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Abstract

In this paper, we consider the gathering problem of seven autonomous mobile robots on
triangular grids. The gathering problem requires that, starting from any connected initial con-
figuration where a subgraph induced by all robot nodes (nodes where a robot exists) constitutes
one connected graph, robots reach a configuration such that the maximum distance between
two robots is minimized. For the case of seven robots, gathering is achieved when one robot
has six adjacent robot nodes (they form a shape like a hexagon). In this paper, we aim to
clarify the relationship between the capability of robots and the solvability of the gathering

0The conference version of this paper is published in the proceedings of 23rd Workshop on Advances in Parallel
and Distributed Computational Models (APDCM 2021).
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problem on a triangular grid. In particular, we focus on visibility range of robots. To discuss
the solvability of the problem in terms of the visibility range, we consider strong assumptions
except for visibility range. Concretely, we assume that robots are fully synchronous and they
agree on the direction and orientation of the x-axis, and chirality on the triangular grid. In
this setting, we first consider the weakest assumption about visibility range, i.e., robots with
visibility range 1. In this case, we show that there exists no collision-free algorithm to solve the
gathering problem. Next, we extend the visibility range to 2. In this case, we show that our
algorithm can solve the problem from any connected initial configuration. Thus, the proposed
algorithm is optimal in terms of visibility range.

Keywords: distributed system, mobile robot, gathering problem, triangular grid

1 Introduction

1.1 Background

Studies for (autonomous) mobile robot systems have emerged recently in the field of Distributed
Computing. Robots aim to achieve some tasks with limited capabilities. Most studies assume
that robots are uniform (they execute the same algorithm and cannot be distinguished by their
appearance) and oblivious (they cannot remember their past actions). In addition, it is assumed
that robots cannot communicate with other robots explicitly. Instead, the communication is done
implicitly; each robot can observe the positions of the other robots.

1.2 Related work

Since Suzuki and Yamashita presented the pioneering work [1], many problems have been studied
in various settings. For example, the gathering problem, which requires all robots to meet at a
non-predetermined single point, has been studied in various environments. In the two-dimensional
Euclidean space (a.k.a., the continuous model), Suzuki and Yamashita [1] showed that when robots
are not fully synchronous, the deterministic gathering of two robots is impossible without additional
assumptions. This impossibility result was generalized to an even number of robots initially located
evenly at two positions by Courtieu et al. [2] (those configurations are known as bivalent configu-
rations). By contrast, Dieudonné and Petit [3] showed that, by adding the assumption that robots
can count the exact number of robots at each position (this ability is called the strong multiplicity
detection), an odd number of robots can gather from any initial position.

The gathering problem in the discrete space (a.k.a., the graph model) has also been studied.
In the discrete space, robots stay at fixed positions (the nodes of the graph), and move from one
position to the next position through edges of the graph. For (square) grid graphs, D’Angelo et al. [4]
considered gathering for robots without multiplicity detection and Castenow et al. [5] considered it
for robots without a common compass (a common sense of direction or north, east, south, and west on
a grid). For ring graphs, Klasing et al. [6] characterized a set of solvable initial configurations, except
for one type of symmetric initial configurations, and in [7] they clarified the feasibility remained open
in [6]. D’Angelo et al. [8] proposed an algorithm such that (i) achieves gathering from solvable initial
configurations and (ii) detects that gathering is not feasible from unsolvable initial configurations.
Stefano and Navarra [9] analyzed the required total number of robot moves to solve the gathering
problem in rings. For robots with local-weak multiplicity detection, which is a capability for robots
to detect whether there exists another one robot or more than one another robot at the current
node, Izumi et al. [10] proposed an algorithm to solve the gathering problem from aperiodic and
asymmetric initial configurations. Kamei et al. [11] (resp., [12]) proposed an algorithm to solve the
problem for an odd (resp., even) number of robots with the local-weak multiplicity detection from
symmetric but aperiodic initial configurations.

As a variant of mobile robots, gathering of fat robots is considered [13, 14, 15]. Each fat robot
dominates a space of a unit disc. There are several definitions of the gathering problem for fat robots,
e.g., robots achieve gathering when (i) they form a connected configuration (each robot touches at
least one other robot and all robots form one connected formation) or (ii) they reach a configuration
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Figure 1: An example of the gathering problem.

such that the maximum distance between two robots is minimized. For both the definitions, a
collision is not allowed. Thus, introducing sizes gives several definitions of the gathering problem,
which is an interesting point. Czyzowicz et al. [13] considered gathering of (i) for three or four
fat robots in the continuous model, and Chrysovalandis et al. [14] studied gathering of (i) for an
arbitrary number of fat robots. Ito et al. [15] considered gathering of (ii) on discrete square grids.

Recently, one of computational models for programmable matter, amoebot has been introduced
[16]. Each amoebot moves on a triangular grid and occupies one or two adjacent nodes. Each
amoebot has a finite memory, limited visibility range, and ability to communicate with a robot
staying at an adjacent node. Several problems using amoebots have been considered, such as leader
election [17], gathering [18], and shape formation (or pattern formation) [19, 20]. Recall that while
amoebots have finite memory and communication capability, (standard) autonomous mobile robots
have no memory or communication capability. Hence, the mobile robot model is weaker than the
amoebot model, and it is interesting to clarify solvability of problems between the mobile robot
model and the amoebot model.

Meanwhile, when considering a discrete space, a space filled by regular polygons is sometimes
preferable because its simple structure helps to design an algorithm and to discuss the solvability
of a problem among various robot models. In addition, (i) only triangular, square, and hexagonal
grids are discrete spaces filled by regular polygons, (ii) gathering on a square gird has already been
studied [15], and (iii) recently the amoebot model has been extensively studied on a triangular grid.
Hence, in this paper we consider gathering of mobile robots on a triangular grid.

1.3 Our contribution

In this paper, we consider the gathering problem of seven mobile robots on triangular grids. We say
in this paper that gathering is achieved when robots reach a configuration such that the maximum
distance between two robots is minimized. For the case of seven robots, letting a robot node be a node
where a robot exists, gathering is achieved when one robot has six adjacent robot nodes like Fig. 1.
This implies that robots form a (filled) hexagon. In this paper, we aim to clarify the relationship
between the capability of robots and the solvability of the gathering problem on a triangular grid.
In particular, we focus on visibility range of robots. To discuss the solvability of the problem in
terms of the visibility range, we consider strong assumptions except for visibility range. Concretely,
we assume that robots are fully synchronous, and they agree on the direction and orientation of the
x-axis, and chirality on the triangular grid. In this setting, we first consider the weakest assumption
about visibility range, i.e., robots with visibility range 1. In this case, we show that there exists no
collision-free algorithm to solve the gathering problem. Next, we extend the visibility range to 2. In
this case, we show that our algorithm can solve the problem from any connected initial configuration.
Thus, the proposed algorithm is optimal in terms of visibility range.
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Figure 2: An example of a triangular grid.

2 Preliminaries

2.1 System model

An (infinite) triangular grid is an undirected graph G = (V,E), where V is the set of nodes and E
is the set of edges. The grid has one special node called origin, and we denote it by vo. Each node
vj ∈ V has six adjacent nodes: east (vjE or E), southeast (vjSE or SE), southwest (vjSW or SW), west

(vjW or W), northwest (vjNW or NW), and northeast (vjNE or NE). The axis including vo and voE
(resp., vo and voNE) is called the x-axis (resp., y-axis)1. An example is given in Fig. 2. In addition, a
sequence of k+ 1 distinct nodes (v0, v1, . . . , vk) is called a path with length k if {vi, vi+1} ∈ E for all
i ∈ [0, k− 1]. The distance between two nodes is defined as the length of the shortest path between
them.

In this paper, we consider seven mobile robots and denote the robot set by R = {r0, r1, . . . , r6}.
Robots considered here have the following characteristics. Robots are uniform, that is, they execute
the same algorithm and cannot be distinguished by their appearance. Robots are oblivious, that is,
they have no persistent memory and cannot remember their past actions. Robots cannot communi-
cate with other robots directly. However, robots have limited visibility range and they can observe
the positions of other robots within the range. This means that robots can communicate implicitly
by their positions. We consider two problem settings about robots: robots with visibility range 1
and robots with visibility range 2. Robots with visibility range 1 can observe nodes within distance
1, that is, they can only observe their six adjacent nodes. On the other hand, robots with visibility
range 2 can observe nodes within distance 2 (eighteen nodes in total). We assume that they are
transparent, that is, even if a robot ri and several robots exist on the same axis, ri can observe all
the robots on the axis within its visibility range. Robots do not know the position of the origin, but
they agree on the direction and orientation of the x-axis, and chirality (the orientation of axes, e.g.,
clockwise or counter-clockwise) in the triangular gird.

Each robot executes the algorithm by repeating Look-Compute-Move cycles. At the beginning of
each cycle, the robot observes positions of the other robots within its visibility range (Look phase).
According to the observation, the robot computes whether it moves to its adjacent node or stays
at the current node (Compute phase). If the robot decides to move, it moves to the node by the
end of the cycle (Move phase). Robots are fully synchronous (FSYNC), that is, all robots start
every cycle simultaneously and execute each phase synchronously. We assume that a collision is
not allowed during execution of the algorithm. Here, a collision represents a situation such that two
robots traverse the same edge from different directions or several robots exist at the same node.
Concretely, the following three behaviors are not allowed: (a) some robot ri (resp., rj) staying at
node vp (resp., vq) moves to vq (resp., vp), (b) some robot ri staying at node vp remains at vp and
robot rj staying at node vq moves to vp, and (c) several robots move to the same empty node.

A configuration of the system is defined as the set of locations of each robot. Here, the location
of a robot ri is defined as the position that (1) ri is currently staying at and (2) is represented as

1Although the origin, the x-axis, and the y-axis are terms of the coordinate system, we use these terms for
explanation. In the following, we use several terms of the coordinate system.
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Figure 3: An example of a configuration.

an intersection of an axis parallel to the x-axis and an axis parallel to the y-axis. Each axis ax is
represented by (i) whether it is parallel to the x-axis or the y-axis and which direction it is far from
the axis, and (ii) the number of axes between the axis including vo (i.e., the x-axis or the y-axis)
and ax. However, robots do not know the position of vo and they cannot use information of (global)
locations. A node is called a robot node if the node is occupied by a robot. Otherwise, the node is
called an empty node. We assume that the initial configuration is connected, that is, the subgraph
of G induced by the seven robot nodes is connected. This assumption of connectivity is necessary
because, if a configuration becomes unconnected and a robot r has no adjacent robot node, r cannot
know the direction to reconstruct a connected configuration due to obliviousness, which implies that
robots cannot achieve gathering.

When a robot executes a Look phase, it gets a view of the system. A view of a robot is defined
as the set of robot nodes within its visibility range. For example, in Fig. 3, a robot at node vj
recognizes that nodes vjE , v

j
SW, and vjNE are robot nodes when its visibility range is 1 and recognizes

that nodes vk and v` are also robot nodes when its visibility range is 2.

2.2 Gathering problem

The gathering problem of mobile robots requires that starting from any connected initial configu-
ration, the robots terminate in a configuration such that the maximum distance between two robot
nodes is minimized. In the case of seven robots, gathering is achieved when one robot has six
adjacent robot nodes (Fig. 1). Concretely, we define the problem as follows.

Definition 1. A collision-free algorithm A solves the gathering problem of seven autonomous mobile
robots on a triangular grid if and only if the system reaches a configuration such that one robot has
six adjacent robot nodes and no robot moves thereafter, without a collision throughout the execution
of A.

3 Robots with visibility range 1

In this section, for robot with visibility range 1, we show that there exists no collision-free algorithm
to solve the problem.

Theorem 1. For robots with visibility range 1, there exists no collision-free algorithm to solve the
gathering problem even in the fully synchronous (FSYNC) model.

Proof. We show the proof by contradiction, that is, we assume that there exists a collision-free
algorithm A to solve the gathering problem from any connected initial configuration. In the proof,
we consider several configurations and robot behaviors, and show that if some robot moves to some
direction by Algorithm A, several robots cannot move anywhere (i.e., they have to stay at the
current nodes) since a collision occurs or the configuration becomes unconnected. Eventually, we
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Figure 5: Configurations showing that a robot with two adjacent robot nodes W and E must stay
at the current node.

show that there is a configuration such that all robots need to stay at the current nodes and they
cannot achieve gathering, which is a contradiction.

First, we consider the configuration of Fig. 4 (a). In the figure, robot ri (resp., rj) has one
adjacent robot node SE (resp., NW) and the other robots have two adjacent robot nodes SE and
NW, respectively. In such a configuration, we first show that intermediate robots cannot leave the
current nodes.

Lemma 1. A robot with two adjacent robot nodes W and E, SW and NE, or NW and SE must stay
at the current node.

Proof. We consider configurations of Fig. 5. In each configuration, robots ri and rj have two adjacent
robot nodes W and E. On the other hand, robots rp and rq have three adjacent robot nodes and
they must stay at the current nodes because they cannot detect whether the current configuration is
a gathering-achieved configuration or not. In addition, if ri moves to W, NW, or SW, rj also moves
to the same direction because they have the same view. Then, either in Fig. 5 (a) or (b), wherever
rk moves to, a collision occurs or the configuration becomes unconnected. By a similar discussion,
when ri and rj move to E, NE, or SE, a collision occurs or the configuration becomes unconnected
either in Fig. 5 (c) or (d). Thus, a robot with two adjacent robot nodes E and W cannot leave the
current node. By the similar discussion, we can show that a robot with two adjacent robot nodes
SW and NE, or NW and SE must stay at the current node. Thus, the lemma follows.

By this lemma, we can have the following two colloraries.
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Figure 6: Prohibited behaviors when a robot with one adjacent robot node SE moves to SW.
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Figure 7: Prohibited behaviors when a robot with one adjacent robot node NW moves to node W.

Collorary 1. A robot with one adjacent robot node E, SE, SW, W, NW, or NE can move only to
NE or SE, E or SW, SE or W, SW or NW, W or NE, or NW or E if it moves, respectively.

Collorary 2. A robot with two adjacent robot nodes E and SW, SE and W, SW and NW, W and
NE, NW and E, or NE and SE can move only to node SE, SW, W, NW, NE, or E if it moves,
respectively.

By Lemma 1, intermediate robots in Fig. 4 (a) cannot leave the current nodes, and hence ri or
rj has to leave the current node. Without loss of generality, we assume that in A robot ri with
one adjacent robot node SE moves to SW. Notice that ri can move only to SW or E by Collorary
1. In the following, we consider several robot behaviors and eventually show that a robot with one
adjacent robot node NE or SW must stay at the current node. Then, in a configuration of Fig. 4
(b), all robots must stay at the current nodes and they cannot solve the gathering problem, which
is a contradiction.

When a robot with one adjacent robot node SE moves to SW, several robot behaviors are not
allowed since a collision occurs, as shown in Fig. 6 (for simplicity, we omit robot nodes unrelated to
prohibited robot behaviors). Concretely, we have the following proposition.

Proposition 1. When a robot with one adjacent robot node SE moves to SW, the following four
robot behaviors are not allowed: (a) a robot with one adjacent robot node NE moves to NW, (b) a
robot with two adjacent robot nodes NW and SW moves to W, (c) a robot with one adjacent robot
node E moves to NE, and (d) a robot with two adjacent robot nodes NW and E moves to NE.

In the following, we consider the following five cases: (1) a robot with one adjacent robot node
NW moves to W, (2) a robot with one adjacent robot node SW moves to SE, (3) a robot with one
adjacent robot node NE moves to E, (4) a robot with one adjacent robot node NW moves to NE, and
(5) a robot with one adjacent robot node SW moves to W. In each case, we show that the assumed
robot behavior is not allowed. Thus, by Proposition 1-(a) and cases (2), (3), and (5), robots cannot
achieve gathering from the configuration of Fig. 4 (b), which is a contradiction (results of cases (1)
and (4) are used for cases (2), (3), and (5)).

Case 1: a robot with one adjacent robot node NW moves to W. In this case, as shown
in Fig. 7, the following three robot behaviors are not allowed: (a) a robot with two adjacent robot
nodes W and SE moves to SW, (b) a robot with one adjacent robot node E moves to SE, and (c) a
robot with one adjacent robot node NE moves to E. Then, let us consider the configuration of Fig. 8.
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Figure 8: An unsolvable configuration when a robot with one adjacent robot node NW moves to W
((i): by Fig. 6 (c), (ii): by Fig. 7 (b), (iii): by Fig. 7 (a), (iv): by Fig. 6 (b), (v): by Fig. 6 (a), (vi):
by Fig. 7 (c)).
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Figure 9: Prohibited behaviors when a robot with one adjacent
robot node SW moves to SE.
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Figure 10: A configuration such that
only rp or rq can leave the current
node ((i): by Lemma 2, (ii): by
Fig. 9 (a), (iii): by Fig. 9 (b)).

In the configuration, by Proposition 1 and the above discussion, no robot can leave the current node
and robots cannot achieve gathering, which is a contradiction. Thus, we have the following lemma.

Lemma 2. A robot with one adjacent robot node NW cannot move to node W.

Case 2: a robot with one adjacent robot node SW moves to SE. In this case, as shown in
Fig. 9, the following four robot behaviors are not allowed: (a) a robot with one adjacent robot node
NW moves to NE, (b) a robot with two adjacent robot nodes NE and SE moves to E, (c) a robot
with one adjacent robot node W moves to NW, and (d) a robot with two adjacent robot nodes NW
and E (resp., W and NE) moves to NE (resp., NW). Then, in a configuration of Fig. 10, only robot
rp with two adjacent robot nodes SW and E can move to SE or robot rq with two adjacent robot
nodes W and SE can move to SW by the above discussion and Lemmas 1 and 2 and Collorary 2.
We consider each of the behaviors and show for both the cases that robots cannot achieve gathering
from some configuration.

Case 2-1: robot rp moves to SE. In this case, clearly a robot with one adjacent robot node NE
cannot move to E and a robot with one adjacent robot node W cannot move to SW since a collision
occurs. In addition, when considering a configuration of Fig.11 (a), only robot ri with one adjacent
robot node E can leave the current node and it needs to move to SE by the previous discussions.
Now, we consider the configuration of Fig. 12 (a). In the figure, robots r1, r3, and r5 move to SE
and the other robots must stay at the current nodes. Then, the system reaches the configuration
of Fig. 12 (b). In the configuration, robots r0, r2, r4, and r6 move to SE and the other robots must
stay at the current nodes. Then, the system reaches the configuration of Fig. 12 (a). Thus, robots
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Figure 11: (a): An example such that only a robot ri with one adjacent robot node E can leave
the current node in Case 2-1 ((i): by Fig. 6 (c), (ii): by Fig. 9 (c), (iii): prohibited behavior when
a robot with two adjacent robot nodes SW and E moves to SE), (b): An example such that only a
robot ri with one adjacent robot node W can leave the current node in Case 2-2 ((iv): by Fig. 6
(c), (v): prohibited behavior when a robot with two adjacent robot nodes W and SE moves to SW,
(vi): by Fig. 9 (c)).
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Figure 12: Configurations that robots repeat alternately ((i): by Fig. 11 (a), (ii): by Fig. 9 (d), (iii):
assumption of Case 2-1, (iv): assumption of Case 2, (v): by Fig. 6 (a), (vi): prohibited behavior
when a robot with two adjacent robot nodes SW and E moves to SE, (vii): by Fig. 9 (c), (viii):
prohibited behavior when a robot with two adjacent robot nodes SW and E moves to SE).
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Figure 13: Configurations that robots repeat alternately ((i): assumption of Algorithm A, (ii): by
Fig. 9 (d), (iii): assumption of Case 2-2, (iv): by Fig. 11 (b), (v): by Fig. 6 (c), (vi): prohibited
behavior when a robot with two adjacent robot nodes W and SE moves to SW, (vii): by Lemma 2,
(viii): by Fig. 9 (a)).

repeat configurations of Fig. 12 (a) and (b) forever and they cannot achieve gathering, which is a
contradiction.

Case 2-2: robot rq moves to SW. In this case, clearly a robot with one adjacent robot node E
cannot move to SE since a collision occurs. In addition, when considering a configuration of Fig. 11
(b), only robot ri with one adjacent robot node W can leave the current node and it needs to
move to SW by the previous discussions. Now, we consider the configuration of Fig. 13 (a). In the
figure, robots r0, r2, r4, and r6 move to SW and the other robots must stay at the current nodes.
Then, the system reaches the configuration of Fig. 13 (b). In the configuration, robots r1, r3, and
r5 move to SW and the other robots must stay at the current nodes. Then, the system reaches the
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Figure 14: Prohibited behaviors when a robot
with one adjacent robot node NE moves to E.
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Figure 15: A configuration such that only rp or
rp can leave the current node ((i): by Lemma
2, (ii): by Fig. 14).
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Figure 16: Prohibited behaviors when a robot
with two adjacent robot node NE and SE moves
to E.
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Figure 17: Configurations showing that a robot
with two adjacent robot nodes SW and SE must
stay at the current node ((i): assumption of
Case 3-1, (ii): assumption of Algorithm A).

configuration of Fig. 13 (a). Thus, robots repeat configurations of Fig. 13 (a) and (b) forever and
they cannot achieve gathering, which is a contradiction. Thus, we have the following lemma.

Lemma 3. A robot with one adjacent robot node SW cannot move to node SE.

Case 3: a robot with one adjacent robot node NE moves to E. In this case, the following
two robot behaviors are not allowed (Fig. 14): a robot with two adjacent robot nodes SW and E
(resp., W and SE) moves to SE (resp., SW). Then, in a configuration of Fig. 15, it is necessary that
at least a robot rp with two adjacent robot nodes NE and SE moves to E or a robot rq with one
adjacent robot node with NW moves to NE by the previous discussions. We consider each of the
behaviors and show for both the cases that robots cannot achieve gathering from some configuration.

Case 3-1: robot rp moves to E. In this case, the following two robot behaviors are not allowed
(Fig. 16): (a) a robot with one adjacent robot node NW moves to NE and (b) a robot with one
adjacent robot node W moves to NW or SW. In addition, when considering configurations of Fig. 17,
a robot with two adjacent robot node SW and SE must stay at the current node. Then, in a
configuration of Fig. 18 only robot ri with three adjacent robot nodes NW, NE, and SE can leave
the current node and it needs to move to E to avoid a collision or an unconnected configuration. In
addition, when considering configurations of Fig. 19, a robot rj with four adjacent robots nodes E,
SW, W, and NW must stay at the current node. Hence, in a configuration of Fig. 20, only robot ri
with two adjacent robot nodes NW and NE can leave the current node. Then, in a configuration
of Fig. 21, a collision occurs when ri moves to W. Hence, it needs to move to E. Next, we consider
the behavior of robot rj with two adjacent robot nodes E and SE. When it moves to SW, the
configuration becomes unconnected if its southeast robot ri has two adjacent robot nodes NW and
NE, and moves to E (Fig. 22 (a)). In addition, rj cannot move to NE since a collision occurs in a
configuration of Fig. 22 (b). Thus, robot rj must stay at the current node. Finally, in a configuration
of Fig. 23, no robot can leave the current node and robots cannot achieve gathering. Therefore, a
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Figure 18: A configuration such that only robot ri with three adjacent robot nodes NW, NE, and
SE can leave the current node ((i): by Fig. 17 (a), (ii): by Fig. 17 (b), (iii): by Fig. 6 (d), (iv): by
Fig. 16 (b)).
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Figure 19: Configurations showing that robot
rj with four adjacent robot nodes E, SW, W,
and NW must stay at the current node ((i):
assumption of Algorithm A, (ii): by Fig. 18).
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Figure 20: A configuration such that only robot
ri with two adjacent robot nodes NE and NW
can leave the current node ((i): by Fig. 17 (a),
(ii): by Fig. 17 (b), (iii): by Fig. 19 (a), (iv): by
Fig. 19 (b), (v): by Fig. 16 (b)).
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Figure 21: An example showing that a robot
with two adjacent robot nodes NE and NW
cannot move to W ((i): assumption of Case
3).
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Figure 22: Configurations showing that a robot
with two adjacent robot nodes SW and SE must
stay at the current node ((i): by Fig. 21, (ii):
assumption of Algorithm A).

robot rp with two adjacent robot nodes NE and SE must stay at the current node. By a similar
discussion, we can also show that a robot with three adjacent robot nodes NE, SE, and SW must
stay at the current node.

Case 3-2: robot rq moves to NE. In this case, when considering a configuration of Fig. 24, only
robot ri with two adjacent robot nodes E and NE can leave the current node. However, ri cannot
move to NW since a collision occurs in a configuration of Fig. 25 and it needs to move to SE.
Similarly, in a configuration of Fig. 26 only robot rj with two adjacent robot nodes NW and W can
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Figure 23: An unsolvable configuration when a robot with two adjacent robot nodes NE and SE
moves to E ((i): by Fig. 22 (a), (ii): by Fig. 22 (b), (iii): by Fig. 16 (b)).

ሺiሻ

ሺiiሻ

ሺiiiሻ

ሺivሻ
ሺvሻ

ሺviሻ

𝒓𝒊

𝒗𝒉

Figure 24: A configuration such that only robot
ri with two adjacent robot nodes NE and E can
leave the current node ((i): by Case 3-1, (ii),
(iii): by Fig. 14, (iv)-(vi): behaviors that may
cause a collision if a robot at vh has one adja-
cent robot node SE and moves to SW by the
hypothesis of Algorithm A).

���

Figure 25: An example showing that a robot
with two adjacent robot nodes NE and E cannot
move to NW ((i): assumption of Algorithm A).

ሺiሻ
ሺiiሻ

ሺiiiሻ

ሺivሻ
ሺvሻ

ሺviሻ

𝒓𝒋

𝒗𝒉

Figure 26: A configuration such that only robot
ri with two adjacent robot nodes NW and W
can leave the current node ((i): by Case 3-1,
(ii), (iii): by Fig. 14, (iv)-(vi): behaviors that
may cause a collision if a robot at vh has one
adjacent robot node SE and moves to SW by
the hypothesis of Algorithm A).

���

�
�

Figure 27: An example showing that a robot
with two adjacent robot nodes NW and W can-
not move to SW ((i): assumption of Case 3).

leave the current node. However, rj cannot move to SW since a collision occurs in a configuration
of Fig. 27 and it needs to move to NE. Now, we consider the configuration of Fig. 28. In the figure,
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Figure 28: A configuration that becomes unconnected after robots ri and rj move.

Figure 29: Prohibited behaviors when a robot
with one adjacent robot node NW moves to NE.
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Figure 30: A configuration such that no robot
can leave the current node when a robot with
one adjacent robot node NW moves to NE ((i):
by Fig. 6 (a), (ii): by Lemma 4, (iii): by Fig. 29,
(iv): by Fig. 6 (b)).
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Figure 31: Prohibited behaviors when a robot with one adjacent robot node SW moves to W.

robot ri moves to SE and robot rj moves to NE by the above discussion. Then, the configuration
becomes unconnected and robots cannot achieve gathering. Thus, a robot rq with one adjacent
robot node NW must stay at the current node. Therefore, robots cannot solve the problem from
the configuration of Fig. 15 and we have the following lemma.

Lemma 4. A robot with one adjacent robot node NE cannot move to node E.

Case 4: a robot with one adjacent robot node NW moves to NE. In this case, the
following two robot behaviors are not allowed (Fig. 29): a robot with two adjacent robot nodes SW
and E (resp., W and SE) moves to SE (resp., SW). Then, in a configuration of Fig. 30, no robot can
leave the current node and robots cannot achieve gathering. Thus, we have the following lemma.

Lemma 5. A robot with one adjacent robot node NW cannot move to node NE.

14
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ሺiሻ

ሺiiሻ ሺiiiሻ

ሺivሻ

𝒓𝒑 𝒓𝒒

Figure 32: A configuration such that only robot
rp with two adjacent robot nodes SW and E or
rq with two adjacent robot nodes W and SE
can leave the current node ((i): by Fig 6 (a),
(ii): by Lemma 4, (iii): by Lemma 2, and (iv):
by Lemma 5).
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��� ���

����

Figure 33: Examples showing that a robot with
two adjacent robot nodes W and SW cannot
leave the current node ((i): assumption of Case
5-1, (ii): assumption of Case 5).
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Figure 34: A configuration such that only robot
ri with two adjacent robot nodes SE and SW can
leave the current node ((i): by Fig 31 (d), (ii): by
Lemma 2, (iii): by Lemma 5).

���

Figure 35: An example showing that a robot
with two adjacent robot nodes SE and SW can-
not move to E. ((i): assumption of Case 5).

Case 5: a robot with one adjacent robot node SW moves to W. In this case, the
following four robot behaviors are not allowed (Fig. 31): (a): a robot with two adjacent robot nodes
NE and SE moves to E, (b): a robot with two adjacent robot nodes NW and E moves to NE, (c): a
robot with two adjacent robot nodes W and NE moves to NW, and (d): a robot with three adjacent
robot nodes NE, NW, and SE moves to E. Then, in a configuration of Fig. 32, it is necessary that
robot rp with two adjacent robot nodes SW and E moves to SE or robot rq with two adjacent robot
nodes W and SE moves to SW. We consider each of the behaviors and show for both the cases that
robot cannot achieve gathering from some configuration.

Case 5-1: robot rp moves to SE. In this case, a robot with two adjacent robot nodes SW and
W cannot leave the current node because otherwise a collision may occur (Fig. 33). Next, when
considering a configuration of Fig. 34, only robot ri with two adjacent robot nodes SE and SW can
leave the current node. However, in a configuration of Fig. 35, ri cannot move to E since a collision
occurs. Hence, ri needs to move to W. Then, a robot rj with two adjacent robot nodes E and NE
cannot move to NW or SE because a collision occurs or the configuration becomes unconnected
(Fig. 36). Finally, we consider the configuration of Fig. 37. In the figure, no robot can leave the
current node and they cannot achieve gathering. Thus, a robot rp with two adjacent robot nodes
SW and E cannot move to SE and it must stay at the current node.

Case 5-2: robot rq moves to SW. In this case, a robot with one adjacent robot node E cannot
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���

Figure 36: An example showing that a robot
with two adjacent robot nodes E and NE cannot
leave the current node ((i): by Fig. 35).

���
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�����

����

���

Figure 37: An unsolvable configuration when a
robot with two adjacent robot nodes SW and E
moves to SE ((i): by Fig. 36, (ii): by Fig. 33 (a),
(iii): by Fig. 33 (b), (iv): by Lemma 2, (v): by
Lemma 5).
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Figure 38: Examples showing that a robot with two adjacent robot nodes E cannot leave the current
node ((i): assumption of Case 5-2).

ሺiሻ

ሺiiሻ

𝒓𝒊

Figure 39: A configuration such that only robot ri with two adjacent robot nodes W and SW can
leave the current node ((i): by Fig. 38 (a), (ii): by Fig. 38 (b)).

leave the current node because otherwise a collision may occur (Fig. 38). Then, when considering
a configuration of Fig. 39, only robot ri with two adjacent robot nodes SW and W can leave the
current node. However, ri cannot move to SE since a collision occurs in a configuration of Fig. 40.
Hence, ri needs to move to NW. Then, robot rj with two adjacent robot nodes E and SE cannot
leave the current node because a collision occurs or the configuration becomes unconnected (Fig. 41).
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Figure 40: An example showing that a robot
with two adjacent robot nodes SW and W can-
not move to SE ((i): assumption of Case 5).
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Figure 41: An example showing that a robot
with two adjacent robot nodes E and SE cannot
leave the current node ((i): by Fig. 40).
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Figure 42: A configuration such that only robot
ri with three adjacent robot nodes SE, W, and
NW can leave the current node ((i): by Fig. 41,
(ii): by Lemma 2, (iii): by Lemma 5).
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Figure 43: An example showing that a robot rj
with four adjacent robot nodes E, SW, NW, and
NE cannot move to SE ((i): by Fig. 42).

Next, we consider the configuration of Fig. 42. In the figure, only robot ri with three adjacent robot
nodes SE, W, and NW can leave the current node and it needs to move to SW by the previous
discussions. Then, a robot rj with four adjacent robot nodes E, SW, NW, and NE cannot leave
the current node since a collision occurs in a configuration of Fig. 43. Thus, when considering the
configuration of Fig. 44, only robot ri with two adjacent robot nodes W and NW can leave the current
node. However, ri cannot move to NE since a collision occurs in a configuration of Fig. 45. Thus,
ri needs to move to SW. Then, a robot with one adjacent robot node W cannot leave the current
node because otherwise a collision occurs in configurations of Fig. 46. Finally, when considering the
configuration of Fig. 47, no robot can leave the current node and robots cannot achieve gathering,
which is a contradiction. Thus, a robot rq with two adjacent robot nodes W and SE cannot move
to SW. Therefore, we have the following lemma.

Lemma 6. A robot with one adjacent robot node SW cannot move to node W.

Thus, by Proposition 1-(a), Lemmas 1, 3, 4, and 5, robots cannot achieve gathering from a
configuration of Fig. 4 (b) and we have the theorem.

Remark. We showed impossibility of gathering for seven mobile robots which requires that robots
form a hexagon with radius 1. This result also holds for gathering of the specific number of robots
such that they form a hexagon with radius of a positive integer after gathering.
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Figure 44: A configuration such that only robot
ri with two adjacent robot nodes W and NW
can leave the current node ((i): by Fig. 41, (ii):
by Fig. 43, (iii): by Fig. 6 (a) (iv): by Lemma
4).
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Figure 45: An example showing that a robot
ri with two adjacent robot nodes W and NW
cannot move to NE ((i): assumption of Case 5-
2).

���
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Figure 46: Examples showing that a robot with one adjacent robot node W cannot leave the current
node ((i): by Fig. 40, (ii): by Fig. 45).

���
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�����

����

Figure 47: An unsolvable configuration when a robot with two adjacent robot nodes W and SE
moves to SW ((i): by Fig. 38 (a), (ii): by Fig. 38 (b), (iii): by Fig. 46 (b), (iv): by Fig. 46 (a)).

4 Robots with visibility range 2

In this section, for robots with visibility range 2, we propose a collision-free algorithm to solve the
gathering problem from any connected initial configuration.
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Figure 48: Assignment of labels.
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Figure 49: Examples of how to determine the base nodes ((a): node vb is the base node, (b): ri does
not determine the base node, (c): ri determines vb as the base node and moves there).

4.1 Proposed algorithm

The basic idea is that each robot firstly determines the base node that is the rightmost robot node
within its visibility range and then it moves toward the base node to achieve gathering. First, we
explain how to determine the base (or rightmost) robot. For explanation, in the following we assume
that each robot ri recognizes that it is located at an origin and it assigns labels to each node within
its visibility range like Fig. 48. In the figure, the first (resp., second) element of each label is called
the x-element (resp., y-element)2. Then, ri determines the robot node with the largest x-element as
the base node (possibly the robot node where ri itself stays). If several robot nodes have the largest
x-element, ri does not determine the base node at that time and waits at the current node until
the configuration changes. As exceptions, if node (4,0) is an empty node and nodes (3,1) and (3,-1)
are robot nodes, ri determines node (4,0) as the base node to avoid the configuration such that no
robot determines a base node and each robot waits at the current node. In addition, if robot nodes
(1,1) and (1,-1) have the largest x-element among all the labels of robot nodes within ri’s visibility
range, and ri moves to node (2,0) so that it becomes a base. Examples are given in Fig. 49.

Next, we explain how to achieve gathering based on the base node. Robots consider the base
node as the rightmost node of a gathering-achieved configuration and they basically move east on a
triangular grid with avoiding a collision and an unconnected configuration. Concretely, if the label
of the base node from robot ri is (2,-2), (3,-1), (4,0), (3,1), or (2,2), it moves to one of adjacent
nodes as indicated in Fig. 50 (a) using ordinal numbers in Fig. 50 (b). That is, among the candidate
nodes that ri may visit in the next cycle, ri moves to the empty adjacent node with the smallest
ordinal number. If several robots try to move to the same node vj , the robot staying at the node
with the largest ordinal number moves to vj . If all the candidate nodes are robot nodes, ri stays
at the current node. For example, in Fig. 51, robots ri and rj consider the common node vb as the
base node, ri (resp., rj) has two candidate nodes vn and v` (resp., vm and v`) to visit, vn (resp.,
vm) is a robot node, and hence it tries to visit v` (resp., v`). In this case, since the ordinal number 4
of the node where ri stays is larger than the ordinal number 3 of the node where rj stays, ri moves

2Labels are assigned for explanation and they are a little different from the coordinate system. For example, the
difference between labels (0,0) and (2,0) is 2 but the distance between node (0,0) and node (2,0) is 1.
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Figure 50: Movement rules ((a): candidate nodes to visit, (b): ordinal numbers).
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Figure 51: An example to avoid a collision using
ordinal numbers.
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Figure 52: An example to avoid a collision using
x-elements.

to v` and rj stays at the current node. If two robots consider the common node as the base node
like the above example, they can share the common ordinal numbers and can avoid a collision or
an unconnected configuration. However, it is possible that some two robots consider different robot
nodes as their base nodes due to their limited visibility range, which may cause a collision or an
unconnected configuration. For example, in Fig. 52, robot ri considers v′b as the base node but rj
considers vb as the base node, and they try to move to the same node v` according to the movement
rule. In this case, the robot with the smaller x-element of the node label moves to the node and
the other robot stays at the current node. Hence, in Fig. 52, ri moves to v` and rj stays at the
current node. Moreover, only with the movement rule in Fig. 50, no robot leaves the current node
in the configuration in Fig. 53. In this case, as a special behavior, if the label of the base node from
robot ri is (3,1), nodes (1,1), (2,0), and (1,-1) are robot nodes, and node (-1,1) is an empty node,
ri moves to the northwest adjacent node (-1,1) so that robot rj staying at ri’s southeast adjacent
node (1,-1) can move to the node where ri is currently staying. Similarly, as a special behavior,
if the label of the base node from robot ri is (3,-1), nodes (1,-1), (2,0), and (1,1) are robot nodes,
and node (-1,-1) is an empty node, ri moves to the southwest adjacent node (-1,-1) so that robot rj
staying at ri’s southeast adjacent node (1,1) can move to the node where ri is currently staying (we
omit the figure). When robots reach a configuration such that no robot leaves the current node, the
configuration is one solution of the gathering problem.

An example of the algorithm execution is given in Fig. 54. From (a) to (b), for r2, since its
northeast adjacent robot node (1,1) and southeast adjacent robot node (1,-1) have the largest x-
element among robot nodes that r2 observes, it moves to east adjacent node vb. From (b) to (c),
robots r0 and r3 consider vb as the common base node and they try to move to the empty node
vk with the smallest ordinal number among candidate empty nodes. In this case, since the ordinal
number of the node where r3 stays is larger than that of the node where r0 stays, r3 moves to vk
and r0 stays at the current node. From (c) to (d), r5 (resp., r6) considers v′b (resp., vb) as the base
node and they try to move to node v`. In this case, since the x-element of the node that where r5
stays is smaller than that of the node where r6 stays, r5 moves to v` and r6 stays at the current
node. From (d) to (e), as a special behavior, robot r5 moves to the northwest adjacent robot node
so that r6 can move to the node where r5 is currently staying. From (e) to (f), robot r6 considers
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Figure 53: An example to
avoid a standstill.
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Figure 54: An example of the algorithm execution.
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Figure 55: Behavior of robot ri when the label of the base node vb is (2,0) but the node is an empty
node.
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Figure 56: Behavior of robot ri when the label of the base node vb is (4,0).

vb as the base node and it moves to the northwest adjacent node. Then, robots achieve gathering.

The pseudocode of the proposed algorithm is described in Algorithm 1. In the following, we
explain several robot behaviors that avoid a collision or an unconnected configuration. The behavior
of robot ri for the case that, the label of the base node is (2,0) but the node is an empty node,
is described in lines 1 – 3. In this case, ri tries to move to node (2,0). However, if ri’s west
adjacent node (-2,0) is a robot node and ri moves to the base node (2,0), the configuration may
become unconnected (Fig. 55 (a)). Hence, in this case ri moves to node (2,0) when ri’s northwest
or southwest adjacent node is also a robot node (Fig. 55 (b)).

The behavior of robot ri for the case that the label of the base node is (4,0) is described in lines
5 – 9. In this case, if node (2,0) is an empty node, ri tries to move to the node. However, if ri’s
southwest adjacent node (-1,-1) is a robot node and ri moves to node (2,0), the configuration may
become unconnected (Fig. 56 (a)). Hence, in this case ri moves to node (2,0) when its southeast
adjacent node (1,-1) is also a robot node (Fig. 56 (b)).

The behavior of robot ri for the case that the label of the base node is (3,-1) is described in
lines 11 – 15. In this case, if nodes (2,0), (1,-1) and (1,1) are robot nodes and node (-1,-1) is an
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Algorithm 1 Proposed algorithm

1: if (node (2,0) is an empty node) ∧ (nodes (1,1) and (1,-1) are robot nodes) ∧ (the other robot nodes
have x-elements of the labels at most 0) then

2: /*The base node is (2,0) but it is an empty node*/
3: if (node (-2,0) is an empty node) ∨ ((node (-2,0) is a robot node) ∧ (node (-1,1) or (-1,-1) is a robot

node)) then move to the east adjacent node (2,0)
4:
5: else if (node label of the base node is (4,0)) ∨ ((node (4,0) is an empty node) ∧ (nodes (3,1) and (3,-1)

are robot nodes)) then
6: /*The base node is (4,0)*/
7: if (node (2,0) is an empty node) ∧ ((nodes (-1,1), (-2,0), and (-1,-1) are empty nodes) ∨ (node (1,-1)

is a robot node and nodes (-2,0) and (-1,1) are empty nodes) ∨ (node (1,1) is a robot node and nodes
(-2,0) and (-1,-1) are empty nodes) ∨ (nodes (1,-1), (-1,-1), and (-2,0) are robot nodes and node (-1,1)
is an empty node) ∨ (nodes (-2,0), (-1,1) and (1,1) are robot nodes and node (-1,-1) is an empty
node)) then move to the east adjacent node (2,0)

8: else if (node (2,0) is a robot node) ∧ (node (1,1) is an empty node) ∧ (nodes (-2,0) and (-1,1) are
empty nodes) ∧ ((nodes (-1,-1) and (2,2) are empty nodes) ∨ (nodes (2,2), (3,1), (3,-1), and (-2,-2)
are robot nodes)) then move to the northeast robot node (1,1)

9: else if (nodes (2,0) and (1,1) are robot nodes) ∧ (nodes (1,-1) is an empty node) ∧ (nodes (-1,-1)
(-2,0), (-1,1), and (2,-2) are empty nodes) ∧ ((node (1,1) is a robot node) ∨ (node (2,2) is a robot
node)) then move to the southeast adjacent node (1,-1)

10:
11: else if node label of the base node is (3,-1) then
12: /*The base node is (3,-1)*/
13: if (node (1,-1) is an empty node) ∧ (nodes (-1,-1) and (0,-2) are empty nodes) ∧ ((nodes (-2,0) and

(-1,1) are empty nodes) ∨ (nodes (-1,1) and (1,1) are robot nodes and node (0,2) is an empty node))
then move to the southeast adjacent node (1,-1)

14: else if (node (1,-1) is a robot node) ∧ (node (2,0) is an empty node) ∧ (node (-1,1) is an empty
node) ∧ ((node (-2,0) is an empty node) ∨ (nodes (-2,0) and (-1,-1) are robot nodes)) then move to
the east adjacent node (2,0)

15: else if (nodes (1,-1) and (2,0) are robot nodes) ∧ (node (1,1) is a robot node) ∧ (node (-1,-1) is an
empty node) ∧ (nodes (-2,0) and (-2,-2) are empty node) then move to the southwest node (-1,-1)

16:
17: else if node label of the base node is (2,-2) then
18: /*The base node is (2,-2)*/
19: if (node (-1,-1) is an empty node) ∧ (nodes (-2,0), (-3,-1), and (-1,1) are empty nodes) then move to

the southwest adjacent node (-1,-1)
20:
21: else if node label of the base node is (3,1) then
22: /*The base node is (3,1)*/
23: if (node (1,1) is an empty node) ∧ ((nodes (-1,1), (-2,0), (-1,-1) are empty nodes) ∨ (nodes (1,-1)

and (-1,-1) are robot nodes and nodes (0,-2) and (-1,1) are empty node)) then move to the northeast
adjacent node (1,1)

24: else if (node (1,1) is a robot node) ∧ (node (2,0) is an empty node) ∧ ((nodes (-2,0) and (-1,-1) are
empty nodes) ∨ (node (-1,-1) is an empty node and nodes (-2,0) and (-1,1) are robot nodes)) then
move to the east adjacent node (2,0)

25: else if (nodes (1,1) and (2,0) are robot nodes) ∧ (node (1,-1) is a robot node) ∧ (node (1,-1) is an
empty node) ∧ (nodes (-2,0), and (-2,2) are empty nodes) then move to the northwest adjacent node
(-1,1)

26:
27: else if node label of the base node is (2,2) then
28: /*The base node is (2,2)*/
29: if (node (-1,1) is an empty node) ∧ (nodes (-3,1), (-2,0), and (-1,-1) are empty nodes) then move to

its northwest adjacent node (-1,1)
30:
31: else if (node label of the base node is (0,0) or (2,0) or (1,-1) or (1,1)) ∨ (there is no base node) then
32: /*Robot ri is close to the base node and it does not need to leave the current node*/
33: stay at the current node
34: end if

empty node, as a special behavior, ri tries to move to its southwest adjacent node (-1,-1) so that the
robot staying at node (1,1) could move to node (0,0) where ri is currently staying. However, due
to the limited visibility range, it is possible that ri and some robot rj consider different nodes as
base nodes, rj staying at node (-2,0) or (-2,-2) tries to move to node (-1,-1), and a collision occurs
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Figure 57: Behavior of robot ri when the label of the base node vb is (3,-1) (v′b: the base node for
robot rj).
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Figure 58: Behavior of robot ri when the label of the base node vb is (2,2) (v′b: the base node for
robot rj).

(Fig. 57 (a), (b)). Hence, in this case ri moves to node (-1,-1) when nodes (-2,0), (-2,-2), and (-1,1)
are empty nodes (Fig. 57 (c)). In addition, if node (3,-1) is a base node and node (1,-1) is an empty
node, ri tries to move to the node. Then, it is possible that ri and some robot rj consider different
nodes are base nodes, rj staying at node (-1,1) tries to move to node (-2,0), and the configuration
become unconnected (Fig. 57 (d)). Hence, in this case ri moves to node (1,-1) when node (0, 2) is
an empty node.

The behavior of robot ri for the case that the label of the base node is (2,2) is described in lines
27 – 29. In this case, if node (1,1) is a robot node and node (-1,1) is an empty node, it tries to move
to node (-1,1). However, due to the limited visibility range, it is possible that ri and some robot rj
consider different nodes are base nodes, rj staying at node (-2,0) tries to move to node (-1,1), and
a collision occurs (Fig. 58 (a)), or rj staying at node (-1,-1) does not leave the current node and the
configuration becomes unconnected (Fig. 58 (b)). Hence, in this case ri moves to node (-1,-1) when
nodes (-2,0) and (-1,-1) are empty nodes (Fig. 58 (c)).

Although there still exist several robot behaviors that avoid a collision or an unconnected con-
figuration, we omit the detail.
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4.2 Correctness

The correctness of the proposed algorithm has been evaluated by computer simulations. By the
simulations, we confirmed that robots which execute the proposed algorithm can achieve gathering
from all possible connected initial configurations (3652 patterns in total) in the fully synchronous
(FSYNC) model. Thus, we have the following theorem.

Theorem 2. For robots with visibility range 2, the proposed algorithm solves the gathering problem
from any connected initial configuration in the FSYNC model.

5 Conclusion

In this paper, we considered the gathering problem of seven autonomous mobile robots on triangular
grid graphs. First, for robots with visibility range 1, we showed that no collision-free algorithm exists
for the gathering problem. Next, for robots with visibility range 2, we proposed a collision-free
algorithm to solve the problem from any connected initial configuration. This algorithm is optimal
in terms of visibility range.

There are four possible future works as follows. First, we will complete a theoretical proof of
correctness for the proposed algorithm in Section 4. Second, we will consider the relaxed version
of connected initial configurations such that the visibility relationship among robots constitutes
one connected graph. Third, we will consider gathering for different number of robots. Lastly, we
consider other problems such as the pattern formation problem for autonomous mobile robots on
triangular grids.

Acknowledgement

This work was partially supported by JSPS KAKENHI Grant Number 18K18029, 18K18031, 19K11823,
20H04140, 20KK0232, and 21K17706; the Hibi Science Foundation; and Foundation of Public Inter-
est of Tatematsu.

References

[1] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of geometric
patterns. SIAM Journal on Computing, 28(4):1347–1363, 1999.

[2] P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain. Impossibility of gathering, a certification.
Information Processing Letters, 115(3):447–452, 2015.
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