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Abstract

We investigate the terminating grid exploration for autonomous myopic luminous robots.
Myopic robots mean that they can observe nodes only within a certain fixed distance, and
luminous robots mean that they have light devices that can emit colors. First, we prove that, in
the semi-synchronous and asynchronous models, three myopic robots are necessary to achieve
the terminating grid exploration if the visible distance is one. Next, we give fourteen algorithms
for the terminating grid exploration in various assumptions of synchrony (fully-synchronous,
semi-synchronous, and asynchronous models), visible distance, the number of colors, and a
chirality. Six of them are optimal in terms of the number of robots.

Keywords: Look-Compute-Move, light, limited visibility, exploration, grids

1 Introduction

1.1 Background and motivation

Many studies about cooperation of autonomous mobile robots have been conducted in the field of
distributed computing. These studies focus on the minimum capabilities of robots that permit to
achieve a given task. To model operations of robots, the Look-Compute-Move (LCM) model [21] is
commonly used. In the LCM model, each robot repeats cycles of Look, Compute, and Move phases.
In the Look phase, the robot observes positions of other robots. In the Compute phase, the robot

OA preliminary extended abstract of this paper appears in the proceedings of the 23rd Workshop on Advances in
Parallel and Distributed Computational Models (APDCM 2021). We are grateful to Rikuma Tsujimoto for debugging
algorithms by constructing simulation programs. This work was partially supported by JSPS KAKENHI Grant
Numbers 18K11167 and 20H04140, and JST SICORP Grant Number JPMJSC1806.

73



Terminating Grid Exploration with Myopic Luminous Robots

executes its algorithm using the observation as its input, and decides whether it moves somewhere
or stays idle. In the Move phase, it moves to a new position if the robot decided to move in the
Compute phase. To consider minimum capabilities, most studies assume that robots are identical
(i.e., robots execute the same algorithm and have no identifier), oblivious (i.e., robots have no mem-
ory to record their past history), and silent (i.e., robots do not have communication capabilities).
Furthermore, they have no global compass, i.e., they do not agree on the directions. Based on the
LCM model, previous works clarified solvability of many tasks such as exploration, gathering, and
pattern formation in continuous environments (aka two- or three-dimensional Euclidean space) and
discrete environments (aka graph networks) (see a survey [17]).

In this paper, we focus on exploration in graph networks, which is one of the most central
tasks for mobile robots. Two variants of exploration tasks have been well studied: the perpetual
exploration requires every robot to visit every node infinitely many times, and the terminating
exploration requires robots to terminate after every node is visited by a robot at least once. During
the last decade, many works have considered the perpetual and terminating exploration on the
assumption that each robot has unlimited visibility, i.e., it observes all other robots in the network.
The perpetual exploration has been studied for rings [1] and grids [2]. The terminating exploration
has been studied for lines [15], rings [13,16,18], trees [14], finite grids [10,11], tori [12], and arbitrary
networks [6]. However, the capability of the unlimited visibility seems powerful and somewhat
contradicts the principle of weak mobile robots. For this reason, some studies consider the more
realistic case of myopic robots [8,9]. A myopic robot has limited visibility, i.e., it can see nodes
(and robots on them) only within a certain fixed distance ¢. Datta et al. studied the terminating
exploration of rings for ¢ =1 [8] and ¢ = 2,3 [9]. Not surprisingly, since myopic robots are weaker
than non-myopic robots, many impossibility results are given for myopic robots.

To improve the task solvability, myopic robots with persistent visible light [7], called myopic
luminous robots, have attracted a lot of attention. Each myopic luminous robot is equipped with a
light device that can emit a constant number of colors to other robots, a single color at a time. The
light color is persistent, i.e., it is not automatically reset at the end of each cycle, and hence it can
be used as a constant-space memory.

Ooshita and Tixeuil [20] studied the perpetual and terminating exploration of rings for ¢ = 1
in the synchronous (FSYNC), semi-synchronous (SSYNC), and asynchronous (ASYNC) models.
They showed that the number of robots required to achieve the tasks can be reduced compared to
non-luminous robots. Nagahama et al. [19] studied the same problem in case of ¢ > 2 and showed
that, in the SSYNC and ASYNC models, the number of robots required to achieve the tasks can be
reduced compared to the case of ¢ = 1.

Bramas et al. studied the exploration of an infinite grid with myopic luminous and non-luminous
robots in the FSYNC model [3,4]. Here they propose algorithms so that every node of an infinite
grid is visited by a robot at least once. In [3] robots agree on a common chirality, i.e., robots agree
on common clockwise and counterclockwise directions. Bramas et al. [5] also studied the perpetual
exploration of a (finite) grid with myopic luminous and non-luminous robots in the FSYNC model on
the assumption that robots agree on a common chirality. Algorithms proposed in [5] have additional
nice properties: they work even if robots are opaque (i.e., a robot is able to see another robot
only if no other robot lies in the line segment joining them), and they are exclusive (i.e., no two
robots occupy a single node during the execution). This work also describes the way to extend
their algorithms to acheive the terminating exploration and/or to work in the SSYNC and ASYNC
models. More concretely, this gives three algorithms to achieve the terminating exploration of a grid
in case of a common chirality: algorithms for two robots with ¢ = 1 and six colors in the FSYNC
model, two robots with ¢ = 2 and five colors in the FSYNC model, and two robots with ¢ = 2 and
six colors in the SSYNC and ASYNC models. However algorithms with a fewer number of colors or
no common chirality are not known yet.

1.2 Our contributions

We focus on the terminating exploration of a (finite) grid with myopic luminous and non-luminous
robots, and clarify lower and upper bounds of the required number of robots in various assumptions
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Table 1: Terminating grid exploration with myopic robots. Bold texts indicate our contributions,
and mark * means the algorithm is optimal in terms of the number of robots. Notation ¢ represents
the visible distance of a robot, and ¢ represents the number of colors.

Common #required robots
Synchrony | ¢ | £ chirality | Lower bound | Upper bound
9 yes 2 (5] 2*  §4.21
9 no 2 (5] 3 §4.2.2
1 yes 3 (5] 3"  §4.23
no 3 (5] 4 §4.24
FSYNC 3 yes 2 5 2% §4.2.5
1 no 2 5 4 §4.2.6
9 yes 3 (5] 3* §4.2.7
no 3 (5] 5 §4.2.8
3 yes 2 5 2" §4.3.1
9 no 2 5 3 §4.3.2
SSYNC 9 yes 2 [5] 3 §4.3.3
ASYNC no 2 (5] 4 §4.34
113 yes 3 §3 3* §4.3.5
no 3 §3 6 §4.3.6

of synchrony, visible distance ¢, the number of colors, and a chirality. Table 1 summarizes our
contributions.

First, we prove that, in the SSYNC and ASYNC models, three myopic robots are necessary to
achieve the terminating exploration of a grid if ¢ = 1 holds. Note that this lower bound also holds
for the perpetual exploration because we prove that robots cannot visit some nodes of a grid in
this case. Other lower bounds in Table 1 are given by Bramas et al. [5]. They are originally given
as impossibility results for the perpetual exploration, however they still hold for the terminating
exploration. This is because Bramas et al. prove that, if the number of robots is smaller in each
assumption, robots cannot visit some nodes.

Second, we propose fourteen algorithms to achieve the terminating exploration of a grid in various
assumptions in Table 1. To the best of our knowledge, they are the first algorithms that achieve
the terminating exploration of a grid by myopic robots with at most three colors and/or with no
common chirality. In addition, six proposed algorithms are optimal in terms of the number of robots.
Every proposed algorithm starts from a designated initial configuration such that all robots form
a designated formation on one of four corners. When robots start from the northwest corner, they
repeat the following behaviors until they terminate in the south end: 1) Robots go straight to the
east, 2) go one step south and turn west, 3) go straight to the west end, and 4) go one step south
and turn east.

2 Preliminaries

2.1 System model

The system consists of k mobile robots and a simple connected graph G = (V, E), where V is a set
of nodes and F is a set of edges. In this paper, we assume that G is a finite m x n grid (or a grid,
for short) where m and n are two positive integers, i.e., G satisfies the following conditions:

o V={v;lic{0,1,....m—1},j€{0,1,....,n—1}}

o B ={(vij,virj)|vij,virjo €V, i —i'| +]j—j'| =1}
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Figure 1: Global directions on a grid

The indices of nodes are used for notation purposes only and robots do not know them. Neither
nodes nor edges have identifiers or labels, and consequently robots cannot distinguish nodes and
cannot distinguish edges. Robots do not know m or n. Figure 1 shows global directions labeled by
North, East, South, and West on a grid. Note that these directions are used only for explanations,
and robots cannot access the global directions. Each robot is on a node of G at each instant. When
a robot r is on a node v, we say r occupies v and v hosts r. The distance between two nodes is the
number of edges in a shortest path between the nodes. The distance between two robots ry and 79
is the distance between two nodes occupied by 71 and .. Two robots r; and ro are neighbors if the
distance between r; and 7y is one.

Robots we consider have the following characteristics and capabilities. Robots are identical, that
is, robots execute the same deterministic algorithm and do not have unique identifiers. Robots are
luminous, that is, each robot has a light (or state) that is visible to itself and other robots. A robot
can choose the color of its light from a discrete set C'ol. When the set C'ol is finite, ¢ denotes the
number of available colors (i.e., £ = |Col|). Robots have no other persistent memory and cannot
remember the history of past actions. Each robot can communicate by observing positions and
colors of other robots (for collecting information), and by changing its color and moving (for sending
information). Robots are myopic, that is, each robot r can observe positions and colors of robots
within a fixed distance ¢ (¢ > 0 but ¢ # o0) from its current position. Since robots are identical,
they share the same ¢. Each robot distinguishes clockwise and counterclockwise directions according
to its own chirality. The robots agree on a common clockwise direction if and only if they agree on
a common chirality.

Each robot executes an algorithm by repeating three-phase cycles: Look, Compute, and Move
phases. During the Look phase, the robot takes a snapshot of positions and colors of robots within
distance ¢. During the Compute phase, the robot computes its next color and movement according to
the observation in the Look phase. The robot may change its color at the end of the Compute phase.
If the robot decides to move, it moves instantaneously to a neighboring node during the Move phase.
To model asynchrony of executions, we introduce the notion of scheduler that decides when each
robot executes phases. When the scheduler makes robot r execute some phase, we say the scheduler
activates the phase of r or simply activates r. We consider three types of synchronicity: the FSYNC
(fully synchronous) model, the SSYNC (semi-synchronous) model, and the ASYNC (asynchronous)
model. In all models, time is represented by an infinite sequence of instants 0, 1,2, .... No robot has
access to this global time. In the FSYNC and SSYNC models, all the robots that are activated at
an instant ¢ execute a full cycle synchronously and concurrently between ¢ and ¢t + 1. In the FSYNC
model, at every instant, the scheduler activates all robots. In the SSYNC model, at every instant,
the scheduler selects a non-empty subset of robots and activates the selected robots. In the ASYNC
model, the scheduler activates cycles of robots asynchronously: the time between Look, Compute,
and Move phases is finite but unpredictable. Note that in the ASYNC model, a robot r can move
based on the outdated snapshot obtained during the previous Look phase. Throughout the paper
we assume that the scheduler is fair, that is, each robot is activated infinitely often.
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2.2 Configuration, view, and algorithm
2.2.1 Configuration

A configuration represents positions and colors of all robots. At instant ¢, let Q(¢) be the set of
occupied nodes, and let M; ;(t) be the multiset of colors of robots on node v; ; € Q(t). A configuration
C(t) of the system at instant ¢ is defined as C(t) = {(v;j, M, ;(t)) | vi; € Q(t)}. If t is clear from
the context, we simply write @, M; ; and C' instead of Q(t), M; ;(t), and C(t), respectively.

2.2.2 View

When a robot takes a snapshot of its environment, it gets a view up to distance ¢. Consider a robot
r on node v; ;. Let ¢, be a color of 7. We describe My ;» = L if node vy j» does not exist, that is,
i' ¢ {0,1,...,m —1} or j/ ¢ {0,1,...,n — 1} holds. Since r does not know the global direction, it
obtains one of the following four views in case of ¢ = 1 and a common chirality:

e North view: VLV = (Cr, Mi—l,j, Mz‘,j—h MiJ’, Mi,j+1, Mi+1,j)
[ ] East view: Vl,e = (CT, Mi,j+1a Miflvj,MZ‘,j, MiJrl’j, Mi,jfl)

e South view: Vi s = (¢r, Miq1,5, M ji1, M 5, My j—1, M;_1j)
e West view: V17w = (Cr, Mi7j_1, Mi-{-l,ja Mi,ja Mi—l,j, Mi,j+1)

In case of ¢ = 1 and no common chirality, r obtains one of eight views, which include the above four
views and the mirror images of them:

e Mirror image of Vi ,: Vi, = (¢r, Mi—1 j, My j11, M, 5, M; -1, Mit1 ;)
e Mirror image of Vi ¢t Vi e = (¢ry My j1, Miga 5, M; 5, M1 5, M, j-1)
e Mirror image of Vi st Vi s = (¢py Mig1,j, M; j—1, M; j, M; jy1, Mi—1 ;)
e Mirror image of Vl,uﬂ Vlfwyli = (Cr, Mi7j_1, Mi—l,j7Mi,j7Mi+1,ja Mz‘,j+1)

When r obtains one of the views, it cannot recognize which view it obtains, however it can compute
other views by rotating and/or flipping the view. Hence, we assume that, in case of a common chiral-
ity, r obtains four views V; ,,, Vi ¢, V1.5, V1, When it takes a snapshot. Note that r does not recognize
which view corresponds to each of North, East, South, and West views. Similarly, we assume that,
in case of no common chirality, 7 obtains eight views V1 ., V1 e, V1.5, Vi,ws Vi,u,u V1,65 V1,510 V1w,
when it takes a snapshot.

Similarly, in case of ¢ = 2 and a common chirality, r obtains the following four views.

e North view: Vo, = (¢, Mij_2j, Mi_1 j—1, Mi_1j, Mi_1 jy1, M; j_2, M; j_1,M; j, M; j 11,
M jyo, Miyyj—1, Miy1j, Miy1 1, Miya ;)

e East view: VQ,e = (C,-7 Mi,j+2a Mi—l,j—i—l: Mi,j-‘rl; Mi+1,j+1a Mi_27j, Mi—l,j7 Mi,j7 Mi-‘rl,j)
Mo, M1 j—1,M; j—1, Mit1,-1,M; j_2)

e South view: Vz,s = (CraMi+2,jaMi+1,j+1aMi+1,j;Mi+1,j717Mi,j+2»Mi,j+1aMi,jaMi,jfla
M; o, M1 ji1, Mi—1j, M;—1 -1, M;_2;)

o West view: Vy .y = (¢, M j_o, Myt j_1, M j_1, Mi_1 1, Miyo 5, Mit1 5, M; 5, M;_1 j,
Mi 25, Miy1 jv1, Mijr1, Miq 1, M ji2)

In case of ¢ = 2 and no common chirality, r obtains eight views, which include the above four views
and the mirror images of them:

e Mirror image of Vs .0 Va0 = (¢py Mi—g j, Mi_1 jp1, Mi—1 5, Mi—1 j—1, M jyo, M; jr1, M; 5,
M; i1, Mo, Mig1 41, Miyr1j, Mig1 -1, Mit2 ;)
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e Mirror mage of V27el VQ,e,u = (Cr, Mi,j+27 Mi-‘rl,j—i—lvMi,j+17Mi—1,j+17 Mi+2,j7Mi+1,j7Mi,ja
M1 5, Mo, My -1, M; 51, M1 -1, M;;_2)

[ ] MiI‘I‘OI‘ image Of VQ)S: V27s,u, = (CT7 Mi+2,j, Mi+1,j717 Mi+l,j7 Mi+17j+17 Mi,j72a Mi’jfl, Mi,ja
M; 1, My jro, My j—1, M1 5, M1 j41, M2 ;)

e Mirror image of Vst Vo w o = (Cry My j—o, Mi_1 1, M j_1, M1 j—1, Mi_o 5, M1 ;, M; ;,
M1, Miga, Mi—q j1, M j1, Mo j41, M jy2)

2.2.3 Algorithm

An algorithm is described as a set of rules. Each rule is represented as a combination of a label, a
guard, and an action. The guard represents possible views obtained by a robot. Recall that robot r
obtains several views during the Look phase. If some view of robot r matches a guard in some rule,
we say r is enabled. We also say the rule with the corresponding label is enabled. If r is enabled,
r can execute the corresponding action (i.e., change its color and/or move to its neighboring node)
based on the directions of the matched view during Compute and Move phases. If several views of r
match some guard or some view of r matches several guards, one combination of a view and a rule
is selected by the scheduler.

2.3 Execution and problem

An execution from initial configuration Cjy is a maximal sequence of configurations E =
Co, Ch, ..., C;, ... such that, for any j > 0, we have (i) C;_1 # Cj, (ii) C; is obtained from C;_4
after some robots move or change their colors, and (iii) for every robot r that moves or changes
its color between C;_; and C;, there exists 0 < j° < j such that r takes its decision to move or
change its color according to its algorithm and its view in Cj,. The term “mazimal” means that
the execution is either infinite or ends in a terminal configuration, i.e., a configuration in which no
robot is enabled.

A problem P is defined as a set of executions: An execution E solves P if £ € P holds. An
algorithm A solves problem P from initial configuration Cj if any execution from Cy solves P. We
simply say an algorithm A solves problem P if there exists an initial configuration Cy such that A
solves P from Cy. In this paper, we consider the terminating exploration problem.

Definition 1 (Terminating exploration problem). The terminating exploration is defined as a
set of executions E such that 1) every node is visited by at least one robot in E and 2) there exists
a suffix of E such that no robots are enabled.

2.4 Descriptions

For simplicity, we describe a rule in an algorithm with a figure in Fig.2. Figure2(a) rep-
resents a rule of an algorithm in case of ¢ = 1. Figure2(b) represents a rule in case of
¢ = 2. Each graph in Fig.2 represents a guard. The guard in Fig.2(a) represents a view
Vi = (¢, Mi—1j, M; j—1, M; j, M; j 1, M;11 5), and similarly the guard in Fig. 2(b) represents a view
Vo = (er, Mi—o i, Mi—1 j—1, Mi—1 5, M1 jy1, My j—o, My j_1, M, j, My ji1, M jyro, Miyq j—1, Miy1 j,
Mit1, 41, Miqo ;). If My jo = 0 holds, we paint the corresponding node white instead of writing ().
If M, j» = L holds, we paint the corresponding node black instead of writing L. If both () and L are
acceptable, we paint the corresponding node gray. If some view of robot r with visible distance ¢
matches Vg, 7 is enabled. In this case, if the scheduler activates 7, it executes an action represented
by ¢new, Movement. Notation ¢y, represents a new color of the robot. Notation Movement can be
Idle, +, —, 1, | and represents the movement: Idle implies a robot does not move, and < (resp.,
—, T, 1) implies a robot moves toward the node corresponding to M, ;_1 (resp., M; jy1, M;—1 j,
M;41 ;) of the guard.
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Rule : cp ey, Movement

Rule : ¢y, Movement

Figure 2: Description of a rule in an algorithm

3 An Impossibility result

In this section, we prove that, in the SSYNC model, two robots cannot achieve the terminating
exploration if ¢ = 1 holds. Since executions in the SSYNC model can happen in the ASYNC model,
this impossibility also holds in the ASYNC model. This implies that, in case of ¢ = 1, at least three
robots are necessary to achieve the terminating exploration of grids in the SSYNC and ASYNC
models. In the following, we use terms of end nodes and inner nodes. We say node v is an end node
if the degree of v is smaller than four. We say node v is an inner node if the distance from v to every
end node is at least three.

Theorem 1. In case of ¢ =1 and k = 2, no algorithm solves the terminating exploration of grids
in the SSYNC model. This holds regardless of the number of colors and a common chirality.

Proof. For contradiction, we assume that such an algorithm A exists. Consider an execution E =
Cp,C1,... of Ain am x n grid G that satisfies m > 9 and n > 9. Let i be the minimum index such
that some robot occupies an inner node at C;. Let r; be a robot that occupies an inner node at C;
and ro be another robot. Let d be the distance between r; and 9 at C;. We consider two cases: (1)
d>2and (2) d<1.

Consider Case 1, that is, d > 2 holds. Let v; and vs be nodes that host r; and ro, respectively,
at C;. We further consider two sub-cases: (1-1) vg is not an end node, and (1-2) vy is an end node.
First assume that vy is not an end node (Case 1-1). In this case, we can define nodes v} and v} such
that v] is a neighbor of vy, v} is a neighbor of vg, v4 is not an end node, the distance between nodes
wy and wy is at least two for any w; € {v1,v]} and any we € {ve,v4}. Then we can prove that
the scheduler makes r; and ro stay on nodes in {v1, v} and {vq, v}}, respectively, forever after C;.
Consider configuration C' such that 71 and 75 stay on nodes in {v1,v}} and {vs,v4}, respectively.
Since r; and 72 cannot observe each other and they are not on end nodes, r, (z € {1,2}) cannot
distinguish directions, that is, r, obtains four identical views when it takes a snapshot. This implies
that, when r, moves, the scheduler can decide which direction r, moves toward. Hence, if 71 moves,
the scheduler can move 71 to another node in {v1,v]}. Similarly, if ro moves, the scheduler can move
ro to another node in {vq,v4}. This implies that, at the configuration after C, r; and 7o stay on
nodes in {vy,v]} and {vs,v4}, respectively. Hence, inductively, after C;, robots r; and ro continue
to stay on nodes in {vy,v]} and {vq, v} }, respectively. This means that robots can visit at most two
inner nodes until C; and visit at most two other inner nodes after C;. Since the number of inner
nodes in G is at least nine, robots cannot achieve the terminating exploration. Next assume that vy
is an end node (Case 1-2). Let v] be an inner node that is a neighbor of v;. Similarly to Case 1-1,
we can prove that, if 7 never observes ry, r1 continues to stay on nodes in {vy,v]}. This implies
that, to achieve the terminating exploration, ro moves toward r; or visits the remaining nodes by
itself. In any case, r9 leaves from end nodes, which reduces to Case 1-1.

Consider Case 2, that is, d < 1 holds. Let v; be a node that hosts r;. Let vy be a node that
hosts 79 if d = 1, and a neighbor of vy if d = 0. We can prove that, as long as each robot moves
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toward another robot or stays on its current node, robots continue to stay on nodes in {v1,vs}:
if two robots stay on different nodes, they can only move toward another node, and if two robots
stay on a single node vy or vy, the scheduler can move them to another node in {vq,v2}. Hence,
eventually a robot moves to another node, say vs, when the distance between two robots is one. In
this moment, the scheduler activates only this robot. After the movement, the distance between ry
and 7y is two. Similarly to Case 1, after the configuration, robots can visit only two other inner
nodes. This implies that robots can visit at most two inner nodes (v; and vy) until C; and visit at
most three other inner nodes (v3 and two other inner nodes) after C;. Since the number of inner
nodes in G is at least nine, they cannot achieve the terminating exploration.

This is a contradiction. O

Note that this impossibility result also holds for the perpetual exploration, where every robot
must visit every node infinitely many times, because the proof of Theorem 1 shows that robots
cannot visit some nodes in this case.

4 Terminating Grid Exploration Algorithms

4.1 Overview

In this subsection, we give the overview of our algorithms. All of our algorithms make robots start
exploration from one of four corners. Without loss of generality, we assume robots start from the
northwest corner in this manuscript. In this case, robots explore the grid according to the arrow in
Fig. 3. In other words, robots start exploration from the northwest corner and repeat the following
behaviors:

1. Proceed east: Robots go straight to the east end.
2. Turn west: They go one step south and turn west.
3. Proceed west: Robots go straight to the west end.
4. Turn east: They go one step south and turn east.

In each algorithm, we implement the behaviors of proceeding and turning. While proceeding,
robots recognize their forward direction by their form. In the FSYNC model, since all robots are
activated at every instant, they move forward at every instant and keep their initial form. The
robots repeat this behavior until they reach the end of the grid. On the other hand, in the SSYNC
and ASYNC models, not all robots are activated at the same time. For this reason, we propose the
way to make robots move forward by moving a single robot at every instant.

The difficult part is to implement the behaviors of turning. Since robots do not know global
directions, they must understand the south direction from the local information. We realize this in
two different approaches. The first approach is to keep robots in two rows when proceeding east
or west. By making different forms in north and south rows, robots distinguish the two directions.
Mainly we use this approach in the case of no common chirality. The second approach is used only in
the case of a common chirality. In this approach, robots change their form of proceeding depending
on the directions. That is, robots distinguish the east and west directions by their form. In the case
of a common chirality, robots can go south by turning right (resp. left) when they proceed east (resp.
west). In the second approach, robots do not have to keep themselves in two rows when proceeding.
This is the main reason why we can reduce the number of robots in the case of a common chirality.

4.2 Algorithms for the FSYNC model

In this subsection, we give terminating grid exploration algorithms for the FSYNC model.
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L

Vm_l’o vm—l,n—l

Figure 3: Route of grid exploration with our algorithm

Figure 4: Turning west in an execution of Algorithm 1

4.2.1 FSYNC, ¢ = 2, £ = 2, a common chirality, and k = 2

We give a terminating exploration algorithm for m xn grids (m > 2,n > 3) incaseof p =2, (=2, a
common chirality, and k = 2. A set of colors is Col = {G,W}. The algorithm is given in Algorithm
1.

Proceeding east. From the initial configuration, robots with color G and W can execute rules R1
and R2, respectively. Hence, they proceed east while keeping the form.

Turning west. The process of turning west is shown in Fig.4. After robots proceed east, they
reach the east end of the grid (Fig.4(a)). From this configuration, the robot with color G moves
south by rule R3, and hence the configuration becomes one in Fig.4(b). From this configuration,
the robot with color W moves south by rule R4. At the same time, the robot with color G moves
west by rule R5. Hence, the configuration becomes one in Fig. 4(c).

Proceeding west. From the configuration in Fig. 4(c), the robot with color G and the robot with
color W can execute rules R6 and R7, respectively. Hence, they proceed west while keeping the
form.

Turning east. The process of turning east is shown in Fig. 5. After robots proceed west, they reach
the west end of the grid (Fig.5(a)). From this configuration, the robot with color G moves south
by rule R8. At the same time, the robot with color W moves by rule R7. Hence, the configuration
becomes one in Fig.5(b). From this configuration, the robot with color W moves south by rule
R9, and hence the configuration becomes one in Fig. 5(c). From this configuration, two robots can
proceed east again.
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Algorithm 1 Fully Synchronous Terminating Exploration for ¢ =2, £ = 2, k = 2 with a Common
Chirality

Initial configuration

{(v0,0,{G}), (vo,1, {W})}
Rules

Nl
@*®*.

R5: G, « R6: G, « R7:W, « R8:G,l

RO:W, 1 R10:G,—~

Figure 5: Turning east in an execution of Algorithm 1

End of exploration. After robots visit all nodes and reach a south corner of the grid, the con-
figuration becomes terminal. In case that m is odd, two robots visit the south end nodes while
proceeding east, and hence they reach the southeast corner. Immediately after node vp,—1 1 is
visited, the configuration is {(vm—1.n-2,{G}), (Vm—1,n—1,{W})}. At this configuration, no robots
are enabled. In case that m is even, two robots visit the south end nodes while proceeding west,
and hence they reach the southwest corner. Immediately after node vy,_1, is visited, the configu-
ration is {(vm-1,0,{G}), (vm—1,2, {W})}. From this configuration, robots with colors G and W move
by rules R10 and R7, respectively. Hence, the configuration becomes {(vn—11,{G,W})}. At this
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Algorithm 2 Fully Synchronous Terminating Exploration for ¢ = 2, £ = 2, k = 3 with No Common
Chirality
Initial configuration

{(v0,0,{G}), (vo,1,{G}), (v1,0, {W})}
Rules

R1:G,—> R2:G, - R3:W, > R4:G,!

Figure 6: Turning west in an execution of Algorithm 2

configuration, no robots are enabled.

4.2.2 FSYNC, ¢ = 2, £ = 2, no common chirality, and £k = 3

We give a terminating exploration algorithm for m x n grids (m > 2,n > 3) in case of ¢ = 2,
¢ =2, no common chirality, and k = 3. A set of colors is Col = {G,W}. The algorithm is given in
Algorithm 2.

Proceeding east and turning west. At the initial configuration, the robot on v ; can execute
rule R1, the robot on vy can execute rule R2, and the robot on v can execute rule R3. By
repeatedly executing those rules, robots proceed east while keeping the form. The process of turning
west is shown in Fig. 6.

Proceeding west and turning east. The form of robots in Fig. 6(c) is a mirror image of the one
that robots make to proceed east. Hence, robots proceed west and turn east with the same rules as
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Algorithm 3 Fully Synchronous Terminating Exploration for ¢ = 1, £ = 3, k = 2 with Common
Chirality

Initial conﬁguration
{(v0,0,{G}), (vo,1, {W})}

" outoctecjects

R1:W,—» R2:G,-» R3:G,! R4 :B,« R5:G,!
R6 :B,« R7 :G, « R8:B,1 R9 :W,-> R10:G,!

proceeding east and turning west, respectively.

End of exploration. In case that m is odd, robots visit the south end nodes while pro-
ceeding west. Eventually, the configuration becomes {(vm—2,0,{G}), (vm—2,1,{G}), (Vm-1,1,{W})}.
Node vp,—1,0 has not been visited yet. From this configuration, robots on v,_20 and vp,_11
move to Vm,_1,0 by rules R7 and R3, respectively, and hence the configuration becomes
{(vm=1,0,{G,W}), (V;m—2,1,{G})}. At this configuration, no robots are enabled. In case that m
is even, robots terminate the algorithm similarly to the odd case.

4.2.3 FSYNC, ¢ =2, £ = 1, a common chirality, and k = 3

In executions of Algorithm 1, robots do not change their colors and robots with different colors do
not occupy a single node. Therefore, by representing the robot of color W in Algorithm 1 with two
robots of color G, we can construct a terminating exploration algorithm in case of ¢ =2, £ =1, a
common chirality, and k = 3.

4.2.4 FSYNC, ¢ =2, £ =1, no common chirality, and k = 4

In executions of Algorithm 2, robots do not change their colors and robots with different colors do
not occupy a single node. Therefore, by representing the robot of color W in Algorithm 2 with two
robots of color G, we can construct a terminating exploration algorithm in case of ¢ =2, £ =1, no
common chirality, and k& = 4.

4.2.5 FSYNC, ¢ =1, £ = 3, a common chirality, and k = 2
We give a terminating exploration algorithm for m x n grids (m > 2,n > 3) in case of ¢ = 1,

¢ =3, a common chirality, and k = 2. A set of colors is Col = {G, W, B}. The algorithm is given in
Algorithm 3.

Proceeding east and turning west. From the initial configuration, robots with colors W and
G can execute rules R1 and R2, respectively. Hence, they proceed east while keeping the form. The
process of turning west is shown in Fig. 7.
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Figure 8: Turning east in an execution of Algorithm 3

Proceeding west and turning east. From the configuration in Fig. 7(c), the robot with color
B and the robot with color G can execute rules R6 and R7, respectively. Hence, they proceed west
while keeping the form. The process of turning east is shown in Fig. 8.

End of exploration. In case that m is odd, two robots visit the south end nodes while proceeding
east, and hence they reach the southeast corner. Immediately after node vy,—1 -1 is visited, the
configuration is {(vm—1.n-2,{G}), (Um—1,n—1, {W})}. From this configuration, the robot with color G
moves, and hence the configuration becomes {(vy—1 n—1,{G, W})}. At this configuration, no robots
are enabled. In case that m is even, two robots visit the south end nodes while proceeding west, and
hence they reach the southwest corner. Immediately after node v,,,_; o is visited, the configuration
is {(vm-1,0,{B}), (Um=1,1,{G})}. From this configuration, the robot with color G moves by rule
R7, and hence the configuration becomes {(vm—1,0,{G,B})}. At this configuration, no robots are
enabled.

4.2.6 FSYNC, ¢ =1, £ = 3, no common chirality, and k = 4

We give a terminating exploration algorithm for m x n grids (m > 2,n > 3) in case of ¢ =1, £ = 3,
no common chirality, and k = 4. A set of colors is Col = {G,W,B}. The algorithm is given in
Algorithm 4.

Proceeding east and turning west. At the initial configuration, the robot on vy ; can execute
rule R1, the robot on vy o can execute rule R2, the robot on vy ; can execute rule R3, and the robot
on vy,0 can execute rule 4. By repeatedly executing those rules, robots proceed east while keeping
the form. The process of turning west is shown in Fig. 9.

Proceeding west and turning east. The form of robots in Fig. 9(c) is a mirror image of the one
that robots make to proceed east. Hence, robots proceed west and turn east with the same rules as
proceeding east and turning west, respectively.

End of exploration. In case that m is odd, robots visit the south end nodes while proceed-
ing west, and hence they reach the southwest corner. Immediately after node v,,_1, is visited,
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Algorithm 4 Fully Synchronous Terminating Exploration for ¢ =1, £ = 3, k = 4 with No Common
Chirality

Initial configuration

{(v0,0,{G}), (vo,1, {W}), (v1,0,{B}), (v1,1, {W}

R1 :W,— R2 :G,— R3 :W,—> R4 :B,—> R5 :W,{
R6 :W,! R7 : W, « R8 : W, < R9 :B,l R10 : G,1

Figure 9: Turning west in an execution of Algorithm 4

the configuration is {(vm—2,0,{W}), (Vm-21,{G}), (Vm-1,0,{W}), (Vm—-1,1,{B})}. From this con-
figuration, the robot on v,,_2¢ moves to v,,—1,0 by rule R5. At the same time, robots with
colors G and B move west by rules R2 and R4, respectively. Hence, the configuration becomes
{(vm=2,0,{G}), (tm—1,0, {W,W,B})}. At this configuration, no robots are enabled. In case that m
is even, robots terminate the algorithm similarly to the odd case.

4.2.7 FSYNC, ¢ =1, £ = 2, a common chirality, and k = 3

We give a terminating exploration algorithm for m x n grids (m > 2,n > 3) in case of ¢ = 1,
£ =2, a common chirality, and k = 3. A set of colors is Col = {G, W, B}. The algorithm is given in
Algorithm 5.

Proceeding east and turning west. At the initial configuration, the robot on vy can execute
rule R1, the robot on vgo can execute rule R2, and the robot on v; can execute rule R3. By
repeatedly executing those rules, robots proceed east while keeping the form. The process of turning
west is shown in Fig. 10.

Proceeding west and turning east. At the configuration in Fig. 10(c), the robot on a west node
can execute rule R8, the robot with color W on a east node can execute rule R9, and the robot with
color G can execute rule R10. Hence, they proceed west while keeping the form. The process of
turning east is shown in Fig. 11.
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Algorithm 5 Fully Synchronous Terminating Exploration for ¢ = 1, £ = 2, k = 3 with Common
Chirality

Initial configuration

{(v0,0,{G}); (v0,1,{G}), (v1,0, {W}

) ( )}
Rules
©, ()
O @)@ @O @@ O
() O O

0.0

R1:G,» R2:G,» R3:W,-» R4 :G,l R5:G,!
O%@
R6 : W, « R7 :W,1 R8: W, « R9 : W, « R10: G,«
Q%@
R11:W,l R12:W,l R13:G,—» R14:G,l

Figure 11: Turning east in an execution of Algorithm 5

End of exploration. In casethat m is odd, robots visit the south end nodes while proceeding west.
Eventually, the configuration becomes {(vm—2.0, {W}), (Vm—2,1,{W}), (tm-1,1,{G})}. Node vnm_10
has not been visited yet. From this configuration, the robot on v,,_2 ¢ moves to v,,_1,0 by rule R11.
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Figure 12: Turning west in an execution of Algorithm 6

At the same time, the other robots move west by rules R9 and R10, and hence the configuration
becomes {(vm—2,0, {W}), (Vm-1,0,{G, W})}. From this configuration, the robot on v,,_2 ¢ moves to
Um—1,0 by rule R14, and hence the configuration becomes {(vm—1,0,{G, G, W})}. At this configura-
tion, no robots are enabled. In case that m is even, robots visit the south end nodes while proceeding
east. Eventually, the configuration becomes {(vi—2n—2,{G}), (Vm—2,n-1,{G}); (Vm—1,n—2,{W})}.
Node vy,—1,,—1 has not been visited yet. From this configuration, the robot on v,,_2,—1 moves
to Um—1,n—1 by rule R4. At the same time, the other robots move east by rules B2 and R3,
and hence the configuration becomes {(vm—2n—-1,{G}), (Um-1,n—1,{G,W})}. From this configura-
tion, the robot on vy,_2 ,_1 moves to vy, _1 ,—1 by rule R7, and hence the configuration becomes
{(vm-1.n-1,{G, W, W})}. At this configuration, no robots are enabled.

4.2.8 FSYNC, ¢ =1, £ = 2, no common chirality, and kK =5

In executions of Algorithm 4, robots do not change their colors and robots with colors G and B do
not occupy a single node. Therefore, by representing the robot of color B in Algorithm 4 with two
robots of color G, we can construct a terminating exploration algorithm in case of ¢ = 1, £ = 2, no
common chirality, and k = 5.

4.3 Algorithms for the ASYNC model

In this subsection, we give terminating exploration algorithms for the ASYNC model. Clearly robots
can achieve terminating exploration with those algorithms also in the SSYNC and FSYNC models.

4.3.1 ASYNC, ¢ = 2, £ = 3, a common chirality, and k = 2

We give a terminating exploration algorithm for m x n grids (m > 2,n > 3) in case of ¢ = 2,
£ =3, a common chirality, and k = 2. A set of colors is Col = {G, W, B}. The algorithm is given in
Algorithm 6.

Proceeding east. From the initial configuration, the robot with color W moves east by rule R1,
and hence the configuration becomes {(vg,0,{G}), (vo,2, {W})}. From this configuration, the robot
with color G moves east by rule R2, and hence the configuration becomes {(vo 1, {G}), (vo 2, {W})}.
After that, robots proceed east while keeping the form by repeatedly executing those rules.

Turning west. The process of turning west is shown in Fig. 12. After robots proceed east, they
reach the east end of the grid (Fig.12(a)). From this configuration, the robot with color W moves
south by rule R3, and hence the configuration becomes one in Fig. 12(b). From this configuration,
the robot with color G changes its color to B and moves south by rule R4. In the ASYNC model, after
the robot with color G changes its color, the other robot may observe the intermediate configuration
(Fig. 12(c)). However, there are no rules that the other robot can execute in the intermediate
configuration. Consequently, the configuration becomes one in Fig. 12(d).
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Algorithm 6 Asynchronous Terminating Exploration for ¢ = 2, ¢ = 3, k = 2 with Common
Chirality

Initial configuration

{(v0,0,{G}), (vo,1, {W})}
Rules

Nl
@*®*.

R1: W, » R2:G, - R3:W, !

R5:B, « R6:W, « R7:B,1 R8: G, Idle

Figure 13: Turning east in an execution of Algorithm 6

Proceeding west. From the configuration in Fig. 12(d), the robot with color B moves west by
rule R5. Next, the robot with color W moves west by rule R6. After that, robots proceed west while
keeping the form by repeatedly executing those rules.

Turning east. The process of turning east is shown in Fig.13. After robots proceed west, they
reach the west end of the grid (Fig.13(a)). From this configuration, the robot with color B moves
south by rule R7, and hence the configuration becomes one in Fig.13(b). From this configuration,
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Algorithm 7 Asynchronous Terminating Exploration for ¢ = 2, ¢ = 3, k = 3 with No Common
Chirality

Initial configuration

{(v0,0,{G}), (vo,1, {W}), (v1,0,{B})}
Rules

1olteY Yite
¥ de'cle

R8:W, !

the robot with color B changes its color to G by rule R8, and hence the configuration becomes one
in Fig.13(c). From this configuration, the robot with color W moves south by rule R9, and hence
the configuration becomes one in Fig. 13(d). From this configuration, two robots can proceed east
again.

End of exploration. In case that m is odd, two robots visit the south end nodes while proceeding
east, and hence they reach the southeast corner. Immediately after node vy,—1,,—1 is visited, the
configuration is {(vm—1,n-2,{G}), (Vm—1,n—1,{W})}. At this configuration, no robots are enabled.
In case that m is even, two robots visit the south end nodes while proceeding west, and hence
they reach the southwest corner. Immediately after node v,,—1, is visited, the configuration is
{(vm=1,0,{B}), (m-1,1, {W})}. At this configuration, no robots are enabled.

4.3.2 ASYNC, ¢ = 2, £ = 3, no common chirality, and k = 3

We give a terminating exploration algorithm for m x n grids (m > 2,n > 3) in case of ¢ = 2,
¢ =3, a common chirality, and k = 2. A set of colors is Col = {G, W, B}. The algorithm is given in
Algorithm 7.

Proceeding east and turning west. From the initial configuration, the robot with color B
moves by rule R1, and hence the configuration becomes {(vg,0,{G}), (vo,1, {W}), (v1,1,{B})}. From
this configuration, the robot with color W by rule R2, and hence the configuration becomes
{(v0,0,{G}), (vo,2, {W}), (v1,1,{B})}. From this configuration, the robot with color G by rule R3,
and hence the configuration becomes {(vo1,{G}), (vo,2, {W}), (v1,1,{B})}. After that, robots pro-
ceed east while keeping the form by repeatedly executing those rules. The process of turning west
is shown in Fig. 14.

Proceeding west and turning east. The form of robots in Fig. 14(g) is a mirror image of the
one that robots make to proceed east. Hence, robots proceed west and turn east with the same rules
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Figure 14: Turning west in an execution of Algorithm 7

as proceeding east and turning west, respectively.

End of exploration. In case that m is odd, robots visit the south end nodes while proceeding
west. Eventually, the configuration becomes {(vm—2,0,{W}), (Vm=21,{G}), (Um-1,1,{B})}. Node
Um—1,0 has not been visited yet. From this configuration, the robot with color W moves to v,,_1
by rule R8, and hence the configuration becomes {(vm—2.1,{G}), (Vm-1.0, {W}), (tm-11,{B})}. At
this configuration, no robots are enabled. In case that m is even, robots terminate the algorithm
similarly to the odd case.

4.3.3 ASYNC, ¢ = 2, £ = 2, a common chirality, and k = 3

We give a terminating exploration algorithm for m xn grids (m > 2,n > 3) in case of ¢ =2, £ =2, a
common chirality, and k£ = 3. A set of colors is Col = {G,W}. The algorithm is given in Algorithm
8.

Proceeding east and turning west. From the initial configuration, the robot with color W
moves east by rule R1, and hence the configuration becomes {(vg,0,{G}), (vo,2, {W}), (v1,0,{G})}.
From this configuration, the robot on vy moves east by rule R2, and hence the configuration
becomes {(vo,1,{G}), (vo,2, {W}), (v1,0,{G})}. From this configuration, the robot on v1 o moves east
by rule R3, and hence the configuration becomes {(vo1,{G}), (vo.2, {W}), (v1,1,{G})}. After that,
robots proceed east while keeping the form by repeatedly executing those rules. The process of
turning west is shown in Fig. 15.

Proceeding west and turning east. From the configuration in Fig. 15(f), the robot with color
W on a west node moves west by rule R9. Next, the robot with color G moves west by rule R10.
Then, the robot with color W on a east node moves west by rule R11. After that, robots proceed
west while keeping the form by repeatedly executing those rules. The process of turning east in an
execution of Algorithm 8 is shown in Fig. 16.

End of exploration. In case that m is odd, robots visit the south end nodes while proceeding
west. Eventually, the configuration becomes {(vim—2,0,{W}), (Vm—2,1,{G}), (vm=-11,{W})}. Node
Um—1,0 has not been visited yet. From this configuration, the robot on v,,—_2 0 moves to v,_1
by rule R12, and hence the configuration becomes {(vi—21,{G}), (Wm—-1,0,{W}), (Vm-11,{W})}.
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Algorithm 8 Asynchronous Terminating Exploration for ¢ = 2, ¢ = 2, k = 3 with Common
Chirality

Initial configuration

{(v0,0,{G}), (vo,1, {W}), (v1,0,{G})}
Rules

Ot
WO
clele

At this configuration, no robots are enabled. In case that m is even, robots visit
the south end nodes while proceeding east. Eventually, the configuration becomes
{(vm-2.n-2,{G}), (Vm-2.n—1,{W}), (Vm—-1,n—2,{G})}. Node v;,_1,,—1 has not been visited yet. From
this configuration, the robot on vy, 2,1 moves to v,—1,n,—1 by rule R4, and hence the configuration
becomes {(vm—2n-2,{G}), (Vm—1,n—2,{G}), (Um—1,n—1,{W})}. At this configuration, no robots are
enabled.
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Figure 16: Turning east in an execution of Algorithm 8

4.3.4 ASYNC, ¢ = 2, £ = 2, no common chirality, and k = 4

We give a terminating exploration algorithm for m x n grids (m > 2,n > 3) in case of ¢ = 2,
£ =2, no common chirality, and k = 4. A set of colors is Col = {G,W}. The algorithm is given in
Algorithm 9.

Proceeding east and turning west. The process of proceeding east is shown in Fig. 17, and the
process of turning west is shown in Fig. 18.

Proceeding west and turning east. The form of robots in Fig. 18(h) is a mirror image of the
one that robots make to proceed east. Hence, robots proceed west and turn east with the same rules
as proceeding east and turning west, respectively.
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Algorithm 9 Asynchronous Terminating Exploration for ¢ = 2, ¢ = 2, k = 4 Without Common
Chirality

Initial configuration

{(v0,0,{G}), (vo,1, {W}), (vo,2, {W}), (v1,0, {W})}

09 s
OO S0
ol 0*2*@

R5:W, 1 R6: G, Idle

S
Yolohlte's”

R9: W, Idle R10: W,

Figure 17: Proceeding east in an execution of Algorithm 9

End of exploration. In casethat m is odd, robots visit the south end nodes while proceeding west.
Eventually, the configuration becomes {(vm—2,0, {W}), (Vm—2,1, {W}), (Vm—2,2,{G}), (Vm-1,1,{W})}.
Node wpm—10 has mnot been visited yet. From this configuration, the robot
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Figure 18: Turning west in an execution of Algorithm 9

on  Upm_20 moves to vy,_10 by rule R5, and hence the configuration becomes
{(vm-2,1,{W}), (Vm—2,2,{G}), (Vm—-1,0,{W}), (Um-11,{W})}. At this configuration, no robots
are enabled. In case that m is even, robots terminate the algorithm similarly to the odd case.

4.3.5 ASYNC, ¢ =1, £ = 3, a common chirality, and &k = 3

We give a terminating exploration algorithm for m x n grids (m > 2,n > 3) in case of ¢ = 1,
£ =3, a common chirality, and k = 3. A set of colors is Col = {G,W, B}. The algorithm is given in
Algorithm 10.

Proceeding east and turning east The process of proceeding east is shown in Fig. 19. This is
the procedure that is proposed as a ring exploration algorithm in [20]. The process of turning west
is shown in Fig. 20.

Proceeding west and turning east The process of proceeding west is similar to that of pro-
ceeding east. Robots with colors W and B for proceeding west move in the same way as robots
with colors G and W for proceeding east, respectively. The form in Fig.20(h) corresponds to one
in Fig. 19(b). Rules R7, R8, and R9 for proceeding west correspond to rules R1, R2, and R3 for
proceeding east, respectively. Hence, robots proceed west keeping the form by repeatedly executing
those rules. The process of turning east is shown in Fig. 21.

End of exploration. In case that m is odd, robots visit the south end nodes while proceeding east.
Eventually, the configuration becomes {(vm—1.n-2,{G}), (Um—1,n—1,{G, W})}. At this configuration,
no robots are enabled. In case that m is even, robots visit the south end nodes while proceeding west.
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Algorithm 10 Asynchronous Terminating Exploration for ¢ = 1, ¢ = 3, k = 3 with Common
Chirality

Initial conﬁguration
{(v0,0,{G}), (vo,1, {W}), (vo,2, {W})}

" e tects

R1:G,— R2 :G,—» R3 :W,—» R4 :B,1 R5:G,!
R6 :B,« R7 :W,l R8 : W, « R9 :B,« R10 : G,{
R11 :B,1 R12 : G,» R13 : Bl R14 : B, - R15 : W, Idle

BOOOTOSHO
FOBOO TOOBO
SOOBO TOOOS D -

Figure 19: Proceeding east in an execution of Algorithm 10

Eventually, the configuration becomes {(vy,—1,0, {W,B}), (vm—1,1,{W})}. At this configuration, no
robots are enabled.

4.3.6 ASYNC, ¢ =1, £ = 3, no common chirality, and k = 6

We give a terminating exploration algorithm for m x n grids (m > 3,n > 3) in case of ¢ =1, £ = 3,
no common chirality, and k& = 6. A set of colors is Col = {G,W,B}. The algorithm is given in
Algorithm 11.

Proceeding east. The process of proceeding east is shown in Fig.22 and Fig.23. At the initial
configuration or at a configuration immediately after turning east, robots make the form in Fig. 22(a).
After that, robots change the form from Fig.22(a) to Fig.22(h). Consider the configuration in
Fig.23(h) (identical to Fig.22(h)). At this configuration, let 71 be the robot with color W on a
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Figure 20: Turning west in an execution of Algorithm 10

‘Do B O HO
82182088483

Figure 21: Turning east in an execution of Algorithm 10

northeast node and let 79 be the robot with color B. Then, r; can execute rule R5, and r5 can execute
rule R6. This implies that different executions exist after this configuration in the ASYNC model.
However we can observe that the configuration eventually becomes one in Fig. 23(m) regardless of the
scheduler. If ro finishes R6 before r; finishes the compute phase of R5, the configuration becomes
one in Fig.23(i). If r; finishes the compute phase of R5 before ro finishes R6, the configuration
becomes one in Fig.23(j). If 1 finishes the compute phase of R5 and 75 finishes R6 at the same
time, the configuration becomes one in Fig. 23(k). At the configurations in Fig.23(i) and Fig. 23(k),
robots cannot execute rules except R5, and hence the configuration eventually becomes one in
Fig.23(m). At the configuration in Fig. 23(j), robots cannot execute rules except R5 and R6. From
this configuration, if o finishes R6 before r; finishes R5, the configuration becomes one in Fig. 23(k).
If 7 finishes R5 before ro finishes R6, the configuration becomes one in Fig.23(1). If r; finishes
R5 and ro finishes R6 at the same time, the configuration becomes one in Fig.23(m). At the
configurations in Fig.23(l), robots cannot execute rules except R6, and hence the configuration
eventually becomes one in Fig.23(m). From the above discussion, the configuration eventually
becomes one in Fig. 23(m) in any case.

97



Terminating Grid Exploration with Myopic Luminous Robots

Algorithm 11 Asynchronous Terminating Exploration for ¢ = 1, £ = 3, k = 6 Without Common
Chirality

Initial configuration

{(U0,07 {G})’ (UO,lv {W})’ v0,2, {W})’ (Ul,Ov {Wa B})a (U171’ {W}

R1:G,-> R2 :B,—> R3:G,—> R4 : W, > R5 :W,—>
R6 :B,—> R7 :B,! R8 :W,l R9 :G,l R10 : B,1
R11:G,! R12 : W,! R13 : W, Idle

Figure 22: Proceeding east in executions of Algorithm 11 (T)
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Figure 24: Turning west in an execution of Algorithm 11 (I)

Turning west. The process of turning west is shown in Fig. 24 and Fig. 25. After robots proceed
east, they reach the east end of the grid, and the configuration becomes one in Fig. 24(a). At this
configuration, let r; be the robot with color B, and let 7o be the robot with color G on a northeast
node. Then, r; can execute rule R6, and ry can execute rule R7. Although different executions exist
after this configuration, we can observe that the configuration eventually becomes one in Fig. 24(f).
After that, robots change the form from Fig. 25(f) (identical to Fig. 24(f)) to Fig. 25(n).
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Figure 25: Turning west in an execution of Algorithm 11 (II)

Proceeding west and turning east. The form of robots in Fig.25(n) is a mirror image of the
one that robots make to proceed east. Hence, robots proceed west and turn east with the same rules
as proceeding east and turning west, respectively.

End of exploration. In case that m is odd, robots  visit the south
end nodes while proceeding  west. Eventually, the configuration becomes
{(vm=2,0,{G}), (Vvm—-2,1,{G}), (Vm-1,0,{W,B}), (Vm—-11,{W,B})}. At this configuration, no
robots are enabled. In case that m is even, robots terminate the algorithm similarly to the odd
case.

5 Conclusions

In this paper, we have investigated terminating exploration algorithms for myopic robots in finite
grids. First, we have proved that, in the SSYNC and ASYNC models, three myopic robots are
necessary to achieve the terminating exploration of a grid if ¢ = 1 holds. Second, we have proposed
fourteen algorithms to achieve the terminating exploration of a grid in various assumptions of syn-
chrony, visible distance, the number of colors, and a chirality. To the best of our knowledge, they
are the first algorithms that achieve the terminating exploration of a grid by myopic robots with
at most three colors and/or with no common chirality. In addition, six proposed algorithms are
optimal in terms of the number of robots.

For the future work, it is interesting to close the gap between the lower and upper bounds of the
number of required robots. Another interesting problem is to allow more general initial configurations
so that robots can start exploration inside a grid. It is also interesting to consider other tasks and
topologies with myopic luminous robots.
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