered by
these models. Powerpack [17] discusses a set of tools for measuring runtime power consumed by
different hardware components.

References

[1] Standard for information technology–portable operating system interface (posix(r)) base spec-
ifications, issue 7, Sept 2016.

[2] Y. Arafa, A. A. Badawy, G. Chennupati, N. Santhi, and S. Eidenbenz. Ppt-gpu: Scalable gpu
performance modeling. IEEE Computer Architecture Letters, 18(1):55–58, 2019.

[3] Ben Ashbaugh, Alexey Bader, James Brodman, Jeff Hammond, Michael Kinsner, John Penny-
cook, Roland Schulz, and Jason Sewall. Data parallel c++: Enhancing sycl through extensions

160

International Journal of Networking and Computing

for productivity and performance. In Proceedings of the International Workshop on OpenCL,
IWOCL ’20, New York, NY, USA, 2020. Association for Computing Machinery.

[4] Bradley J. Barnes, Barry Rountree, David K. Lowenthal, Jaxk Reeves, Bronis de Supinski, and
Martin Schulz. A regression-based approach to scalability prediction. In Proceedings of the
22nd Annual International Conference on Supercomputing, ICS ’08, page 368–377, New York,
NY, USA, 2008. Association for Computing Machinery.

[5] J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algorithm. Nature, 324:446–
449, December 1986.

[6] G. Bauer, S. Gottlieb, and T. Hoefler. Performance modeling and comparative analysis of the
milc lattice qcd application su3rmd. In 2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (ccgrid 2012), pages 652–659, 2012.

[7] Michael Edward Bauer. Legion: Programming distributed heterogeneous architectures with log-
ical regions. PhD thesis, Stanford University, 2014.

[8] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. Groute: An asynchronous
multi-gpu programming model for irregular computations. In Proceedings of the 22nd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’17, page
235–248, New York, NY, USA, 2017. Association for Computing Machinery.

[9] Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Com-
mun. ACM, 18(9):509–517, September 1975.

[10] Arnamoy Bhattacharyya and Torsten Hoefler. Pemogen: Automatic adaptive performance
modeling during program runtime. In Proceedings of the 23rd International Conference on
Parallel Architectures and Compilation, PACT ’14, page 393–404, New York, NY, USA, 2014.
Association for Computing Machinery.

[11] A. Calotoiu, D. Beckinsale, C. W. Earl, T. Hoefler, I. Karlin, M. Schulz, and F. Wolf. Fast
multi-parameter performance modeling. In 2016 IEEE International Conference on Cluster
Computing (CLUSTER), pages 172–181, 2016.

[12] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf. Using automated performance modeling to find
scalability bugs in complex codes. In SC ’13: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, pages 1–12, 2013.

[13] Jaemin Choi, David F. Richards, Laxmikant V. Kale, and Abhinav Bhatele. End-to-end perfor-
mance modeling of distributed gpu applications. In Proceedings of the 34th ACM International
Conference on Supercomputing, ICS ’20, New York, NY, USA, 2020. Association for Computing
Machinery.

[14] JeeWhan Choi, Marat Dukhan, X. Liu, and R. Vuduc. Algorithmic time, energy, and power on
candidate hpc compute building blocks. 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, pages 447–457, 2014.

[15] P. Colella, D. T. Graves, J. N. Johnson, H. S. Johansen, N. D. Keen, T. J. Ligocki, D. F. Martin,
P. W. Mccorquodale, D. Modiano, P. O. Schwartz, T. D. Sternberg, and B. Van Straalen.
Chombo software package for amr applications design document. Technical report, LBNL,
2003.

[16] Shane Cook. CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2012.

[17] R. Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li, and K. Cameron. Powerpack:
Energy profiling and analysis of high-performance systems and applications. IEEE Transactions
on Parallel and Distributed Systems, 21:658–671, 2010.

161

Performance Models for Heterogeneous Iterative Programs

[18] Andrew S. Gearhart. Bounds on the energy consumption of computational kernels. 2014.

[19] M. Ghane, J. Larkin, Larry Shi, S. Chandrasekaran, and M. Cheung. Power and energy-
efficiency roofline model for gpus. ArXiv, abs/1809.09206, 2018.

[20] A. Gray. Accelerating weather prediction with nvidia gpus. 09 2018.

[21] T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer series in statistics. Springer, 2009.

[22] Engin Ipek, Bronis R. de Supinski, Martin Schulz, and Sally A. McKee. An approach to
performance prediction for parallel applications. In Proceedings of the 11th International Euro-
Par Conference on Parallel Processing, Euro-Par’05, page 196–205, Berlin, Heidelberg, 2005.
Springer-Verlag.

[23] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to
Statistical Learning: With Applications in R. Springer Publishing Company, Incorporated,
2014.

[24] James Jeffers and James Reinders. Intel Xeon Phi Coprocessor High Performance Programming.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2013.

[25] I Karlin. Lulesh programming model and performance ports overview. 12 2012.

[26] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman, and M. Gittings. Predictive
performance and scalability modeling of a large-scale application. In SC ’01: Proceedings of the
2001 ACM/IEEE Conference on Supercomputing, pages 39–39, 2001.

[27] Ronan Keryell, Ruyman Reyes, and Lee Howes. Khronos sycl for opencl: A tutorial. In
Proceedings of the 3rd International Workshop on OpenCL, IWOCL ’15, New York, NY, USA,
2015. Association for Computing Machinery.

[28] Benjamin C. Lee, David M. Brooks, Bronis R. de Supinski, Martin Schulz, Karan Singh, and
Sally A. McKee. Methods of inference and learning for performance modeling of parallel appli-
cations. In Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’07, page 249–258, New York, NY, USA, 2007. Association for
Computing Machinery.

[29] F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Array, Trees,
Hypercubes. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1991.

[30] Unified Memory. http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-
sakharnykh-unified-memory-on-pascal-and-volta.pdf, 2017.

[31] Aaftab Munshi, Benedict Gaster, Timothy G. Mattson, James Fung, and Dan Ginsburg.
OpenCL Programming Guide. Addison-Wesley Professional, 1st edition, 2011.

[32] MVAPICH-CUDA. https://developer.nvidia.com/mvapich.

[33] Kenneth O’brien, Ilia Pietri, Ravi Reddy, Alexey Lastovetsky, and Rizos Sakellariou. A survey
of power and energy predictive models in hpc systems and applications. 50(3), June 2017.

[34] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2014.

[35] Prabhakar Raghavan Rajeev Motwani. Randomized Algorithms. Cambridge University Press,
2007.

[36] David Richards, Patrick Brantley, Shawn Dawson, Scott Mckenley, and Matthew O’Brien.
Quicksilver, version 00. 3 2016.

162

International Journal of Networking and Computing

[37] Aparna Sasidharan. A distributed multi-threaded data partitioner with space-filling curve or-
ders. 2018.

[38] Alina Sb̂ırlea, Yi Zou, Zoran Budimĺıc, Jason Cong, and Vivek Sarkar. Mapping a data-flow
programming model onto heterogeneous platforms. ACM SIGPLAN Notices, 47(5):61–70, 2012.

[39] Gilad Shainer, Ali Ayoub, Pak Lui, Tong Liu, Michael Kagan, Christian R. Trott, Greg Scantlen,
and Paul S. Crozier. The development of mellanox/nvidia gpudirect over infiniband–a new
model for gpu to gpu communications. Comput. Sci., 26(3–4):267–273, June 2011.

[40] Sergei Shudler, Alexandru Calotoiu, Torsten Hoefler, Alexandre Strube, and Felix Wolf. Exas-
caling your library: Will your implementation meet your expectations? In Proceedings of the
29th ACM on International Conference on Supercomputing, ICS ’15, page 165–175, New York,
NY, USA, 2015. Association for Computing Machinery.

[41] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and A. Purkayastha. A framework
for performance modeling and prediction. In SC ’02: Proceedings of the 2002 ACM/IEEE
Conference on Supercomputing, pages 21–21, 2002.

[42] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Professional, 4th edi-
tion, 2013.

[43] Yifan Sun, Trinayan Baruah, Saiful A. Mojumder, Shi Dong, Xiang Gong, Shane Treadway,
Yuhui Bao, Spencer Hance, Carter McCardwell, Vincent Zhao, Harrison Barclay, Amir Kavyan
Ziabari, Zhongliang Chen, Rafael Ubal, José L. Abellán, John Kim, Ajay Joshi, and David
Kaeli. Mgpusim: Enabling multi-gpu performance modeling and optimization. In Proceedings
of the 46th International Symposium on Computer Architecture, ISCA ’19, page 197–209, New
York, NY, USA, 2019. Association for Computing Machinery.

[44] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lath-
rop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr. Xsede: Accelerating
scientific discovery. Computing in Science & Engineering, 16(5):62–74, Sept.-Oct. 2014.

[45] Tesla K80 Whitepaper. www.nvidia.com, 2015.

[46] Tesla P100 Whitepaper. www.nvidia.com, 2016.

[47] Volta V100 Whitepaper. www.nvidia.com, 2017.

[48] Jidong Zhai, Wenguang Chen, and Weimin Zheng. Phantom: Predicting performance of parallel
applications on large-scale parallel machines using a single node. SIGPLAN Not., 45(5):305–314,
January 2010.

163

