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Abstract

With the advent of exascale computing, issues such as application irregularity and permanent
hardware failure are growing in importance. Irregularity is often addressed by task-based parallel
programming implemented with work stealing. At the task level, resilience can be provided
by two principal approaches, namely checkpointing and supervision. For both, particular
algorithms have been worked out recently. They perform local recovery and continue the
program execution on a reduced set of resources. The checkpointing algorithms regularly save
task descriptors explicitly, while the supervision algorithms exploit their natural duplication
during work stealing and may be coupled with steal tracking to minimize the number of task
re-executions. Thus far, the two groups of algorithms have been targeted at different task
models: checkpointing algorithms at dynamic independent tasks, and supervision algorithms at
nested fork-join programs.

This paper transfers the most advanced supervision algorithm to the dynamic independent
tasks model, thus enabling a comparison between checkpointing and supervision. Our
comparison includes experiments, running time predictions, and simulations of job set
executions. Results consistently show typical resilience overheads below 1% for both approaches.
The overheads are lower for supervision in practically relevant cases, but checkpointing takes
over for order millions of processes. 1

Keywords: Fault Tolerance, Resilience, Work Stealing, Asynchronous Many-Task Programming,
Runtime Systems

1 Introduction

As supercomputing applications deploy an increasing number of cluster nodes, their likelihood of
experiencing hardware failure such as permanent node loss grows [2, 3, 4]. Resilience is typically
provided by checkpoint/restart, which, in its traditional form, transparently saves the whole
program state on disc and after failure restarts the program from the latest checkpoint [5]. Other
approaches operate at the application level; they include application-level checkpointing [6] and
algorithm-based fault tolerance (ABFT [7]). Application-level approaches are harder to use than

1This paper is an extended version of Jonas Posner, Lukas Reitz, and Claudia Fohry: Checkpointing vs. Supervision
Resilience Approaches for Dynamic Independent Tasks. IEEE Proceedings International Parallel and Distributed
Processing Symposium (IPDPS) Workshops (APDCM), 2021 [1].
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traditional checkpoint/restart, but they cause less overhead. Moreover, they allow to continue the
program execution after failure.

This paper considers resilience techniques at the intermediate level of an Asynchronous
Many-Task (AMT) runtime system. Intermediate-level approaches may combine the above benefits,
but received less attention so far. AMT runtimes are a particularly interesting target for them, since
the clearly defined interfaces of tasks support task re-execution after failure.

AMT programs may be coded in environments such as OpenMP [8], HPX [9], Chapel [10],
Cilk [11], GLB [12], Legion [13], and many others, and are getting increasingly popular. The
environments differ widely in their task models, i.e., in their mechanisms for task generation and
cooperation. Several environments require all tasks to be known from the beginning (called static
tasks). We consider environments for dynamic tasks, which allow the tasks to generate child tasks
during their execution. Important subclasses are dynamic independent tasks (e.g., GLB), nested
fork-join programs (e.g., Cilk), dataflow-based task models (e.g., Legion, HPX), and models that
exchange data through a (physically or logically) shared memory via side effects (e.g., OpenMP,
Chapel).

In all AMT environments, programmers must specify tasks and their dependencies. Then a
runtime system assigns the tasks to physical resources, called workers. In our setting, workers
correspond to processes that run on multiple cluster nodes.

Dynamic tasks are usually implemented with work stealing. Therein each worker stores its initial
tasks and their descendants in a local pool. When the pool runs empty, the worker (called thief )
attempts to steal tasks from a co-worker (called victim). More specifically, the local pool holds task
descriptors that include task inputs and, if needed, a reference to the task code.

Enabling task re-execution after failure requires to duplicate the task descriptors beforehand.
For dynamic tasks, this can be accomplished in one of two principal ways: Either one saves the task
descriptors explicitly for the purpose of fault tolerance, or one relies on their natural duplication
during work stealing. The former approach corresponds to task-level checkpointing, whereas the
latter enables one worker (the supervisor) to take over tasks from their usual owner if necessary.
Outside our scope, static tasks permit simpler resilience schemes, see Section 7.

Following the checkpointing and supervision approaches, a few specific algorithms have been
developed recently. They refer to different task models: All previous checkpointing algorithms refer
to dynamic independent tasks (DIT), and all previous supervision algorithms refer to nested fork-join
programs (NFJ). This leads to two research questions: 1) How do the two approaches compare to
each other in terms of running time overhead? and 2) Can the approaches be generalized to other
task models such as those based on dataflow and side effects?

This paper gives a comprehensive answer to the first question, leaving most of the second one
for future research. We start by porting the most advanced supervision algorithm from NFJ to
DIT, thereby both showing that this is possible, and creating a basis for a subsequent comparison.
Our results immediately apply to the DIT model, which is used, for example, in tree search and
optimization algorithms [14, 15, 16]. Moreover, they may provide guidance to future research on the
second question.

In the following, we further explain the above concepts, and then outline the specific contributions
of this paper. Several topics will be expanded in Section 2.

DIT programs start with one or several initial tasks. Each task may spawn any number of
children, giving rise to a computation tree. Tasks are not allowed to communicate, with the exception
of parameter passing from parents to children. There is no result return, but the final result is
calculated from task results by reduction with an associative and commutative operator (e.g., integer
summation). This reduction is the only synchronization point in a program. To speed up the
calculation, each worker accumulates its own local results in a worker result.

NFJ programs always start with a single task. As in the previous model, task spawning gives
rise to a computation tree, and parents may pass parameters to children. However, parents always
wait for a result being reported back from their children. By integrating task results upwards in the
tree, the final result is eventually calculated in the root. Parameter passing and result return are
the only means of inter-task communication.

Most NFJ runtimes such as that of Cilk adopt a work-first policy. Therein, after spawning
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Figure 1: Overview of acronyms and contributions

a task, a worker places the continuation of the parent task into the local pool and branches into
the child [17]. In contrast, DIT systems such as the Global Load Balancing library GLB adopt a
help-first policy, in which the worker places the child task into the local pool and continues with the
parent. Related to that, Cilk work stealing takes a single task, whereas GLB work stealing takes
multiple tasks, called a task bag.

The task-level checkpointing algorithms for DIT regularly save the local pool contents of each
worker, alongside its current worker result, in a resilient in-memory store [18, 19]. They adopt
uncoordinated checkpointing, i.e., the workers write checkpoints independently. The algorithms
involve sophisticated protocols to maintain consistency during stealing. A typical representative is
the AllFT scheme from Posner et al. [19].

In the supervision algorithms for NFJ, each victim keeps the descriptors of stolen tasks until result
return, and initiates task re-execution if the thief fails [20, 21, 22, 23]. For efficiency, re-execution of
a whole subtree should be avoided, though. The algorithm by Kestor et al. [23] is able to identify all
descendants that have been stolen away to healthy nodes. It achieves this by steal tracking, in which
it piggybacks local history information onto normal communication. Upon failure, the information is
collected at the supervisor of the failed task, which identifies the orphaned descendants and manages
their incorporation into the task’s re-computation.

From now on, TC denotes the task-level checkpointing algorithm from [19], and ST orig denotes
the combination of supervision and steal tracking from [23]. For an overview of acronyms see
Figure 1. Both TC and STorig share the ability to recover locally from multiple failures such that
the program execution need not be interrupted. A comparison of the algorithms has thus far not
been possible, as TC refers to DIT, and STorig refers to NFJ.

Therefore, this paper first transfers STorig to DIT, and then performs the comparison.
Experiments refer to the Global Load Balancing library GLB [12, 24]. As illustrated in Figure 1,
this paper makes the following contributions:

1. We transfer STorig to the DIT setting, where we name it ST for brevity. Novel features include
a transparent fork-join style synchronization between victims and thieves, result accumulation
at the granularity of task bags, and the definition of history information that is appropriate
for help-first scheduling.

2. We experimentally compare TC and ST by running five benchmarks on up to 640 workers.
We observe that the resilience overheads in failure-free runs are smaller for ST, but restore is
faster for TC.

3. We derive formulas for the overall running times of the two schemes, including failure handling.
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The formulas depend on Mean Time Between Failures (MTBF), number of workers, and steal
rate.

4. Based on the formulas, we predict running times in larger-scale settings than in our
experiments. First, we predict the execution times of single long-running applications under
failures. Second, we perform simulations to determine the makespans of job sets, in which
either all jobs are made resilient via TC or ST (protected jobs), or none of the jobs uses any
resilience scheme (unprotected jobs). Our results strongly suggest that program protection by
TC or ST is effective, and that the difference between the two is rather low. We find that ST
performs slightly better in all currently realistic scenarios, but TC takes over in systems with
the order of millions of processes.

The remainder of this paper is organized as follows. Section 2 states assumptions and
provides background. Thereafter, Section 3 describes the redesign of ST for DIT (contribution 1).
Experiments are explained and discussed in Section 4 (contribution 2). Then, Section 5 derives
the running time formulas (contribution 3), and Section 6 presents predictions and simulations
(contribution 4). The paper finishes with related work and conclusions in Sections 7 and 8,
respectively.

2 Assumptions and Background

Before explaining TC and STorig, we define the failure types that they can handle, and the dynamic
independent tasks setting.

2.1 Failure Model

Our schemes handle permanent (also called fail-stop) failures of workers, and assume reliable network
communication. Different workers that run on the same node are allowed to fail independently,
although in practice they will usually go lost together. Any number of workers may fail at any time,
including unsuitably correlated times such as during restore. However, we do not permit failure of
the resilient store (for TC), and failure of the root worker (for ST). These cases lead to program
abort if no further precautions are taken. Failure never compromises the correctness of a computed
result.

We presume that all workers are notified of failures, possibly with a delay. Recovery is performed
locally and does not interrupt task processing at unaffected workers. After a failure, the program
continues on the smaller number of intact workers.

2.2 Dynamic Independent Tasks Setting

As described in Section 1, dynamic independent tasks cooperate through parameter passing
and the contribution of task results to a final result. Tasks must not have side effects, and are
supposed to behave deterministically. Listing 1 shows an example code calculating the number
of valid placements of N queens on an N × N chessboard (NQueens). It is invoked by calling
nqueens(new PosList(), 0). Upon termination, the result may be queried from the system. Each
nqueens call is a task.

In the following, we state requirements on work stealing. They originate from the design of
TC [19], but are also adopted for ST. Further requirements for ST will be added in Section 3. From
now on, DIT stands for the dynamic independent tasks model described above, in combination with
the following work stealing requirements:

• The help-first policy is used.

• Workers must be equal, disregarding more advanced features such as multi-threaded workers
or hierarchical work stealing [25].
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1 void nqueens ( PosList queens , i n t depth ) {
2 i f ( depth == n) {
3 incrementResult ( ) ;
4 } e l s e {
5 f o r ( i n t i = 0 ; i < n ; ++i ) {
6 f o r ( i n t j = 0 ; j < n ; ++j ) {
7 i f ( i s V a l i d P o s i t i o n ( queens , i , j ) ) {
8 spawn nqueens ( add ( queens , i , j ) , depth +1);
9 }

10 }
11 }
12 }
13 }

Listing 1: Dynamic independent tasks: NQueens

• Work stealing must be cooperative; i.e., the thief sends a steal request to the victim and the
victim responds actively by sending tasks (called loot) or a reject message.

• Workers alternate between task processing and communication phases. Only in the latter they
may answer steal requests and accept loot. At the beginning of each communication phase, a
worker must have finished all tasks that it has previously taken from the pool, including result
accumulation and the insertion of child tasks into the pool.

• Steals must not leave the local pool empty, and a maximum of one steal between the same
thief and victim may be in progress at a time.

2.3 TC for DIT Setting

In this section, we describe the core concepts of TC for DIT. Further information can be found in
references [19] and [24].

In TC, workers write backups independently, mainly

• at regular time intervals (called regular backups),

• during stealing (called steal backups),

• after task adoption during restore, and

• at the beginning and end of their computation.

Each backup contains the current contents of the local pool and the current worker result. Recall that
backups are written in communication phases, and thus they capture the worker’s entire state except
for open communication. Backups are saved in a resilient in-memory store, which must support
concurrent accesses and transactions. A steal protocol guarantees consistency among victim, thief,
and their respective backups. It involves three messages (compared to two in non-resilient stealing),
two backups, and a temporary loot saving.

When workers are notified of failures, their actions depend on the relationship with the failed
worker. The majority of workers simply perform some bookkeeping operations, whereas most of the
recovery is accomplished by a single designated worker called buddy. The buddy adopts the failed
worker’s tasks and takes care of any loot sent from it. If the buddy fails, TC regulates its succession
in a resilient manner.
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Figure 2: Recovery in STorig

2.4 STorig for NFJ

Listing 2 shows an example code for NFJ, which computes Fibonacci numbers and is invoked by
calling fib(n). The parent task waits for the results of all children with an explicit sync, otherwise
there would be an implicit sync at the end of the function.

1 i n t f i b ( i n t n) {
2 i f (n < 2) re turn n ;
3 i n t x = spawn f i b (n−1);
4 i n t y = spawn f i b (n−2);
5 sync ;
6 re turn x + y ;
7 }

Listing 2: Nested Fork-Join: Fibonacci

STorig refers to a cluster implementation of NFJ [23]. The initial task (here fib(n)) is processed
by worker 0. At each spawn, a worker branches into the child and places the continuation of the
parent task into its local pool (work-first). Continuations technically have the form of stack frames.

Each steal takes the oldest frame from the local pool. Thus, the thief processes the parent frame
or an ancestor, and the victim processes the child. When a child is finished, the victim keeps the
result. When a thief encounters a sync, it returns the parent frame to the victim, where it is matched
with the child result using a frame ID. Depending on timing, the frame is either sent back to the
thief or kept at the victim. The other worker steals a new frame. Matching may have to be applied
transitively at a chain of victims.

At each steal, the victim keeps a copy of the stolen frame. If a failure occurs, it initiates
re-computation using this copy. This enables recovery from any number of failures, except
failure of worker 0. However, a naive re-spawn of the children would cause potentially expensive
re-computations of their entire subtrees.

Therefore, the major achievement of STorig is the incorporation of all intact subcomputations
beneath a faulty one. Figure 2 illustrates this concept, with thieves (continuations) drawn below
victims. In the example, worker W1 has stolen tasks B and C from worker W2. (It took C when B

was finished, but D and E had not yet returned.) Similarly, D and E were stolen by W0 and W3,
respectively. When W1 fails, the recovery is led by node A, that is, by worker W2. This worker
initiates the re-computations of B and C (called B’ and C’, respectively), and incorporates the intact
subcomputations D and E, as marked by blue dotted lines.

The feasibility of the approach relies on the following concepts:

• A steal tree [26] is a graph with nodes representing frames and edges representing steals, as
in the solid line parts of Figure 2. Each node is labeled with a frame ID, the history of this
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frame (see below), and the rank of the processing worker. Frame ID and history are computed
at the victim, and then piggybacked onto the loot delivery message from victim to thief, and
stored at the thief. Frame IDs are quadruples:

frame ID = (stage, level, step, victim rank),

where stage denotes the number of frames that the victim itself had stolen before it was stolen
from, and level and step identify the particular frame taken from the victim during this stage.
For example, the call fib(n) gives rise to two children at the next level, and three steps for
the three continuations encountered (the three subcomputations corresponding to a complete
fib function, and the remainders after each spawn, respectively). Note that each ID uniquely
identifies a frame.

The history of a frame encompasses the IDs of the frame itself, all predecessors in the steal
tree, and all pending older siblings of frame/predecessors (e.g., B for C).

• Upon failure, each worker checks whether it is a victim of the failed worker and has not yet
received the result (pending steal). If so, it issues a system-wide call to collect all histories that
include the lost frame (e.g., W2 collects the histories of D, E). It compresses these histories
into a replay tree, which supports rapid access to orphaned grandchildren.

• At any following steal, the replay tree is given away to an alias worker. Prior to processing
the tree, this worker communicates its rank to the orphaned grandchildren. The tree
processing itself differs from normal operation. In particular, 1) the stealing of previously
unstolen subframes is suppressed, 2) the stealing of lost subframes is enforced (a replay tree
is constructed for them beforehand), and 3) the subframes available in orphans are discarded,
and the orphan frames are patched instead. Details can be found in [23].

STorig can handle any number of non-root failures. Resiliency during recovery is achieved via
bookkeeping of aliases. Moreover, a ForwardUnify protocol reduces data losses in return chains.
Details and a discussion of correctness can be found in [23].

3 Redesign of ST for DIT Setting

Summarizing the previous definitions, our transformation of STorig into ST must handle the following
differences between DIT and NFJ:

(i) All DIT tasks synchronize with a single ancestor (one-level async-finish structure), whereas
each NFJ task synchronizes with its immediate parent.

(ii) DIT results are calculated independently from the spawn tree, by accumulating and combining
worker results, whereas NFJ tasks are calculated upwards in the tree.

(iii) Multiple initial DIT tasks may be assigned to one or several workers, whereas NFJ always
deploys a single initial task.

(iv) DIT stealing obtains child tasks (help-first), whereas NFJ stealing obtains parent frames
(work-first). The DIT tasks are processed from beginning to end, whereas the NFJ tasks
are split into continuations.

(v) DIT stealing refers to task bags as opposed to single tasks, and, unlike in NFJ, these bags
need not be taken from the pool bottom.

To handle the differences, the design of ST imposes two additional work stealing requirements
in addition to the DIT guarantees:

1) Staged operation: Each worker must repeatedly steal a task bag, process all tasks from this
bag (possibly with the help of thieves), send back the result, steal the next task bag, and so on.
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Thus, it processes exactly one task bag in each stage (but may store others whose results are still
open). Note that stages and phases are different concepts.

2) Determinism: Repeated executions of the same operations on the same local pool must
always yield the same pool contents. Determinism concerns the selection of tasks to be stolen, the
extraction of tasks to be processed, and the insertion order of spawned tasks.

To handle difference (i), ST imposes an artificial fork-join structure, requesting that thieves
report back to their victims when they have finished a bag. Unlike in NFJ, this structure is not
visible at the program level. As illustrated in Figure 3, the new synchronization granularity is finer
than normally in DIT, but coarser than in NFJ.

In Figure 3, two initial tasks are processed by four workers marked by different colors. Work
stealing gives rise to task bags B1 . . . B5. For instance, B2 is stolen by the orange worker from the
green one. The orange worker reports back when B2, including B3 and B5, is finished.

The steal tree is defined analogously to STorig, except that nodes represent task bags. For our
example, it is shown in Figure 3 (right). Analogously to STorig, nodes are labeled by bag ID, history,
and worker rank.

To handle difference (ii), results are accumulated per task bag, and are included when the thief
reports back to the victim. This is actually simpler than in STorig, as nothing more needs to be
done with a finished bag (unlike for STorig’s frames). Thus, after a result return, the thief always
proceeds to steal, whereas STorig distinguishes two cases. Similarly, ST does not require transitive
matching.

The above structure causes the async-finish synchronization to be superfluous, and we therefore
omit it.

To handle difference (iii), an artificial root node is inserted into the steal tree if the initial tasks
are assigned to different workers (not shown in the figure). This node is labeled with a bag of all
initial tasks and assigned to worker 0, whereas its children hold the initial task bags of the different
workers. Like a victim, the root node acts as a supervisor and waits for its children’s results.

To handle differences (iv) and (v), we need bag IDs instead of frame IDs, with the following
new definition:

bag ID = (stage, step, substep, loot size, victim rank).

In the definition:

• stage is the same as in STorig (using the staged operation requirement),

• step is the number of tasks that the victim has processed in this stage before extracting the
bag,

• substep is the number of tasks that the victim has given away at this step before extracting
the current bag, and

• loot size is the number of tasks in the bag.
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Analogously to STorig, an ID uniquely describes a bag. The history is defined as in STorig, except
that we reduce the data volume by omitting the stages and substeps of siblings.

Recovery is performed analogously to STorig. For example, where STorig discards a frame, ST
removes in the corresponding step as many tasks from the pool as indicated by the loot size. It is
the same tasks as in the original execution, according to the determinism requirement. Like STorig,
the scheme can handle any number of non-root failures, following the case-by-case analysis in [23].

Our implementation of ST is sketched in Section 4.1. It has about the same code size/complexity
as TC.

4 Experimental Evaluation

This section compares and analyzes the running times of TC and ST, first in failure-free runs, and
then under failures. We start by outlining our implementations and describing the experimental
setting.

4.1 Implementation

An important DIT implementation is the GLB library [12] of the “APGAS for Java” programming
framework [27]. This framework follows the well-known Partitioned Global Address Space (PGAS)
programming model [28]. As TC was previously implemented by extending GLB [19, 24], we did the
same with ST. The previous codes [29], as well as the codes for this paper [30] are publicly available.

GLB realizes a work stealing variant called lifeline-based global load balancing [31]. Therein,
thieves find work by contacting several random workers, followed by a few lifeline buddies. The
latter record unsuccessful steal requests and possibly answer them later. Thus, a worker may receive
loot from lifeline buddies while it is still processing another task bag. To ensure staged operation,
our ST implementation rejects such loot with a certain protocol [32]. Moreover, we omit the loot
sizes from bag IDs, because GLB presumes a predetermined size such as steal-half. As explained
by Bungart and Fohry [33], the loss of a large number of workers may dissect the lifeline graph. In
accordance with TC, we did not implement graph repair for simplicity.

GLB runs one or several workers per node. These workers communicate asynchronously by
sending active messages. GLB determines that the local pool data structure is provided by users.
Our benchmarks ensure determinism: Each worker repeatedly takes a block of n tasks from its pool,
processes these tasks, and inserts any spawned children immediately. Loot is extracted from the
opposite end of the pool.

While GLB itself is not resilient, TC and ST use the resilience mode of APGAS, which
automatically invokes failure handlers at each worker [19] and deploys the IMap data structure
of Hazelcast [34] as an in-memory resilient store. As the resilience mode incurs a certain overhead,
it was switched off for the GLB runs.

4.2 Experimental Setting

The experiments were run on two clusters:

• Kassel [35] has a partition with 12 homogeneous Infiniband-connected nodes, each with two
6-core Intel Xeon E5-2643-v4 CPUs and 256 GB of main memory. We started up to 144 workers
and used a close mapping: For example, we started up to 12 workers on one node, 24 workers
on two nodes, etc.

• Goethe-HLR [36] has a partition with homogeneous Infiniband-connected nodes, each with
two 20-core Intel Xeon Skylake Gold 6148 CPUs and 192 GB of main memory. We used up to
16 nodes for a total of 640 workers, also with a close mapping.

As benchmarks, we deployed frequently used ones with both static and dynamic tasks:
Unbalanced Tree Search (UTS) [37], Betweenness Centrality (BC) [38], NQueens [39], and two
synthetic ones introduced below (DynamicSyn and StaticSyn). UTS dynamically generates a highly
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irregular tree and counts the number of tree nodes, BC calculates a centrality score for each node
of a graph, and NQueens was already sketched in Section 2.

The synthetic benchmarks perform some placeholder computation and support smooth weak
scaling. For this, the user provides a desired running time TBASE . Then a GLB run takes time
TNO = TBASE + ε, with ε reflecting the costs of work stealing. Moreover, the user can influence the
number m of tasks per worker, as well as specify a fluctuation range v for the task durations.

StaticSyn and BC deploy static tasks, which are evenly distributed across workers at the
beginning. Task durations in StaticSyn are varied per worker. For example, for an average task
duration of 10 ms and v = 20%, one worker may obtain m tasks with a duration of 8 ms each, and
another m tasks with a duration of 12 ms each (random times within the fluctuation range).

DynamicSyn, UTS, and NQueens deploy dynamic tasks, starting the computation with a single
task on worker 0. DynamicSyn generates a perfect w-ary task tree, where w and m are automatically
chosen/adjusted.

In all benchmarks except BC, task results are single long values and the reduction operator is
scalar sum. In BC, task results are long arrays and the reduction operator is component-wise sum.

We used existing non-resilient and TC implementations of UTS, BC, and NQueens [29]. In the
TC implementations, we kept the regular backup interval at 10 seconds, as suggested in reference [19].
We focused on small task sizes, to obtain clearer results. The benchmark parameters and the GLB
parameter n were set as follows:

• UTS: geometric tree shape, branching factor 4, tree depth 18 (Kassel) or tree depth 19
(Goethe-HLR), random seed 19, n = 511;

• BC: number of graph nodes 218, random seed 2, n = 511;

• NQueens: N = 17, threshold 11 (Kassel), or N = 18, threshold 12 (Goethe-HLR), n = 511;

• StaticSyn: TBASE = 100 s, m = 6000, v = 20%, n = 1;

• DynamicSyn: TBASE = 100 s, m = 1, 000, 000, v = 20%, n = 511.

Table 1 displays the average task execution times for the above benchmark configurations on
Goethe-HLR.

StaticSyn DynamicSyn UTS BC NQueens
17 ms 100 µs 360 ns 120 ms 115 ns

Table 1: Average task execution times on Goethe-HLR

4.3 Failure-Free Runs

4.3.1 Running Times of Synthetic Benchmarks

Figure 4 (top) depicts the running times of StaticSyn (left) and DynamicSyn (right), reporting
averages over 5 runs. Note that the scales do not start from zero.

It can be observed that all overheads of TC/ST over non-resilient GLB are below 1%, which is
comparable to the overheads of work stealing (the latter corresponds to the difference between the
GLB running times and TBASE ). The ST overheads are consistently about half of the TC overheads.
For StaticSyn, they are a maximum of 0.43 s (ST) vs. 0.86 s (TC). For DynamicSyn, they are a
maximum of 0.65 s (ST) vs. 1.10 s (TC). The curves run roughly in parallel. As the GLB overheads
result from work stealing, this suggests that the resilience costs increase proportionally to the steal
rate.
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(c) StaticSyn: Messages per worker and second
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Figure 4: Weak scaling on Kassel: StaticSyn (left), DynamicSyn (right), running times (top), and
messages per worker and second (bottom)

4.3.2 Number of Messages

Figure 4 (bottom) presents the number of messages sent for the same program runs as above. Again,
the ST curve is clearly located beneath the TC one, indicating that part of the performance difference
is owing to differences in the communication overheads. The ST curve is closer to the GLB one,
however, suggesting that another part of the difference is owing to ST’s computation costs for history
maintenance.

The concrete numbers in Figure 4 meet our expectations: while GLB issues two messages per
steal, ST issues three, and TC issues seven (see Sections 3 and 2.3, respectively). This results in
factors 1.5 and 3.5 for the respective message numbers.

4.3.3 Histograms

Figure 5 depicts histograms of the processor time usage of the workers for DynamicSyn and
StaticSyn. For each particular time, the histograms represent the share of workers in the following
states:

• processing : worker processes tasks (green),

• communication: worker is involved in stealing or backup writing (orange),

• waiting : worker is waiting for a response to a steal request (red), and

• idling : worker is initially or finally inactive (blue).

Note that work stealing results in communication and waiting states. The histograms refer to a
run with TBASE = 20 s and 144 workers on Kassel. A small TBASE value was used to pronounce
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Figure 5: Histograms of processor time usage with 144 workers on Kassel. Left side: StaticSyn,
TBASE = 20 s. Right side: DynamicSyn, TBASE = 20 s.

the start and end phases in the figures. Similarly, the histograms were cut at 95% to save space.
The omitted parts are almost exclusively green.

Interpreting the histograms, StaticSyn (Figure 5, left side) starts all workers in processing state.
As the task distribution is even, they remain in this state for most of the time. Work stealing arises
only in the end phase, owing to the variations in task durations. The number of steals increases
until more and more workers enter idle state.

Although all StaticSyn histograms share this same pattern, the work stealing states take more
room in TC and ST. The reason can be seen in their higher numbers of messages, as discussed
before. The TC histogram exhibits several communication spikes in the middle, which are owing to
regular backup writing. The reason that this is not one spike is because we have offset the backups
slightly to reduce competition in accessing the resilient store.

DynamicSyn (Figure 5, right side) exhibits a start phase in which the initial task is transformed
into initial task bags for all workers. A noticeable number of steals occurs in the main phase, as the
benchmark is irregular. Again, the work stealing takes more room in TC and ST. In accordance to
StaticSyn, the difference is more distinct for TC.
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Figure 6: Strong scaling performance of GLB, TC, and ST on Kassel (left side), and Goethe-HLR
(right side).
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4.3.4 UTS, BC, and NQueens

Figure 6 depicts the running times on Kassel and Goethe-HLR. Unlike before, this figure employs
strong scaling to convey an impression of the magnitudes. The figure presents two curves: a falling
one describing the running times, and a rising one describing the number of processed nodes (of the
respective benchmarks) per second. All TC and ST curves are close to the GLB ones, indicating
again that the resilience overheads are low.

4.4 Recovery Time

The recovery time consists of the time to perform the actual recovery, the time for reprocessing the
lost tasks, and the surplus time owing to the loss of computing power in the subsequent computation.
Table 2 summarizes these times for a concrete, but typical example of a DynamicSyn run. The table
reports averages of 100 runs, into which we injected 1 or 2 failures, such that random workers failed
at random times. As indicated in the table, the major differences between TC and ST are in the time
required for reprocessing lost tasks, which is much higher for ST than for TC, and in the overhead
of failure-free runs, which is higher for TC.

1 failure 2 failures
TC ST TC ST

Failure-free overhead 2.96 s 1.14 s 2.96 s 1.14 s
Actual recovery 0.39 s 0.35 s 0.67 s 0.70 s
Reprocessing 0.05 s 1.36 s 0.08 s 2.84 s
Lost computation 1.51 s 1.49 s 3.11 s 3.28 s
Total running time (incl. above costs) 119.95 s 119.38 s 121.81 s 123.84 s

Table 2: Recovery times of DynamicSyn run on Goethe-HLR with 40 workers, injecting 1 or 2
failures

5 Estimation of Running Times

5.1 Assumptions and Notation

In this section, we estimate the running times of TC and ST for the case that x� p failures occur
at independent and identically distributed times. We derive formulas that will later be used to
determine conditions under which either TC or ST is superior. We use the following notation:

• p: number of workers,

• r: steal rate (average number of steals per worker and second),

• j: regular backup rate (number of regular backups per worker and second),

• TNO(p): running time of non-resilient work-stealing algorithm on a given program call (a
program call is an invocation with fixed inputs),

• T alg
x (p): expected running time of alg = {ST |TC} when x failures are encountered during

this program call, and

• MTBF : Mean Time Between Failures (system-wide).

5.2 Running Time of TC

Backed by x� p, we assume that the x failures affect different workers. At each of them,
the respective failure strikes with equal probability at any particular time during the program’s
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execution. This is for the reason that hardware components live much longer than what the program
run takes, and thus their susceptibility to failure is about constant. From general properties of
uniform distributions, the expected time for the occurence of a worker’s failure is at half of its
running time (and thus the overall computing power p available for our computation is reduced to
p−(1/2)). Similarly, summing up the x uniformly distributed times, which are independent from the
above assumption, implies that an expected x/2 of the overall computing power is lost (the expected
value of a sum equals the sum of the expected values). The corresponding share of work must be
taken over by the other workers, leading to a proportional increase in running time. Similarly, the
other workers must repeat an expected half of the work from the last backup interval of each failed
worker. As the average interval length is b = 1/(r + j), we obtain

TTC
x (p) =

p

p− (x/2)
TTC
0 (p) +

x∑
i=1

b

2(p− i)
+ xRTC ,

where RTC is the cost of the actual recovery procedure. RTC is essentially independent of p, as can
be easily observed from the algorithm description in Section 2.3. Furthermore, TTC

0 (p) differs from
TNO(p) by the checkpointing overhead. Most of this overhead increases proportionally to the steal
and regular backup rates, and thus

TTC
0 (p) = (1 + c0r + c1j)T

NO(p)

for some constants c0 and c1. With c2 = RTC , we obtain

TTC
x (p) =

p

p− (x/2)
(1 + c0r + c1j)T

NO(p) +

x∑
i=1

b

2(p− i)
+ xc2 . (1)

5.3 Running Time of ST

Upon each failure, the failed worker’s share of previous work is lost, which on average is 1/p-th of
the overall previous work [23]. Similarly, the worker’s 1/p-th share of future work must be taken
over by the other workers, resulting in a proportional increase in running time. We obtain

TST
x (p) =

p

p− x
TST
0 (p) +

x∑
i=1

RST (p− i) ,

where RST (p) denotes the overhead of the recovery procedure with p workers and is analyzed below.
TST
0 (p) differs from TNO(p) by the costs to maintain and communicate the history information,

as well as by the costs to report back the results of task bags. Similar to ST, most of these costs
increase proportionally to the steal rate, and thus

TST
0 (p) = (1 + c3r)T

NO(p) .

RST (p) covers the overheads of the following actions:

a) scan all locally stored frames and their histories, searching for frames to/from the failed worker
(at each worker),

b) participate in the system-wide history collection (at each worker per lost frame), and

c) compress the collected histories into a replay tree (at one worker per lost frame).

To estimate the costs of actions a) to c), we make some observations about the typical size of the steal
tree parameters: number of vertices n = Θ(p) (as each worker processes one frame in steady state),
node degree d = Θ(1) (as random steals spread evenly across the tree), tree height h = Θ(log p),
and history length l = Θ(dh) = Θ(log p). On this basis, step a) requires time Θ(ld) = Θ(log p);
step b) collects a maximum of O(pld) = O(p log p) data, resulting in time O(log p) per worker;
and step c) processes the collected data for an average time of O(log p) per worker. Therefore, we
estimate RST (p− i) ≈ RST (p) = c4 log(p), and obtain

TST
x (p) =

p

p− x
(1 + c3r)T

NO(p) + xc4 log p. (2)
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5.4 Estimation of Constants

We experimentally determined approximations for the constants c0 to c4, based on the single-failure
cases of formulas (1) and (2). They are displayed in Table 3. Except for c4, the values were
directly measured, averaging over 25 runs of the DynamicSyn benchmark on 200 workers. For c4,
we first calculated RST (p) for several p, as the difference between TST

0 (p) and TST
1 (p) in 100 runs

of the DynamicSyn benchmark on 20, 40, . . . , 240 workers. Thereafter, we approximated c4 through
a regression analysis using the least squares method. The fitted RST (p) function has an R2 value of
0.944898.

Constants c0 c1 c2 c3 c4
Value 38 ms 41 ms 558 ms 24 ms 219 ms

Table 3: Experimentally determined values of the constants

5.5 Experimental Validation

By inserting the above constants from single-failure runs into formulas (1) and (2), we obtain
predictions for multi-failure cases. To confirm these, we injected up to 12 failures into DynamicSyn
runs with TBASE = 100 s and 40 workers on Goethe-HLR. Again, we let random workers fail at
random times. Figure 7 depicts our results, reporting averages of 100 runs, alongside the running
time predictions. It can be observed that predictions and measurements are very close.
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Figure 7: Measurements and predictions for failures out of 40 workers

6 Prognosis

Based on the formulas from Section 5, this section considers two types of failure-prone settings:
1) single long-running applications, and 2) sets of short applications. For both, we determine
conditions under which either TC or ST are superior.

6.1 Long-Running Applications

Using our notation from Section 5, we consider a program call that likely experiences exactly one
failure; that is, a program call with running time

MTBF = TNO(p) ≈ TTC
0 (p) ≈ TST

0 (p) .
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Below, we derive conditions under which, say, TC outperforms ST for this call. The same
conditions also apply to program calls with longer running times. To see this, consider the program
executions as being composed of sections of length MTBF. If TC is superior in a single MTBF
section, then TC is superior in every MTBF section, provided that the conditions are stable. The
conditions involve MTBF , r, j, and p. The first three are normally stable (or quite stable) inside
an application, and p only declines slightly for a reasonably low number of failures. We determine
the conditions by solving the inequality

TTC
1 (p) < TST

1 (p) ,

substituting equations (1) and (2) from Section 5 and setting TNO(p) = MTBF . We obtain two
solutions:

• p > k1/k0 and

MTBF < (p− 0.5)
(p− 1)(c4 log(p)− c2) + (b/2)

k0p
2 − k1p

, and

• p < k1/k0 and

MTBF > (p− 0.5)
(p− 1)(c4 log(p)− c2) + (b/2)

k0p
2 − k1p

,

where k0 = 1 + c0r + c1j + c3r − 1, and k1 = 1 + c0r + c1j − 0.5c3r − 0.5.

Under these conditions, TC outperforms ST; otherwise, ST is superior. By inserting our estimates
for c0 to c4 from Table 3, we obtain the exemplary values in Table 4, which are break-even points
between TC and ST superiority. The table only refers to the first solution; the second one translates
into p < 28. Note that the table displays the worker MTBF for clarity, which is calculated as
p ·MTBF [3].

We conclude that ST is usually superior, but TC takes over for the order of millions of workers.

Workers (p) r j Worker MTBF
1,000 0.28 0.033 < 13.9 hours

100,000 0.28 0.033 < 122.9 days
1,000,000 0.28 0.033 < 4.2 years

1,000 0.05 0.033 < 7.1 days
100,000 0.05 0.033 < 3.0 years

1,000,000 0.05 0.033 < 17.7 years

Table 4: Scenarios in which TC outperforms ST

6.2 Sets of Jobs

When scheduling job sets on a supercomputer, one often strives for a low overall completion time,
known as makespan. We considered sets of independent parallel jobs that were known a priori, and
simulated their execution in faulty environments. In each simulation run, we protected all jobs in
the respective set in the same manner. We considered three options:

• All jobs were unprotected, i.e., the jobs did not use any resilience scheme, but instead aborted
and were re-spawn in the event of a failure.

• All jobs were protected by TC.

• All jobs were protected by ST.

63



Task-Level Resilience: Checkpointing vs. Supervision

0

200

400

600

800

1000

1200

1400

1600

1800

1
8

1
4

1
2 1 2 4 8 16 32 64

26.4

26.6

26.8

1
8

1
2 2 8 32

M
a
k
e
sp

a
n

in
h
o
u
rs

Worker MTBF in years

Unprotected
ACP

ST

Figure 8: Mira simulation
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Figure 9: Exa simulation

For our experiments, we adapted the job scheduling simulator from [40, 41], which was originally
designed for studying silent errors. The simulator starts the jobs in priority order, we used random
priorities. We randomly injected fail-stop failures into our simulation runs. For the TC/ST jobs, we
simulated the running time increases with the formulas from Section 5. For unprotected jobs, we
aborted the job and re-queued it. Note that we continued TC/ST jobs on less than p workers, but
restarted unprotected jobs on p workers. Two job sets on different supercomputers were considered:

• Mira: This computer (ranked 22 by top500.org in November 2019) has a total of
49, 152 nodes [42]. We extracted 30 job sets, namely one per day during June 2019, from
the official published log data 2. Each job set holds 66 . . . 277 jobs with running times of
37 . . . 86 s, and p = 512 . . . 49, 152.

• Exa: This hypothetical exascale computer has 1 million nodes. We generated 30 job sets, each
with approximately 1250 jobs, with running times of 50 . . . 10, 000 s (for a total of p · 24 h) and
p = 500 . . . 500, 000.

Figures 8 and 9 depict the simulated makespans, averaged over all respective job sets and
1,000 runs of each. Both figures indicate a clear difference between protected and unprotected
jobs. For example, in the Mira experiment with a worker MTBF of 0.125 years, TC reduces the

2This data was generated from resources of the Argonne Leadership Computing Facility, which is a DOE Office of
Science User Facility supported under Contract DE-AC02-06CH11357 [43].
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makespan by as much as 98.46%, and ST reduces the makespan by 98.45%. The effect is smaller for
a long MTBF, but at a worker MTBF of 64 years, the reduction is still 12.01% for TC and 12.44%
for ST. Similarly, in the Exa experiment with a worker MTBF of 1 year, TC reduces the makespan
by 97.20%, and ST reduces the makespan by 97.15%.

The difference between TC and ST is rather small. As detailed in the upper right corners, ST is
slightly better for worker MTBF > 0.25 years in Mira and for > 4 years in Exa.

Overall, in both simulations ST caused slightly less overhead than TC, except for a low worker
MTBF. This outcome agrees with that of Section 6.1. Our most striking result was a huge
difference between protected and unprotected jobs, strongly indicating that job protection by an
intermediate-level resilience method pays off.

7 Related Work

Although substantial research on fault tolerance has been conducted in recent years [2, 3, 44, 45],
resilient programs are not yet state of the art. In a recent survey among participants of the
US Exascale Computing Project, only 2% of the respondents reported on current fault-tolerant
applications, whereas 67% were planning for such applications [46].

Regarding fail-stop failures, checkpoint/restart is the prevailing approach [47, 48, 5]. This method
is available in a traditional variant, which writes data to a shared file system, and newer variants such
as uncoordinated, in-memory, and multi-level checkpointing. The traditional variant is realized by
system-level libraries such as BLCR [49] and DMTCP [50], and the newer ones by application-level
libraries such as FTI [51] and SCR [52]. Application-level libraries provide users with control over
aspects such as data selection [53]. All variants restart the application after failures, delays may be
avoided by allocating spare nodes at job submission [54].

Other application-level approaches include naturally fault-tolerant algorithms [55] and
algorithm-based fault tolerance (ABFT) [7, 56]. Checkpoint/restart and ABFT can be combined,
such that different program sections are protected differently [57]. Chung et al. defined
transaction-based containment domains, which encapsulate failures and recoveries in hierarchically
arranged program segments [58]. Some program-level approaches rely on resilient arrays, e.g., the
resilience scheme of NWChem [59]. These approaches require failure notification, as offered by
programming systems such as ULFM for MPI [60] and Resilient X10 [61]. Other resilience support
of programming systems includes in-memory checkpointing [62] and replication [63].

Previous intermediate-level resilience techniques were mostly aimed at static tasks, e.g., in
MapReduce [64], hierarchical master/worker patterns [65], and the A* algorithm [66]. A well-known
example is the lineage technique of Spark [67].

Resilience for dynamic tasks has received rather little attention to date, and the research
conducted is spread across different topics. To note some examples, Kurt et al. [68] consider soft
errors that are discovered late during the execution of a task graph, and minimize the number
of task re-executions. Cao et al. [69] detect silent data corruptions in task graphs and reduce
task re-executions with the help of checkpointing. Subasi et al. [70] handle silent errors with a
combination of task-/system-level checkpointing and message logging. Ma and Krishnamoorthy [71]
consider fail-stop failures for tasks with side effects, and suggest a technique to avoid updating the
same data twice.

Prior to STorig, the Cilk-NOW system used supervision for dynamic tasks, but did not integrate
healthy subtasks [20]. Later, Satin improved on it by integrating finished subtasks and aborting
the others [21]. Moreover, checkpointing was added to Satin [22]. In contrast to that work, STorig

integrates all subtasks that are available on healthy nodes [23].

Among the precursors of TC (e.g., [72, 24]) is an X10 scheme that explicitly saves data
in other workers’ main memories instead of using a resilient store [18]. This scheme was also
combined with dynamic resource management [33]. Moreover, variants of TC, such as incremental
checkpointing [19], have been studied. Recently, a TC-like algorithm for NFJ has been sketched [73].

Besides GLB, TC and ST should be applicable to other DIT systems. Examples include the
YewPar parallel tree search framework [15, 16] and the Blaze-Tasks framework [74].
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Theoretical analyses are common in fault tolerance research. For example, these have been used
to determine optimal checkpoint intervals [75, 3], and to evaluate combinations of checkpoint/restart
with process replication [76]. Similar to our work, Subasi et al. [70] derive formulas for the overall
running time of their combined scheme, and use these for a comparison with checkpoint/restart.
Makespan analyses of job sets have to date focused on resilient scheduling heuristics for parallel
jobs [40], checkpointing strategies for optimized system I/O [77], and the impact of malleability on
job scheduling [78].

8 Conclusions

In this paper, we have compared two resilience approaches for AMT runtime systems. Although
these approaches (TC and ST) were previously known, they had thus far been targeted at different
task models, namely DIT and NFJ programs, respectively.

We first transferred ST to the DIT setting, and then compared TC with ST. Our redesign
includes a novel fork-join structure between victims and thieves, and the definition of appropriate
history information for help-first scheduling. The comparison involved experiments, predictions,
and simulations. We conducted experiments with up to 640 processes and five benchmarks, using
the GLB library. Thereafter, we determined conditions under which TC/ST are superior in single
application runs. For this purpose, we derived running time formulas depending on MTBF, number
of workers, and steal rate. Finally, we simulated the execution of job sets on a real and a hypothetical
supercomputer and evaluated the makespans.

The three investigations consistently support the same conclusions: program protection at the
intermediate level of an AMT runtime system pays off. Moreover, the choice between TC and ST is
secondary. We consistently observed ST as being superior in typical current settings, but TC takes
over on large machines and for frequent errors.

Future work should address limitations of the current study. Most importantly, it should consider
advanced task models such as those based on data flow and data exchange through side effects, as
well as advanced features of AMT runtime systems such as a hierarchical structuring of workers.
The advanced settings differ from DIT in at least two fundamental aspects: 1) the consideration of
locality in task placement and victim selection, and 2) the possibility of tasks causing side effects.
The first aspect is orthogonal to the design of TC and ST, and so we expect both approaches to be
transferable. The second aspect will require additional methods, as task descriptors no longer cover
the entire functionality of a task, and update operations must not be re-executed.

Future research may also extend our experiments to larger benchmarks, other DIT systems, and
more workers. Finally, TC/ST should be integrated with the handling of other failure types such as
silent errors.
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