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Abstract

Pairings are widely used for innovative protocols such as ID-based encryption and group
signature authentication. According to the recent works, the Barreto-Lynn-Scott (BLS) family
of pairing-friendly elliptic curves is suggested for the pairings at the various security levels.
One of the important facts is that the BLS family has fixed polynomial parameters of a field
characteristic and group order in terms of an integer x0. For practical pairing-based protocols,
we have to carefully find x0 which leads to efficient pairings, however, this search of x0 is typically
complicated. Thus, it is desired some convenient ways of finding x0 which have advantageous
for the pairings. For this reason, Costello et al. proposed simple restrictions for finding x0 that
generates the specific BLS subfamilies of curves with embedding degree k = 24 having one of the
best field and curve constructions for the pairings. Since there are demands of such restrictions
for the other cases of the embedding degrees, the authors extend their work and provide these
for the cases of k = 2m · 3 and 3n with arbitrary integers m,n > 0 in this paper. The results
will help to find new parameters which lead to one of the best performing pairings with the BLS
family of curves with various k. The results also allow us to respond to change in the security
levels of the pairings flexibly according to the progress in the security analyses in the future.

Keywords: Pairing-based cryptography, BLS curves, tower of extension fields.

1 Introduction

Background and motivation. Pairings on elliptic curves enable innovative protocols, e.g., ID-
based encryption [9], group signature authentication [7], searchable encryption [8], attribute-based
encryption [15], and homomorphic encryption [32]. Since these pairing-based protocols can be indi-
rectly improved through the improvement of the pairings, researchers have been working on methods
to construct several families of pairing-friendly elliptic curves [3,4,13,22], optimizations of the pair-
ing algorithm [10,14,20,21,28,34,38], security analyses [1,2,12,17,18], and so on. As one of recent
works of the pairings, in [1], Barbulescu and Duquesne analyzed the key size of the pairings that have
resistance against an attack for a discrete logarithm problem given by Kim et al. in [24]. Starting
with this, researchers have been worked on the security analyses and gave recommendations of the
elliptic curves in [2,12,17,18]. According to these results, one of the parametric families of pairing-
friendly elliptic curves given by Barreto, Lynn, and Scott in [3], which is so-called the BLS family, is
often used for the pairings at the various security levels. The BLS family has high flexibility of the
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choices of embedding degrees. Moreover, that can strongly supports optimizing the pairings, e.g.,
one can immediately find the shortest Miller loop [20,38] and efficient algorithm for computing the
final exponentiation without effort [19,35]. Therefore, the BLS family will be regularly adopted for
the pairings even if there is progress in the security analyses in the future.

In the context, the BLS family has specific rational polynomial parameters p(x), r(x), and t(x)
with some indeterminate x for generating pairing-friendly elliptic curves with embedding degree k
of multiple of 3 except for k = 18. For an integer x0 making p(x0) and r(x0) being primes and
t(x0) being an integer, one can find an elliptic curve E defined over a prime field of order p(x0) with
embedding degree k of which the group order n(x0) is given as n(x0) = p(x0) + 1− t(x0) including
a prime divisor r(x0). Such curve E is called the BLS curve. One can also find a twist E′ of degree
d of E defined over a field of order p(x0)k/d of which the group order n′(x0) is divisible by r(x0).
These two curves E and E′ are often used for the pairings. As seen above, since x0 strongly specifies
the field and curve constructions of the BLS family, we have to carefully choose x0 for realizing
efficient pairings. However, since it is typically complicated for finding x0 which has advantageous
for the pairings, it is desired to establish some convenient ways of finding such x0.

For the above reasons, in [11], Costello et al. proposed simple restrictions for finding x0 given by
the congruence classes x0 ≡ 7, 16, 31, 64 (mod 72) which specifies the BLS family of pairing-friendly
elliptic curves with k = 24. Once finding x0 under their restrictions, there appear the specific
subfamilies of the BLS family having the following nice options.

(i) A fixed tower of extension fields with fast arithmetics is available.
(ii) The BLS curve E is determined.
(iii) The twist E′ is determined.

With the field option (i), it is found that the BLS subfamilies can result in fast pairings in terms
of the efficiency of field arithmetics. Besides, with the field and curve options (i), (ii), and (iii), the
BLS subfamilies contribute to reducing the pre-computation of the initial setting of the pairings and
can also provide reusability of implementations. Thus, it is worth using these BLS subfamilies by
restricting x0 even though that narrows down the choices of the curves.

In fact, in [11], Costello et al. derived the restrictions for generating the BLS subfamilies having
the field option (i) and added the curve options (ii) and (iii) to these subfamilies. In more detail,
they derived the necessary and sufficient conditions for constructing their favorite tower of extension
fields. Then, under the restrictions, they determined the curve equations of E and E′ by checking
the small cofactors of the group orders n(x0) and n′(x0), respectively. Although they only focused
on the case of k = 24, there are demands of similar results for the other cases of embedding degrees.
Fortunately, since there is a possibility that their techniques can be straightforwardly extended for
different embedding degrees, the authors try to clarify these in this paper.

Our results and contribution. The authors extend [11] and provide restrictions for finding x0 that
can generate the specific BLS subfamilies of pairing-friendly elliptic curves with more generalized
embedding degrees k = 2m · 3 and 3n for any integer m,n > 0 as shown in the below.

• For k = 2m ·3, the authors propose to restrict x0 by the congruence classes x0 ≡ 7, 10, 16, 28, 31,
34 (mod 36) for m = 1; x0 ≡ 7, 16, 31, 64 (mod 72) for m > 1. Once finding x0 under the
restrictions, the BLS subfamilies of curves with k = 2m · 3 having the options (i), (ii), and (iii)
are generated (see Theorems 6, 7 and 8).

• For k = 3n, the authors propose to restrict x0 by x0 ≡ 4 (mod 6). Once finding x0 under
the restriction, the BLS subfamily of curves with k = 3n having the options (i) and (ii) is
generated (see Theorems 9 and 10). Although the authors can not give the twist option (iii)
to the subfamily just by extending [11], the authors give a conjecture (see Conjecture 1).

In the process of obtaining the results, the authors present the group order n′(x0) of the twist E′

for the cases of k = 2m · 3 and 3n (see Theorems 4 and 5).
The results can contribute to an easy search of the parameters x0 which lead to one of the efficient

pairings with the BLS family of curves with k = 2m · 3 and 3n in terms of the field arithmetics.
Indeed, the authors find several sample parameters x0 for the pairings with the BLS family of curves
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with k = 9, 12, 24, and 27 at the 128 and 192-bit security levels (see Tables 3 and 4). The pairings on
the curves with sample parameters are enough efficient as shown in evaluation by an implementation
using C language (see Tables 5 and 6). Although [11] also provided many parameters for k = 24,
the authors confirm that the parameters found by this work result in more efficient pairings at the
current 192-bit security level than that of the previous ones. In addition to this, since all x0 in the
certain restriction have the common field and curve constructions, the results can also support to
change of x0 smoothly. For example, if there exists an implementation of the pairing with a certain
x0 satisfying the restriction, we can update x0 without changing the implementation of the field
and curve arithmetics as long as x0 is chosen from the same restriction. Thus, if there is progress
in the security analyses, the results also allow us to flexibly respond to the update of x0 without
changing implementations as far as possible. Moreover, since the results are available for the curves
with generalized embedding degrees k, these will be useful for the researcher and implementer of the
pairings for a long time.

The Differences from the previous version. Note that this paper is an extended version of the
authors’ previous work [30] submitted in CANDAR’20 workshop. The previous version proposed
the same restrictions for the BLS family of curves with k = 2m · 3 and 3n and also described that
the generated BLS subfamilies have the options (i) and (ii). However, the previous version could
not give the twist option (iii) at all. This is because that there was a lack of knowledge of the group
order n′(x0) of the twist E′ for the generalized embedding degrees, and thus the curve determination
techniques given by [11] could not be applied. Contrary, this paper drive n′(x0) for both the cases
of k = 2m · 3 and 3n and determine the curve equation of E′ for the case of k = 2m · 3. As the other
differences, this paper provides the sample parameters x0 with the implementation results.

Organization. The rest of this paper is organized below. Sect. 2 provides a brief background on
pairings. In Sect. 3, the authors describe the review of the BLS family and the previous work [11].
Sect. 4 gives the mathematical preliminaries for driving the restrictions for constructing the tower
of extension fields and determining the curve equations. Before describing the proposal, the authors
derive the group order of the twist E′ in Sect. 5. Then, in Sect. 6, the authors describe the proposed
restrictions for generating BLS subfamilies with mathematical grounds. Applying the proposal,
Sect. 7 provides the sample parameters. Sect. 8 evaluates the pairings on the curves with the
parameters given in Sect. 7 by the implementation. Finally, Sect. 9 draws the conclusion.

2 Background on Pairings

In the following subsections, the authors present brief explanations of the elliptic curves and pairings.

2.1 Elliptic Curves

Let p be a prime and q be p or power of p. Let Fq be a finite field of order q. Let F∗q be a multiplicative

group of Fq and let Fq be an algebraic closure of Fq. For a prime p > 3 and non-negative integer i,
consider the cases where q = pi, an elliptic curve E of Weierstrass form defined over Fq is given as
follows:

E/Fq : y2 = x3 + ax+ b, (1)

where a and b are coefficients in Fq satisfying 4a3 + 27b2 6= 0. The j-invariant of E is given as
j(E) = 1728 · 4a3/(4a3 + 27b2). A set of rational points is defined as E(Fq) = {(x, y) | (x, y) ∈
Fq×Fq, y

2 = x3 +ax+ b}∪{O} where O is a point at infinity on E. The set forms an abelian group
of which O acts as the identity, and which is called a rational point group. For a positive integer s,
a point multiplication endomorphism is defined as [s] : E(Fq)→ E(Fq), P 7→ P +P + · · ·+P which
involves (s− 1)-times additions. If E(Fq) does not admit a point of order p such that [p]P = O, E
is supersingular, otherwise, E is non-supersingular (ordinary).

Let n = #E(Fq) which is the number of rational points. Let t be an integer defined as t = q+1−n
which is called the Frobenius trace of E. If E is ordinary, there is a square-free integer D such that
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DV 2 = 4q − t2 with an integer V . If q = p, D is known as the CM discriminant. The value of D is
related to j(E), e.g., if D = 3, then j(E) = 0. Let r be a prime factor of n. Then, there exists an
entire group of order r defined as E(Fq)[r] = {P | P ∈ E(Fq), [r]P = O} which is called a r-torsion
subgroup. The smallest integer k ≥ 1 satisfying r | (qk−1) is called an embedding degree with respect
to r. The r-torsion subgroup defined over Fqk has a structure such that E(Fqk)[r] ∼= Z/rZ× Z/rZ,
i.e., #E(Fqk)[r] = r2. This implies that E(Fqk)[r] has (r + 1) different subgroups of order r since
the identity O overlaps into all subgroups of order r.

There exists an elliptic curve E′/Fqk/d with an isomorphism φd : E′(Fqk) → E(Fqk) where d is
the smallest integer such that d | k in which φd can be defined. Then, E′ is called a twist of degree d
of E. Although that is not immediate derivation from the definition, there are only possible degrees
d ∈ {1, 2, 3, 4, 6}1 corresponding to j(E), e.g., if j(E) = 0, then d ∈ {1, 2, 3, 6}. The important fact
is that there is a unique twist E′/Fqk/d such that r divides n′ = #E′(Fqk/d). The authors call such a
twist E′ as a correct twist. With the correct twist, φd involves a group isomorphism G′ → G where
G′ = E′(Fqk)[r] and G ⊂ E(Fqk)[r], which can be written as G = E(Fqk)[r]∩ ker(πq − [q]) ⊂ E(Fqk)
with the q-th power Frobenius endomorphism πq and is often exploited for pairings.

As seen above, the properties of the elliptic curves are typically specified by the integers (k,D, q, r,
t), which is often discussed as the set (q, r, t). Rather than that, q is typically fixed as q = p for
the pairings. According to [13], the elliptic curves having small k, large r, and appropriate ρ-value
ρ = log2 p/ log2 r such that 1 ≤ ρ ≤ 2 are called pairing-friendly. Although it is typically not easy to
constructing pairing-friendly elliptic curves, there are several construction methods that are based
on an idea of the parameterization of (p, r, t) by the polynomials (p(x), r(x), t(x)) in Q[x] making the
curves with the favorite properties [3,4,13,22]. In this paper, the set of pairing-friendly elliptic curves
specified by (p(x), r(x), t(x)) are called as a parametric family of pairing-friendly elliptic curves.

2.2 Pairings

Let E/Fp be a pairing-friendly elliptic curve with a prime divisor r of #E(Fp) and embedding degree
k with respect to r, i.e., r | (pk−1). Let G1 and G2 be subgroups of E(Fpk)[r] of order r. For points
P ∈ G1 and Q ∈ G2, a Tate pairing τr, which is non-degenerate and bilinear, is defined as follows:

τr : G1 ×G2 → F∗pk/(F∗pk)r, (P,Q) 7→ fr,P (Q), (2)

where fr,P is a rational function with a divisor div(fr,P ) = r(P ) − r(O). The value of the rational
function can be computed by Miller’s algorithm [28] which can reach fr,P (Q) with log2 r iterations.
Miller’s algorithm is often extended for a double-and-add/sub algorithm as described in [6,37]. The
standard Tate pairing has an undesirable property that the output lies in an equivalence class, rather
than being a unique element. To be suitable in practice, (pk − 1)/r is raised to the output of the
Tate pairing as follows:

τ̃r : G1 ×G2 → µr, (P,Q) 7→ fr,P (Q)(p
k−1)/r, (3)

where µr is a group of r-th roots of the identity of F∗pk . The above pairing is called a reduced
Tate pairing and the additional exponentiation is called the final exponentiation. Especially for
the parametric families of pairing-friendly elliptic curves, the final exponentiation can be efficiently
computed by using p-th power of Frobenius endomorphisms since the exponent can be represented
as a polynomial in base p [14, 34].

Let G1 and G2 be the subgroups defined as G1 = E(Fpk)[r] ∩ ker(πp − [1]) = E(Fp)[r] and
G2 = E(Fpk)[r] ∩ ker(πp − [p]) ⊂ E(Fpk), respectively. The groups are the eigenspaces of πp on
E(Fpk)[r], i.e., G1 ⊕ G2 = E(Fpk)[r]. Restricting the reduced Tate pairing to swap the arguments
as G2 ×G1 with the above subgroups leads to an ate pairing αT defined as follows [21]:

αT : G2 ×G1 → µr, (Q,P ) 7→ fT,Q(P )(p
k−1)/r, (4)

where T = t−1 and fT,Q is a rational function with a divisor div(fT,Q) = T (Q)−([T ]Q)−(T−1)(O).
Since the iterative parameter T is much smaller than r, ate pairings are more practical than the

1If d = 1, E′ is typically not called the twist of E. However, in this paper, E′ with d = 1 is also called the twist.
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reduced Tate pairings. According to [20, 38], ate-like pairings which require at least log2 r/φ(k)
iterations can be constructed corresponding to the curves where φ is Euler’s totient function. Such
pairings are known as optimal ate pairings.

Let E′/Fpk/d be the correct twist of degree d of E. With a twist isomorphism φd, let G′1 =

φ−1d (G1) ⊂ E′(Fpk)[r] and G′2 = φ−1d (G2) = E′(Fpk/d)[r] be preimages of G1 and G2 under φd,
respectively. Note that G2 is a special subgroup of which the preimage is defined over Fpk/d . Then,
the ate pairing can also be moved entirely on E′ as follows:

α′T : G′2 ×G′1 → µr, (Q
′, P ′) 7→ f ′T,Q′(P

′)(p
k−1)/r, (5)

where f ′T,Q′ is a rational function with a divisor div(f ′T,Q′) = T (Q′) − ([T ]Q′) − (T − 1)(O′) with
the point at infinity O′ on E′. Although the ate pairings αT and α′T are typically not distinguished,
the outputs of αT and α′T does not necessarily take the same value even though the inputs satisfy
P ′ = φ−1d (P ) and Q′ = φ−1d (Q), rather than, there is a relation αT (Q,P )gcd(d,6) = α′T (Q′, P ′)gcd(d,6)

(see Theorem 1 in [10]). Since the fields in which the groups G1 and G′2 are smaller than these of
G′1 and G′2, respectively, the ate pairings are often regarded as G′2 × G1. To make the movement
of the curves easily and enable an efficient arithmetics, a tower of extension fields constructed by
quotient rings by binomial ideals are often adopted for the pairings [5].

3 Review of the BLS family and Previous Work

In this section, the authors introduce the BLS family of pairing-friendly elliptic curves which are
often used for the pairings.

3.1 Construction of the BLS family

The BLS family [3] has the polynomial parameters for constructing pairing-friendly elliptic curves
with the CM discriminant D = 3, i.e., zero j-invariant, and the embedding degree k of multiple of 3
except for k = 18. For the cases of k = 2m·3 and 3n with arbitrary positive integersm and n, there are
the following polynomial parameters (p(x), r(x), t(x)) with V (x) such that 3V (x)2 = 4p(x)− t(x)2.

• k = 2m · 3 
r(x) = Φk(x) = x2

m − x2m−1

+ 1,
p(x) = (x− 1)2/3 · r(x) + x,
t(x) = x+ 1,

V (x) = (x− 1)/3 · (2x2m−1 − 1),

(6)

• k = 3n 
r(x) = Φk(x)/3 = (x2·3

n−1

+ x3
n−1

+ 1)/3,
p(x) = (x− 1)2 · r(x) + x,
t(x) = x+ 1,

V (x) = (x− 1)/3 · (2x3n−1

+ 1),

(7)

where Φk(x) is the k-th cyclotomic polynomial.
Let x0 be an integer making p(x0) and r(x0) being primes and t(x0) and V (x0) being integers.

Note that the condition x0 ≡ 1 ( mod 3) leads to all involved parameters being integers. Then, there
is an elliptic curve E/Fp(x0) : y2 = x3+b such that the group order is given by n(x0) = #E(Fp(x0)) =
p(x0) + 1 − t(x0) with the prime divisor r(x0). The curve also has the embedding degree k with
respect to r(x0), i.e., k is the minimal integer satisfying r(x0) | (p(x0)k − 1). Such curve is called a
BLS curve. Let d = 6 and 3 for k = 2m · 3 and 3n, respectively. Then, there exist a correct twist
E′/Fp(x0)k/d : y2 = x3 + b′ of degree d of E such that r(x0) | n′(x0) = #E′(Fp(x0)k/d), however,
n′(x0) have not been explicitly provided except for the cases with some concrete embedding degrees.
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Let G1 = E(Fp(x0))[r(x0)] and G′2 = E′(Fp(x0)k/d)[r(x0)] be subgroups of order r(x0) on E and
E′, respectively. Then, the ate pairing G′2 × G1 can be computed by Miller’s algorithm with one
of the shortest iterations T = t(x0) + 1 = x0 since log2 r(x0)/φ(k) ≈ log2 x0. This means that the
ate pairing is exactly one of the optimal ate pairings. Moreover, according to [19,35], the exponent
(p(x0)k − 1)/r(x0) of the final exponentiation automatically decomposed into the polynomials in
base p(x0) by using a property that p(x0) is represented as p(x0) = h(x0) · r(x0) +x0 where h(x0) is
a certain polynomial. This immediately provides one of the efficient algorithms for computing the
final exponentiation.

3.2 Previous work by Costello et al.

From the constructions of the BLS family, it is found that the integer parameter x0 strongly charac-
terizes the BLS family. Thus, the choice of x0 is one of the important factors to realize the efficient
pairings with the BLS family. In [11], Costello et al. observed that and proposed the restrictions
of x0 for generating specific subfamilies of the BLS family of curves with k = 24 which facilitate
efficient instantiations of the pairings as follows:

x0 ≡ 7, 16, 31, 64 (mod 72). (8)

Once finding x0 under the above restriction, we have the specific subfamilies of the BLS family with
the options (i) the fixed tower of extension fields with one of the best performing arithmetics is
always available, (ii) the BLS curve E/Fp(x0) is immediately determined, and (iii) the correct twist
E′/Fp(x0)4 of degree 6 of E is also immediately determined. In fact, Costello et al. described the
following theorems.

Theorem 1 If x0 satisfies Eq. (8), the following tower of extension fields is always available. Fp(x0)2 = Fp(x0)[u]/(u2 + 1), where u2 = −1, u ∈ Fp(x0)2 ,
Fp(x0)4 = Fp(x0)2 [v]/(v2 + u+ 1), where v2 = −(u+ 1), v ∈ Fp(x0)4 ,
Fp(x0)24 = Fp(x0)4 [w]/(w6 + v), where w6 = −v, w ∈ Fp(x0)24 ,

Theorem 2 If x0 satisfies Eq. (8), the BLS curve E/Fp(x0) is immediately determined as follows:

E/Fp(x0) :

 y2 = x3 + 1, if x0 ≡ 7, 31 (mod 72),
y2 = x3 + 4, if x0 ≡ 16 (mod 72),
y2 = x3 − 2, if x0 ≡ 64 (mod 72).

Theorem 3 Suppose that the tower of extension fields of degree k = 24 and BLS curve E/Fp(x0) are
constructed as in Theorems 1 and 2 with x0 satisfying Eq. (8). Then, the correct twist E′/Fp(x0)4 of
degree 6 of E is immediately determined as follows:

E′/Fp(x0)4 :


y2 = x3 ± 1/v, if x0 ≡ 7 (mod 72),
y2 = x3 ± 4v, if x0 ≡ 16 (mod 72),
y2 = x3 ± v, if x0 ≡ 31 (mod 72),
y2 = x3 ± 2/v, if x0 ≡ 64 (mod 72).

Proof of Theorems 1, 2, and 3. Please refer to Sect. 3 in [11]. �
The field and curve options can reduce the time-consuming pre-computation of the curve con-

structions. Moreover, these fixed constructions give rise to the flexibility of scaling the size of the
parameters without changing any of the implementations for the field and curve arithmetics. Thus,
it is important to clarify the restrictions of x0 which result in such BLS subfamilies, however, there
exists only the work for the case of k = 24.
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4 Mathematical Fundamentals

The authors describe the mathematical preliminaries to derive the restrictions of the integer pa-
rameter for the BLS family of pairing-friendly elliptic curves which are referred to in the previous
work [11]. In the following, Sect. 4.1 and 4.2 provide the power residue properties and construction
method of extension fields, respectively. Besides, Sect. 4.3 describes the possible group orders of the
ordinary curves with D = 3 including the BLS family.

4.1 Power residue properties

Let p be a prime and d be a cofactor of #F∗p = p− 1. If there exists g ∈ F∗p such that a = gd, we say
that a is d-th residue in F∗p, otherwise, we say that a is d-th non-residue in F∗p. The d-th residue

properties can be determined by the value of a(p−1)/d ∈ {1, ζ, ζ2, . . . ζd−1} where ζ is a primitive
d-th root of the identity in F∗p. In the following, the authors discuss the cases of d = 2 and 3.

Let (a
p ) be a symbol defined as (a

p ) = a(p−1)/2 ∈ {1,−1}, which is known as the Legendre symbol.

If (a
p ) = 1, a is quadratic residue in F∗p, otherwise, a is quadratic non-residue in F∗p. Similarly, let

(a
p )3 be a symbol defined as (a

p )3 = a(p−1)/3 ∈ {1, ε, ε2} where ε is a primitive cube root of the

identity in F∗p. If (a
p )3 = 1, a is cubic residue in F∗p, otherwise, a is cubic non-residue in F∗p. Then,

there are the following lemmas.

Lemma 1 For an odd prime p, the following is true.(
−1

p

)
=

{
1 if p ≡ 1 (mod 4),
−1 if p ≡ 3 (mod 4).(

2

p

)
=

{
1 if p ≡ ±1 (mod 8),
−1 if p ≡ ±3 (mod 8),(

−3

p

)
=

{
1 if p ≡ 1 (mod 3),
−1 if p ≡ 2 (mod 3).

Proof of Lemma 1. Please refer to [25]. �

Lemma 2 (Euler’s conjecture.)2 Let p be a prime p ≡ 1 (mod 3) written as p = a2 + 3b2 with
integers a and b. Then, the following is true.(

2

p

)
3

{
= 1 if 3 | b,
6= 1 if 3 - b.

Proof of Lemma 2. Please refer to [26]. �
The power residue properties can also be extended for an extension field Fq of Fp, where q = pn

with an integer n > 1. For α ∈ F∗q , let NFq/Fp
(α) be the norm of α defined over F∗p which is a

multiplicative function defined by the product of all the conjugates of α, i.e.,

NFq/Fp
(α) =

n−1∏
i=0

(α)p
i

∈ F∗p. (9)

If p | (d− 1), the d-th power residue properties of α in F∗q can be regarded as d-th residue properties

of NFq/Fp
(α) in F∗p since α(q−1)/d = NFq/Fp

(α)(p−1)/d.

4.2 Constructing the extension fields

Let p be a prime and q = pn with an integer n > 0. To admit an extension field Fqm of degree m of
Fq defined as Fqm = Fq(x) = Fq[x]/(xm− ζ) with ζ ∈ Fq, it is known that the binomial xm− ζ must
be irreducible in Fq[x]. Note that the details are shown in [27]. According to [5], the irreducibility
of the binomial can be verified as follows:

2Although Euler’s conjecture is traditionally called “conjecture”, it has already been proven.
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Lemma 3 The binomial xm − ζ is irreducible in Fq[x] if the following two conditions are satisfied.

(a) Each prime factor d of m divides (p− 1) and NFq/Fp
(ζ) is d-th non-residue in F∗p.

(b) If m ≡ 0 (mod 4), then q ≡ 1 (mod 4).

Proof of Lemma 3. Please refer to [5]. �

In [5], Benger and Scott described that a condition of p for constructing a fixed extension field
of degree k = 2m · 3n for n,m > 0 can be easily obtained by applying Lemma 3 since the quadratic
and cubic residue properties of the specific element in F∗p can be obtained by Lemmas 1 and 2.
As examples, they provided conditions for constructing some implementation-friendly towers of
extension fields for the BN and KSS families of curves with k = 12 and 18, respectively. With the
same strategy, Costello et al. reached the condition of the integer parameter x0 for constructing the
tower of extension fields as shown in Theorem 1.

4.3 Determining the curve equations

Let p be a prime such that p ≡ 1 (mod 6) and let q = pn with an integer n > 0. Let E/Fq

be an ordinary elliptic curve defined over Fq with D = 3, i.e., j(E) = 0, which has the curve
equation y2 = x3 + b. Then, all the possible group orders #E(Fq) can be obtained by taking
b ∈ {1, g, g2, g3, g4, g5} where g is quadratic and cubic non-residue in F∗q . Indeed, the possible orders
are given as follows: 

n0 = q + 1− t,
n1 = q + 1− (t− 3V )/2,
n2 = q + 1− (−t− 3V )/2,
n3 = q + 1 + t,
n4 = q + 1− (−t+ 3V )/2,
n5 = q + 1− (t+ 3V )/2,

(10)

where t and V are integers satisfying 3V 2 = 4q − t2. Therefore, the curve E with the specific order
can be obtained by a randomly chosen b with a probability of 1/6.

Let E′/Fq be a twist of degree d of E. Since j(E) = 0, there are only the possibilities d ∈
{1, 2, 3, 6}. The curve equation of E′/Fq is given as y2 = x3 + b/δ where

δ is


quadratic and cubic residue in F∗q if d = 1,
quadratic non-residue and cubic residue in F∗q if d = 2,
quadratic residue and cubic non-residue in F∗q if d = 3,
quadratic and cubic non-residue in F∗q if d = 6.

(11)

Thus, once E is determined, the possibilities of finding the twist E′ of degree d = {1, 2} and {3, 6} of
E are 1 and 1/2, respectively. According to [21], if #E(Fq) = n0, the possible group orders #E′(Fq)
are also determined as follows:

#E′(Fq) =


n0 if d = 1,
n3 if d = 2,
n2, n4 if d = 3,
n1, n5 if d = 6.

(12)

The curve equations can be determined or narrowed down by checking the small cofactors of
#E(Fq) by using the following Lemma 4. Note that (a) and (b) in Lemma 4 are found by [11]
(similar lemmas can also be found in [29,33]), and (c) is found by this work. The authors also show
the complete proof of Lemma 4.

Lemma 4 Let E be an ordinary elliptic curve with D = 3 defined over Fq, where q = pn with an
integer n > 0 and p is an odd prime such that p ≡ 1 (mod 6). Then, the following is true.

(a) If and only if 2 | #E(Fq), b is cubic residue in F∗q .
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(b) If and only if 3 | #E(Fq) and 9 - #E(Fq), b is quadratic residue in F∗q and 4b is cubic non-
residue in F∗q .

(c) If and only if 9 | #E(Fq), b is quadratic residue in F∗q and 4b is cubic residue in F∗q .

Proof of Lemma 4. (a): If 2 | #E(Fq), E(Fq) involves points of order 2 given as P2 = (− 3
√
b, 0),

which is not equal to O. Thus, b is cubic residue in F∗q .

(b): If 3 | #E(Fq), E(Fq) involves a subgroup or subgroups of E(Fq) of order 3, i.e., there exists
a group structure given as E(Fq)[3] ∼= Z/3Z or Z/3Z×Z/3Z, which consists points of order 3 given

as P3 = (0,
√
b) or both P3 and P ′3 = (− 3

√
4b,
√
−3 ·
√
b). Note that

√
−3 ∈ Fq from (c) in Lemma 1.

If 3 | #E(Fq) and 9 - #E(Fq), then E(Fq) has a group structure of E(Fq)[3] ∼= Z/3Z but does not
have Z/3Z× Z/3Z. This means P3 is in E(Fq) but P ′3 is not in E(Fq). Therefore, it is found that b
is quadratic residue in F∗q and 4b is cubic non-residue in F∗q .

(c): If 9 | #E(Fq), E(Fq) involves either E(Fq)[9] ∼= Z/9Z or E(Fq)[3] ∼= Z/3Z× Z/3Z. Indeed,
E(Fq) does not have E(Fq)[9] ∼= Z/9Z but has E(Fq)[3] ∼= Z/3Z× Z/3Z by the following reasons.

(i) In this case of q, 9 does not divide the possible group orders expect for #E(Fq). This can be
easily found by checking the values of the possible group orders modulo 9 with the possible q,
t, and V satisfying 3V 2 = 4q − t2.

(ii) There exists an ordinary elliptic curve given as Ẽ/Fq : y2 = x3 + b̃ defined over Fq having a

group order of multiple of 9 with the group structure Ẽ(Fq)[3] ∼= Z/3Z × Z/3Z since there

exactly exists b̃ in F∗q which gives rise to points of order 3 denoted as P̃3 = (0,
√
b̃) and

P̃ ′3 = (− 3
√

4b̃,
√
−3 ·

√
b̃) in Ẽ(Fq).

The above means that E is isomorphic to Ẽ over Fq. Thus, there exist points P3 and P ′3 in E(Fq)
and b is quadratic residue in F∗q and 4b is cubic residue in F∗q . �

In [11], Costello et al. applied (a) and (b) of Lemma 4 for the BLS family of pairing-friendly
elliptic curves with k = 24 and completely determined the curve equations as found in Theorems 2
and 3. Thus, there is a possibility that this strategy is also available for the BLS family of curves
with the other embedding degrees.

5 Group Order of Correct Twists

To determine the twist equation by using Lemma 4, the knowledge of the group order of the correct
twist is required. In the following Sect. 5.1 and 5.2, the authors give the knowledge for the BLS
family of curves for k = 2m · 3 and 3n with any m,n > 0, respectively.

5.1 The case of k = 2m · 3 for any m > 0

Let p(x), r(x), t(x), and V (x) be the polynomials fixed as Eq. (6) for the BLS family of pairing-
friendly elliptic curves with k = 2m · 3 for any m > 0. For an integer x0 making p(x0) and r(x0)
being primes and t(x0) and V (x0) being integers, let E/Fp(x0) and E′/Fp(x0)2

m−1 be the BLS curve

and correct twist of degree 6 of E. For any integer s > 0, let ts(x0) = p(x0)s + 1−#E(Fp(x0)s) be
a trace of E defined over Fp(x0)s and Vs(x0) be a parameter such that 3Vs(x0)2 = 4p(x0)s− ts(x0)2.
Then, the group order of the correct twist is specifically represented in the following.

Theorem 4 For k = 2m · 3 with any m > 0, the group order of the correct twist E′/Fp(x0)2
m−1 of

degree 6 of E is uniquely given as

#E′(Fp(x0)2
m−1 ) = p(x0)2

m−1

+ 1− t2m−1(x0)− 3V2m−1(x0)

2
.

To prove Theorem 4, the authors provide the following Lemmas 5, 6, and 7.
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Lemma 5 For any integer l ≥ 0, t2l+1(x0) and V2l+1(x0) can be built from the knowledge of t2l(x0)
and V2l(x0) as follows:

t2l+1(x0) = t2l(x0)2 − 2p(x0)2
l

,

V2l+1(x0) = t2l(x0) · V2l(x0).

Proof of Lemma 5. According to Theorem 2.3.1 in [36], for any l > 0, the trace t2l(x0) = p2
l

+

1 −#E(F
p(x0)2

l ) can be written as t2l(x0) = α2l + β2l where α and β are roots of the polynomial

X2 − t(x0) ·X + p(x0), i.e., α · β = p(x0) and α+ β = t(x0). Thus, t2l+1(x0) can be represented as

t2l+1(x0) = α2l+1

+ β2l+1

= (α2l + β2l)2 − 2(α · β)2
l

= t2l(x0)2 − 2p(x0)2
l

.

Moreover, with the above, the following is also obtained.

3V2l+1(x0)2 = 4p(x0)2
l+1

− t2l+1(x0)2

= 4p(x0)2
l+1

− (t2l(x0)2 − 2p(x0)2
l

)2

= 4p(x0)2
l+1

− t2l(x0)4 + 4t2l(x0)2 · p(x0)2
l

− 4p(x0)2
l+1

= t2l(x0)2 · (4 · p(x0)2
l

− t2l(x0)2)

= t2l(x0)2 · 3V2l(x0)2,

which leads to V2l+1(x0) = t2l(x0) · V2l(x0). �

Lemma 6 For any integer l ≥ 0, the following holds.

t2l(x0) ≡ x2
l

0 + 1 (mod r(x0)).

Proof of Lemma 6. The authors give proof of the lemma by induction on l.
(i) For l = 0, it is obvious that t20(x0) = t(x0) ≡ x0 + 1 (mod r(x0)).
(ii) For l = s with an integer s > 0, suppose that t2s(x0) ≡ x2

s

0 + 1 (mod r(x0)). According to
Lemma 5 and p(x0) = (x0 − 1)/3 · r(x0) + x0 ≡ x0 (mod r(x0)), we have the following.

t2s+1(x0) = t2s(x0)2 − 2p(x0)2
s

≡ t2s(x0)2 − 2x2
s

0 (mod r(x0))

≡ (x2
s

0 + 1)2 − 2x2
s

0 (mod r(x0))

≡ x2
s+1

0 + 1 (mod r(x0)).

Thus, t2s+1(x0) ≡ x2s+1

0 + 1 (mod r(x0)) is also true for l = s+ 1.

Since both the base case (i) and the inductive step (ii) have been proven, t2l(x0) ≡ x2
l

0 +
1 (mod r(x0)) holds for any l ≥ 0. �

Lemma 7 For any integer l > 0, the following holds.

t2l(x0)± 3V2l(x0)

2
≡

2l−1∑
i=0

xi0 ·
t(x0)± 3V (x0)

2
−

2l−1∑
i=1

xi0 (mod r(x0)).

Proof of Lemma 7. The authors give proof of the lemma by induction on l.
(i) For l = 1, from Lemmas 5, 6, and p(x0) ≡ x0 (mod r(x0)), the following can be obtained.

t2(x0)± 3V2(x0)

2
=

(t(x0)2 − 2p(x0))± (t(x0) · 3V (x0))

2

= t(x0) · t(x0)± 3V (x0)

2
− p(x0)

≡ (x0 + 1) · t(x0)± 3V (x0)

2
− x0 (mod r(x0)).
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Thus, the lemma is true for l = 1.

(ii) For l = s with an integer s > 1, suppose that the lemma is true. Then, we have the following.

t2s+1(x0)± 3V2s+1(x0)

2
=

(t2s(x0)2 − 2p(x0)2
s

)± (t2s(x0) · 3V2s(x0))

2

= t2s(x0) · t2
s(x0)± 3V2s(x0)

2
− p(x0)2

s

≡ (x2
s

0 + 1) ·

(
2s−1∑
i=0

xi0 ·
t(x0)± 3V (x0)

2
−

2s−1∑
i=1

xi0

)
− x2

s

0 (mod r(x0))

≡

2s+1−1∑
i=2s

xi0 +

2s−1∑
i=0

xi0

 · t(x0)± 3V (x0)

2

−
2s+1−1∑
i=2s+1

xi0 −
2s−1∑
i=1

xi0 − x2
s

0 (mod r(x0))

≡
2s+1−1∑
i=0

xi0 ·
t(x0)± 3V (x0)

2
−

2s+1−1∑
i=1

xi0 (mod r(x0)).

Thus, the lemma is also true for l = s+ 1.

Since both the base case (i) and the inductive step (ii) have been proven, it is clear that the
lemma is true for any l > 0. �

Then, the authors provide the proof of Theorem 4 by using the above lemmas.

Proof of Theorem 4. According to Eq. (12), the group order of the twist of E/Fp(x0) can be deter-
mined corresponding the twist degree d. In this case, since d = 6, it is found that #E′(Fp(x0)2

m−1 )

is given by one of the following.

n′0(x0) = p(x0)2
m−1

+ 1− t2m−1(x0) + 3V2m−1(x0)

2
,

n′1(x0) = p(x0)2
m−1

+ 1− t2m−1(x0)− 3V2m−1(x0)

2
,

Besides, from the definition, the group order of the correct twist is divisible by r(x0). Thus, to prove
the theorem, it is enough to show that r(x0) divides n′1(x0) but does not divide n′0(x0), i.e., n′0(x0) 6≡
0 (mod r(x0)) and n′1(x0) ≡ 0 (mod r(x0)). Note that r(x0) = x2

m

0 − x2m−1

0 + 1 ≡ 0 (mod r(x0))
in this case.

Applying Lemma 7, the possible group orders n′0(x0) modulo r(x0) can be denoted as follows:

n′0(x0) ≡ x2
m−1

0 + 1−

2m−1−1∑
i=0

xi0 ·
t(x0) + 3V (x0)

2
−

2m−1−1∑
i=1

xi0

 (mod r(x0))

≡ x2
m−1

0 + 1−
2m−1−1∑

i=0

xi0 · ((x0 − 1) · x2
m−1

+ 1) +

2m−1−1∑
i=1

xi0 (mod r(x0))

≡ x2
m−1

0 + 1− (x2
m−1

0 − 1) · x2
m−1

0 −
2m−1−1∑

i=0

xi0 +

2m−1−1∑
i=1

xi0 (mod r(x0))

≡ x2
m−1

0 + 1− x2
m

0 + x2
m−1

0 − 1 (mod r(x0))

≡ −x2
m

0 + 2x2
m−1

0 (mod r(x0)).
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On the other hand, for n′1(x0) modulo r(x0), we have the following.

n′1(x0) ≡ x2
m−1

0 + 1−

2m−1−1∑
i=0

xi0 ·
t(x0)− 3V (x0)

2
−

2m−1−1∑
i=1

xi0

 (mod r(x0))

≡ x2
m−1

0 + 1−
2m−1−1∑

i=0

xi0 · (−(x0 − 1) · x2
m−1

+ x0) +

2m−1−1∑
i=1

xi0 (mod r(x0))

≡ x2
m−1

0 + 1 + (x2
m−1

0 − 1) · x2
m−1

0 −
2m−1∑
i=1

xi0 +

2m−1−1∑
i=1

xi0 (mod r(x0))

≡ x2
m−1

0 + 1 + x2
m

0 − x2
m−1

0 − x2
m−1

0 (mod r(x0))

≡ x2
m

0 − x2
m−1

0 + 1 (mod r(x0))

≡ 0 (mod r(x0)),

Thus, Theorem 4 is true. �

5.2 The case of k = 3n for any n > 0

Let p(x), r(x), t(x), and V (x) be the polynomials fixed as Eq. (7) for the BLS family of pairing-
friendly elliptic curves with k = 3n for any n > 0. For an integer x0 making p(x0) and r(x0) being
primes and t(x0) and V (x0) being integers, let E/Fp(x0) and E′/Fp(x0)3

n−1 be the BLS curve and

correct twist of degree 3 of E. For any integer s > 0, let ts(x0) = p(x0)s + 1 − #E(Fp(x0)s) be a
trace of E defined over Fp(x0)s and Vs(x0) be an integer such that 3Vs(x0)2 = 4p(x0)s − ts(x0)2.
Then, the group order of the correct twist can be represented as shown in the below.

Theorem 5 For k = 3n with any n > 0, the group order of the correct twist E′/Fp(x0)3
n−1 of degree

3 of E is uniquely given as the following.

#E′(Fp(x0)3
n−1 ) = p(x0)3

n−1

+ 1− −t3
n−1(x0)− 3V3n−1(x0)

2
.

Theorem 5 can be proven with the following Lemmas 8, 9, and 10.

Lemma 8 For any integer l ≥ 0, t3l+1(x0) and V3l+1(x0) can be built from the knowledge of t3l(x0)
and V3l(x0) as follows:

t3l+1(x0) = t3l(x0)3 − 3p(x0)3
l

· t3l(x0),

V3l+1(x0) = V3l(x0) · (t3l(x0)2 − p(x0)3
l

).

Proof of Lemma 8. Similar to proof of Lemma 5, for any l > 0, the trace t3l(x0) = p3
l

+ 1 −
#E(F

p(x0)3
l ) can be written as t3l(x0) = α3l + β3l where α and β are roots of the polynomial

X2− t(x0) ·X+p(x0), i.e., α ·β = p(x0) and α+β = t(x0) (see [36]). Thus, t3l+1(x0) can be denoted
as follows:

t3l+1(x0) = α3l+1

+ β3l+1

= (α3l + β3l)3 − 3(α · β)3
l

· (α3l + β3l) = t3l(x0)3 − 3p(x0)3
l

· t3l(x0).

Besides, we also have the following.

3V3l+1(x0)2 = 4p(x0)3
l+1

− t3l+1(x0)2

= 4p(x0)3
l+1

− (t3l(x0)3 − 3p(x0)3
l

· t3l(x0))2

= 4p(x0)3
l+1

− t3l(x0)6 + 6p(x0)3
l

· t3l(x0)4 − 9p(x0)2·3
l

· t3l(x0)2

= (4p(x0)3
l

− t3l(x0)2) · (t3l(x0)2 − p(x0)3
l

)2

= 3V3l(x0)2 · (t3l(x0)2 − p(x0)3
l

)2,
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which leads to V3l+1(x0) = V3l(x0) · (t3l(x0)2 − p(x0)3
l

). �

Lemma 9 For any integer l ≥ 0, the following holds.

t3l(x0) ≡ x3
l

0 + 1 (mod r(x0)).

Proof of Lemma 9. The authors give proof of the lemma by induction on l.

(i) For l = 0, it is clear that t30(x0) = t(x0) ≡ x0 + 1 (mod r(x0)).

(ii) For l = s with an integer s > 0, let t3s(x0) ≡ x3
s

0 + 1 (mod r(x0)) be ture. Then, according
to Lemma 5 and p(x0) ≡ x0 (mod r(x0)), the case of l = s+ 1 can be obtained as follows:

t3s+1(x0) = t3l(x0)3 − 3p(x0)3
s

· t3s(x0)

≡ (x3
s

0 + 1)3 − 3x3
s

0 · (x3
s

0 + 1) (mod r(x0))

≡ x3
s+1

0 + 3x2·3
s

0 + 3x3
s

0 + 1− 3x2·3
s

0 − 3x3
s

0 (mod r(x0))

≡ x3
s+1

0 + 1 (mod r(x0)).

Thus, t3s+1(x0) ≡ x3s+1

0 + 1 (mod r(x0)) is also held for l = s+ 1.

Since both the base case (i) and inductive step (ii) have been proven, t3l(x0) ≡ x3
l

0 + 1 (mod
r(x0)) is true for any l > 0. �

Lemma 10 For any integer l > 0, the following holds.

−t3l(x0)± 3V3l(x0)

2
≡

3l−1∑
i=0

xi0 ·
−t(x0)± 3V (x0)

2
+

3l−1∑
i=1

xi0 (mod r(x0)).

Proof of Lemma 10. The authors give proof of the lemma by induction on l.

(i) For l = 1, from Lemmas 8, 9, and p(x0) ≡ x0 (mod r(x0)), we can find the following.

−t3(x0)± 3V3(x0)

2
=
−(t(x0)3 − 3p(x0) · t(x0))± 3V (x0) · (t(x0)2 − p(x0))

2

=
−t(x0) · (t(x0)2 − p(x0)) + 2p(x0) · t(x0)± 3V (x0) · (t(x0)2 − p(x0))

2

= (t(x0)2 − p(x0)) · −t(x0)± 3V (x0)

2
+ p(x0) · t(x0).

Then, taking modulo r(x0),

−t3(x0)± 3V3(x0)

2
≡ (x20 + x0 + 1) · −t(x0)± 3V (x0)

2
+ (x20 + x0) (mod r(x0)).

The above shows that the lemma is true for l = 1.

(ii) For l = s with an integer s > 1, suppose that the lemma is true. With the assumption, for
l = s+ 1, the following can be obtained.

−t3s+1(x0)± 3V3s+1(x0)

2
=
−(t3s(x0)3 − 3p(x0)3

s · t3s(x0))± 3V3s(x0) · (t3s(x0)2 − p(x0)3
s

)

2

=
−t3s(x0)·(t3s(x0)2−p(x0)3

s

)+2p(x0)3
s ·t3s(x0)±3V3s(x0)·(t3s(x0)2−p(x0)3

s

)

2

= (t3s(x0)2 − p(x0)3
s

) · −t3
s(x0)± 3V3s(x0)

2
+ p(x0)3

s

· t3s(x0).
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Similarly, taking modulo r(x0), we have the following.

−t3s+1(x0)± 3V3s+1(x0)

2
≡ (x2·3

s

0 + x3
s

0 + 1) ·

(
3s−1∑
i=0

xi0 ·
−t(x0)± 3V (x0)

2
+

3s−1∑
i=1

xi0

)
+ (x2·3

s

0 + x3
s

0 ) (mod r(x0))

≡

3s+1−1∑
i=2·3s

xi0 +

2·3s−1∑
i=3s

xi0 +

3s−1∑
i=0

xi0

 · −t(x0)± 3V (x0)

2

+

3s+1−1∑
i=2·3s+1

xi0 +

2·3s−1∑
i=3s+1

xi0 +

3s−1∑
i=1

xi0 + (x2·3
s

0 + x3
s

0 ) (mod r(x0))

≡
3s+1−1∑
i=0

xi0 ·
−t(x0)± 3V (x0)

2
+

3s+1−1∑
i=1

xi0 (mod r(x0)).

Thus, the lemma is also true for l = s+ 1.

Since both the base case (i) and the inductive step (ii) have been proven, the lemma is true for
any l > 0. �

In the following, the authors provide the proof of Theorem 5 by using the above lemmas.

Proof of Theorem 5. According to Eq. (12), the group order #E(Fp(x0)3
n−1 ) of twist of degree 3 of

E/Fp(x0) is given by one of the following.

n′0(x0) = p(x0)3
n−1

+ 1− −t3
n−1(x0) + 3V3n−1(x0)

2
,

n′1(x0) = p(x0)3
n−1

+ 1− −t3
n−1(x0)− 3V3n−1(x0)

2
.

Since the group order is divisible by r(x0), it is enough to show that r(x0) divides n′1(x0) but does
not divide n′0(x0), i.e., n′0(x0) 6≡ 0 (mod r(x0)) and n′1(x0) ≡ 0 (mod r(x0)). Applying Lemma 10,

the possible group order n′0(x0) modulo r(x0) = x2·3
n−1

0 + x3
n−1

0 + 1 can be written as follows:

n′0(x0) ≡ x3
n−1

0 + 1−

3n−1−1∑
i=0

xi0 ·
−t(x0) + 3V (x0)

2
+

3n−1−1∑
i=1

xi0

 (mod r(x0))

≡ x3
n−1

0 + 1−
3n−1−1∑

i=0

xi0 · ((x0 − 1) · x3
n−1

0 − 1)−
3n−1−1∑

i=1

xi0 (mod r(x0))

≡ x3
n−1

0 + 1− (x3
n−1

0 − 1) · x3
n−1

0 +

3n−1−1∑
i=0

xi0 −
3n−1−1∑

i=1

xi0 (mod r(x0))

≡ x3
n−1

0 + 1− x2·3
n−1

0 + x3
n−1

0 + 1 (mod r(x0))

≡ −x2·3
n−1

0 + 2x3
n−1

0 + 2 (mod r(x0))
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For the case of n′1(x0) modulo r(x0),

n′0(x0) ≡ x3
n−1

0 + 1−

3n−1−1∑
i=0

xi0 ·
−t(x0)− 3V (x0)

2
+

3n−1−1∑
i=1

xi0

 (mod r(x0))

≡ x3
n−1

0 + 1−
3n−1−1∑

i=0

xi0 · (−(x0 − 1) · x3
n−1

0 − x0)−
3n−1−1∑

i=1

xi0 (mod r(x0))

≡ x3
n−1

0 + 1 + (x3
n−1

0 − 1) · x3
n−1

0 +

3n−1∑
i=1

xi0 −
3n−1−1∑

i=1

xi0 (mod r(x0))

≡ x3
n−1

0 + 1 + x2·3
n−1

0 − x3
n−1

0 + x3
n−1

0 (mod r(x0))

≡ x2·3
n−1

0 + x3
n−1

0 + 1 (mod r(x0))

≡ 0 (mod r(x0)).

From the above, Theorem 5 is true. �

6 Proposed Restriction of Integer Parameter for Generating
Attractive BLS subfamilies

The authors extend Costello et al.’s work [11] and provide the restrictions of integer parameter for
the BLS subfamilies of pairing-friendly elliptic curves with k = 2m · 3 and 3n with any m,n > 0.
The details of the proposals for the cases of k = 2m ·3 and 3n are described in the following Sect. 6.1
and 6.2, respectively.

6.1 The case of k = 2m · 3 for any m > 0

Let x0 be an integer parameter for the BLS family of pairing-friendly elliptic curves with k = 2m · 3
where m > 0 is an arbitrary integer. The authors propose to restrict x0 as follows:

x0 ≡
{

7, 10, 16, 28, 31, 34 (mod 36) if m = 1,
7, 16, 31, 64 (mod 72) if m > 1.

(13)

Once finding x0 under the above restrictions, we have the specific BLS subfamilies with the options
(i) a fixed tower of extension fields with one of the best performing arithmetics is always available, (ii)
the BLS curve E/Fp(x0) is immediately determined, and (iii) the correct twist E′/Fp(x0)2

m−1 is also

immediately determined. These constructions also enable one of the simplest twist isomorphisms.
The details of the field and curve options (i), (ii), and (iii) are summarized in Table 1. Note that the
case of m = 2 can provide almost the same results of [11] described in Sect. 3.2. The authors also
provide Theorems 6, 7, and 8 which show the correctness that the proposed BLS subfamilies have
the options. Before the theorems, the authors present the knowledge of the quadratic and cubic
residue properties in F∗p(x0)

in the following Lemma 11.

Lemma 11 For the symbols ( ·
p(x0)

) and ( ·
p(x0)

)3, the following is true.

(a) For m = 1, (
−1

p(x0)

)
=

{
1 if x0 ≡ 1 (mod 12),
−1 if x0 ≡ 4, 7, 10 (mod 12).

For m > 1, (
−1

p(x0)

)
=

{
1 if x0 ≡ 1, 10 (mod 12),
−1 if x0 ≡ 4, 7 (mod 12).
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Table 1: Field and curve options for the proposed BLS subfamilies of curves with k = 2m · 3 for any
m > 0, where z = v6 ∈ Fp(x0)2

m−1 with v ∈ Fp(x0)2
m·3 defined in Eq. (15).

(a) m = 1
x0 Tower BLS curve E/Fp(x0) Twist E′/Fp(x0)2

m−1

(mod 36) (see Theorem 6) (see Theorem 7) (see Theorem 8)
7 Eq. (14) y2 = x3 + 1 y2 = x3 − 4
31 Eq. (14) y2 = x3 + 1 y2 = x3 − 1/4

10, 28 Eq. (14) y2 = x3 − 2 y2 = x3 − 1
16, 34 Eq. (14) y2 = x3 + 4 y2 = x3 − 1

(b) m > 1
x0 Tower BLS curve E/Fp(x0) Twist E′/Fp(x0)2

m−1

(mod 72) (see Theorem 6) (see Theorem 7) (see Theorem 8)
7 Eq. (15) y2 = x3 + 1 y2 = x3 + 1/z
16 Eq. (15) y2 = x3 + 4 y2 = x3 + 4z
31 Eq. (15) y2 = x3 + 1 y2 = x3 + z
64 Eq. (15) y2 = x3 − 2 y2 = x3 − 2/z

(b) For m = 1, (
2

p(x0)

)
=

{
1 if x0 ≡ 1, 19 (mod 24),
−1 if x0 ≡ 4, 7, 10, 13, 16, 22 (mod24).

For m = 2, (
2

p(x0)

)
=

{
1 if x0 ≡ 1, 4, 10, 19 (mod 24),
−1 if x0 ≡ 7, 13, 16, 22 (mod 24).

For m > 2, (
2

p(x0)

)
=

{
1 if x0 ≡ 1, 4, 19, 22 (mod 24),
−1 if x0 ≡ 7, 10, 13, 16 (mod 24).

(c) For m > 0, (
2

p(x0)

)
3

{
= 1 if x0 ≡ 1, 4 (mod 18),
6= 1 if x0 ≡ 7, 10, 13, 16 (mod 18).

Proof of Lemma 11. (a) and (b): The authors refer to Lemma 1 and verify the value of p(x0) modulo
4 and 8. As a result, (a) and (b) are obtained.

(c): The authors refer to Euler’s conjecture given in Lemma 2. In the following, the authors
classify x0 satisfying x0 ≡ 1 (mod 3) into two cases, i.e., x0 ≡ 1 (mod 6) and x0 ≡ 4 (mod 6).

If x0 ≡ 1 (mod 6), p(x0) can be modified as follows:

p(x0) =

(
t(x0)

2

)2

+ 3

(
V (x0)

2

)2

=

(
x0 + 1

2

)2

+ 3

(
x0 − 1

6
· (2x2

m−1

0 − 1)

)2

.

For b(x0) = (x0−1)/6 ·(2x2m−1

0 −1), if x0 ≡ 1 ( mod 18) then 3 divides b(x0); if x0 ≡ 7, 13 ( mod 18)
then 3 does not divides b(x0). Thus, according to (b) in Lemma 2, if x0 ≡ 1 ( mod 18) then ( 2

p )3 = 1;

if x0 ≡ 7, 13 (mod 18) then ( 2
p )3 6= 1.
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If x0 ≡ 4 (mod 6), p(x0) can be represented as follows:

p(x0) =

(
t(x0)− 3V (x0)

4

)2

+ 3

(
t(x0) + V (x0)

4

)2

=

(
−(x0 − 1) · x2m−1

0 + x0
2

)2

+ 3

(
(x0 − 1) · x2m−1

0 + x0 + 2

6

)2

.

For b(x0) = ((x0 − 1) · x2m−1

0 + x0 + 2)/6, if x0 ≡ 4 (mod 18) then 3 divides b(x0); if x0 ≡
10, 16 (mod 18) then 3 does not divide b(x0). In the same manner, it is obtained that if x0 ≡
4 (mod 18) then ( 2

p(x0)
)3 = 1; if x0 ≡ 10, 16 (mod 18) then ( 2

p(x0)
)3 6= 1. �

Then, the authors provide Theorems 6, 7, and 8 associated with the construction of the tower of
extension fields, BLS curve, and twist required for the pairing with the BLS family of curves with
k = 2m · 3 with any m > 0.

Theorem 6 If x0 satisfy the condition Eq. (13), the following tower of extension fields is always
available. For m = 1,{

Fp(x0)2 = Fp(x0)[u]/(u2 + 1), where u2 = −1, u ∈ Fp(x0)2 ,
Fp(x0)6 = Fp(x0)2 [v]/(v3 − 2), where v3 = 2, v ∈ Fp(x0)6 .

(14)

For m > 1,{
Fp(x0)2 = Fp(x0)[u]/(u2 + 1), where u2 = −1, u ∈ Fp(x0)2 ,

Fp(x0)2
m·3 = Fp(x0)2 [v]/(v2

m−1·3 − (u+ 1)), where v2
m−1·3 = u+ 1, v ∈ Fp(x0)2

m·3 .
(15)

Proof of Theorem 6 For m = 1, to admit the tower of extension fields, the binomials u2 + 1 and
v3−2 must be irreducible in Fp(x0)[u] and Fp2(x0)[v], respectively. According to (a) in Lemma 3, the
binomial u2 +1 is irreducible in Fp(x0)[u] if −1 is quadratic non-residue in F∗p. The binomial v3−2 is

irreducible in Fp(x0)2 [v] if the norm of 2, which is computed as NFp(x0)2/Fp(x0)
(2) = 2 · 2p(x0) = 22 =

4 ∈ Fp(x0), is cubic non-residue in F∗p(x0)
. Note that (b) in Lemma 3 is satisfied for both cases. Since

it is found that if x0 satisfies Eq. (13), ( −1p(x0)
) = −1 and ( 2

p(x0)
)3 6= 1 which results in ( 4

p(x0)
)3 6= 1

from Lemma 11, the tower is available.
Similarly, for m > 1, to admit the tower of extension fields, the binomials u2 + 1 and v2

m−1·3 −
(u+1) must be irreducible in Fp(x0)[u] and Fp2(x0)[v], respectively. According to (a) in Lemma 3, the

binomial u2+1 is irreducible in Fp(x0)[u] if −1 is quadratic non-residue in F∗p. The binomial v2
m−1·3−

(u+1) is irreducible in Fp(x0)2 if the the norm of (u+1), which is computed by NFp(x0)2/Fp(x0)
(u+1) =

(u+ 1) · (u+ 1)p(x0) = (u+ 1) · (−u+ 1) = −u2 + 1 = 2 ∈ Fp(x0), is quadratic and cubic non-residue
in F∗p(x0)

. Besides, (b) in Lemma 3 is satisfies for both cases. Since it is found that if x0 satisfies

Eq. (13), ( −1p(x0)
) = −1, ( 2

p(x0)
) = −1, and ( 2

p(x0)
)3 6= 1 from Lemma 11, the tower is available. �

Theorem 7 Under the same assumptions as in Theorem 6, the BLS curve E/Fp(x0) can be deter-
mined as follows: For m = 1,

E/Fp(x0) :

 y2 = x3 + 1 if x0 ≡ 7, 31 (mod 36)
y2 = x3 + 4 if x0 ≡ 16, 34 (mod 36)
y2 = x3 − 2 if x0 ≡ 10, 28 (mod 36)

For m > 1,

E/Fp(x0) :

 y2 = x3 + 1 if x0 ≡ 7, 31 (mod 72)
y2 = x3 + 4 if x0 ≡ 16 (mod 72)
y2 = x3 − 2 if x0 ≡ 64 (mod 72)
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Proof of Theorem 7. The authors verify the cofactors of the possible group orders to determine the
coefficient b of the BLS curve by using Lemma 4. From the definition, the curve with the group
order n(x0) = p(x0) + 1− t(x0) is the BLS curve.

If x0 ≡ 7, 31 (mod 36) for m = 1; x0 ≡ 7, 31 (mod 72) for m > 1, then n(x0) is divisible by
6 but the other group orders are not divisible by 6. According to (a) and (b) in Lemma 4, the
coefficient b of the BLS curve is quadratic and cubic residue element b in F∗p(x0)

. Such the coefficient

can be chosen as b = 1 since it is obvious that ( 1
p(x0)

) = 1 and ( 1
p(x0)

)3 = 1.

Similarly, if x0 ≡ 16, 34 (mod 36) for m = 1; x0 ≡ 16 (mod 72) for m > 1, n(x0) is always
divisible by 3 but is not divisible by 2 and 9, however, the other group orders do not have such the
properties of cofactors. Thus, according to (a) and (b) in Lemma 4, b is quadratic residue and cubic
non-residue in F∗p(x0)

and 4b is cubic non-residue in F∗p(x0)
. Then, the coefficient b of the BLS curve

can be explicitly chosen as b = 4 since ( 2
p(x0)

)3 6= 1 from Lemma 11.

Finally, if x0 ≡ 10, 28 (mod 36) for m = 1; x0 ≡ 64 (mod 72) for m > 1, 9 always divides n(x0)
but 2 does not divide n(x0) and the other group orders are not divisible by 9. According to (a)
and (c) in Lemma 4, it is found that b is quadratic residue and cubic non-residue in F∗p(x0)

, and 4b
is cubic residue in F∗p(x0)

. Such the coefficient b of the BLS curve can be chosen as b = 16 since

( 2
p(x0)

)3 6= 1 from Lemma 11. Since the quadratic and cubic residue properties of −2 and 16 are

exactly the same, b = −2 can also be chosen for the BLS curve. �

Theorem 8 Suppose that the tower of extension fields is constructed as in Theorem 6 and E/Fp(x0)

be the BLS curve determined as in Theorem 7. Then, the correct twist E′/Fp(x0)2
m−1 of degree 6 of

E can be determined as follows: For m = 1,

E′/Fp(x0)2
m−1 :

 y2 = x3 − 4 if x0 ≡ 7 (mod 36),
y2 = x3 − 1/4 if x0 ≡ 31 (mod 36),
y2 = x3 − 1 if x0 ≡ 10, 16, 28, 34 (mod 36).

For m > 1, letting z = v6 ∈ Fp(x0)2
m−1 with v ∈ Fp(x0)2

m·3 such that v2
m−1·3 = u+ 1,

E′/Fp(x0)2
m−1 :


y2 = x3 + 1/z if x0 ≡ 7 (mod 72),
y2 = x3 + 4z if x0 ≡ 16 (mod 72),
y2 = x3 + z if x0 ≡ 31 (mod 72),
y2 = x3 − 2/z if x0 ≡ 64 (mod 72).

Proof of Theorem 8. The authors verify the cofactors of the group order n′(x0) of the correct twist
E′/Fp(x0)2

m−1 : y2 = x3 + b′ to determine b′ by using Lemma 4. As described in Sect. 4.3, b′ can

be represented as b′ = b/δ where b is the coefficient of the BLS curve and δ is quadratic and cubic
non-residue in F∗

p(x0)2
m−1 . The authors also verify the cofactors of the group order n′′(x0) of the

twist E′′/Fp(x0)2
m−1 : y2 = x3 + b′′ of degree 2 of E′, where b′′ = b′/δ3 = b · δ4. Note that n′(x0) is

derived as in Theorem 4 and n′′(x0) = 2p(x0)2
m−1

+ 2− n′(x0) from Eq. (12).
For m = 1, if x0 ≡ 7 (mod 36), it is found that n′(x0) is not divisible by 2, 3, and 9. It is also

found that n′′(x0) is divisible by 3, but is not divisible by 2 and 9. Thus, according to Lemma 4, we
obtain the following informations.

(a) b′ is quadratic and cubic non-residue in F∗p(x0)
.

(b) b′′ is quadratic residue and cubic non-residue in F∗p(x0)
.

(c) 4b′′ is cubic non-residue in F∗p(x0)
.

In this condition, the coefficient b of the BLS curve is determined as b = 1 and −4 is quadratic and
cubic non-residue in F∗p(x0)

. Thus, the coefficient b′ of the correct twist E′/F∗p(x0)
can be denoted as

either b′ = −1/4 or −4. In addition, the coefficient b′′ of the twist E′′/F∗p(x0)
of degree 2 of E′ can

also be denoted as either b′′ = 1/44 or 44. From the above, it is found that the both candidates of
b′ and b′′ satisfy (a) and (b), however, (c) is satisfied if b′′ = (−4)4, which leads to b′ = −4. Thus,
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the authors obtain b′ = −4. In the same manner, the other cases of x0 ≡ 10, 16, 28, 31, 34 (mod 36)
can also be obtained.

For m > 1, if x0 ≡ 7 (mod 72), n′(x0) is not divisible by 2, 3, and 9. Besides, if m is even,
n′′(x0) is divisible by 9, but is not divisible by 2, otherwise, n′′(x0) is divisible by 3, but is not
divisible by 2 and 9. Thus, the following informations are obtained from Lemma 4.

(a) b′ is quadratic and cubic non-residue in F∗
p(x0)2

m−1 .

(b) b′′ is quadratic residue and cubic non-residue in F∗
p(x0)2

m−1 .

(c) If m is even, 4b′′ is cubic residue in F∗
p(x0)2

m−1 , otherwise, 4b′′ is cubic non-residue in F∗
p(x0)2

m−1 .

Under this condition, the coefficient b of the BLS curve is determined as b = 1. Besides, z = v6 is
quadratic and cubic non-residue in F∗

p(x0)2
m−1 since the norm of z, which is computed as follows, is

quadratic and cubic non-residue in F∗p(x0)
.

NF
p(x0)2

m−1 /Fp(x0)
(z) = z

∑2m−1−1
i=0 p(x0)

i

= z(p
2m−2

+1)·
∑2m−2−1

i=0 p(x0)
i

= (−z2)
∑2m−2−1

i=0 p(x0)
i

= (−z2
2

)
∑2m−3−1

i=0 p(x0)
i

= · · ·

= (−z2
m−2

)p(x0)+1= (−v2
m−1·3)p(x0)+1 = (−(u+ 1))p(x0)+1

= −(u+ 1) · (u− 1) = 2.

Thus, the coefficient b′ of the correct twist E′/F∗
p(x0)2

m−1 can be denoted as either b′ = 1/z or z.

Besides, the coefficient b′′ of the twist E′′/F∗
p(x0)2

m−1 of degree 2 of E′ can also be denoted as either

b′′ = 1/z4 or z4. From the above, it is found that the both candidates of b′ and b′′ satisfy (a) and

(b). As for (c), since the norm of 4/z4 and 4z4 are computed as NF
p(x0)2

m−1 /Fp(x0)
(4/z4) = 22·2

m−1−4

and NF
p(x0)2

m−1 /Fp(x0)
(4z4) = 22·2

m−1+4 in the same manner as the computation of the norm of z,

respectively, it is found that (c) is satisfied if b′′ = 1/z4, which leads to b′ = 1/z. Thus, the authors
obtain b′ = 1/z. The other cases of x0 ≡ 16, 31, 64 (mod 72) can also be determined. �

6.2 The case of k = 3n for any n > 0

Let x0 be an integer parameter for the BLS family of pairing-friendly elliptic curves with k = 3n

where n > 0 is an arbitrary integer. The authors propose to restrict x0 as follows:

x0 ≡ 4 (mod 6). (16)

Once finding x0 under the above restriction, we have the specific BLS subfamily with the options
(i) a fixed tower of extension fields with one of the best performing arithmetics is always available,
and (ii) the BLS curve E/Fp(x0) is immediately determined. In addition to this, the BLS subfamily
might have the option (iii) the correct twist E′/Fp(x0)3

n−1 is also immediately determined. If that

is true, these constructions also enable one of the simplest twist isomorphisms. Table 2 shows the
details of the field and curve options. The authors also provide Theorems 9 and 10 which shows
the correctness that the proposed BLS subfamily has the options (i) and (ii), respectively. Though
we need another theorem for the discussion, unfortunately, the authors do not complete proof, yet.
Therefore, the authors show Conjecture 1 about the options (iii). Before theorems and conjecture,
the authors present the knowledge of the quadratic and cubic residue properties in F∗p(x0)

in the
following Lemma 12.

Lemma 12 For any n > 0, the following is true.(
2

p(x0)

)
3

{
= 1 if x0 ≡ 1, 4 (mod 18),
6= 1 if x0 ≡ 7, 10, 13, 16 (mod 18).
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Table 2: Field and curve options for the proposed BLS subfamily of curves with k = 3n for any
n > 0, where z = u3 ∈ Fp(x0)3

n−1 with u ∈ Fp(x0)3
n defined in Eq. (17).

x0 Tower BLS curve E/Fp(x0) Twist E′/Fp(x0)3
n−1

(mod 6) (see Theorem 9) (see Theorem 10) (see Conjecture 1)
4 Eq. (17) y2 = x3 + 16 y2 = x3 + 16z2

Proof of Lemma 12. The authors classify x0 into x0 ≡ 1 (mod 6) and x0 ≡ 4 (mod 6).
If x0 ≡ 1 (mod 6), p(x0) can be modified as follows:

p(x0) =

(
t(x0)

2

)2

+ 3

(
V (x0)

2

)2

=

(
x0 + 1

2

)2

+ 3

(
x0 − 1

6
· (2x3

n−1

0 + 1)

)2

.

For b(x0) = (x0 − 1)/6 · (2x3n−1

0 + 1), 3 divides b(x0). According to Lemma 2, 2 is cubic residue in
F∗p(x0)

under this condition.

Similarly, if x0 ≡ 4 (mod 6), p(x0) can be modified as follows:

p(x0) =

(
t(x0) + 3V (x0)

4

)2

+ 3

(
t(x0)− V (x0)

4

)2

=

(
(x0 − 1) · x3n−1

0 + x0
2

)2

+ 3

(
−(x0 − 1) · x3n−1

0 + x0 + 2

6

)2

.

For b(x0) = (−(x0 − 1) · x3n−1

0 + x0 + 2)/6, 3 does not divide b0. Thus, it is obtained that 2 is cubic
non-residue in F∗p(x0)

from Lemma 2. �
Then, the authors provide Theorems 9 and 10 associated with the construction of the tower of

extension fields and BLS curve.

Theorem 9 If x0 satisfies Eq. (16), the following tower of extension fields is always available.

Fp3n (x0) = Fp(x0)[u]/(u3
n

− 2),where u3
n

= 2, u ∈ Fp(x0)3
n . (17)

Proof of Theorem 9. To adopt the tower of extension fields given in Eq. (17), the binomial u3
n−2 has

to be irreducible in Fp(x0)[u], i.e., 3 | (p(x0)− 1) and 2 is cubic non-residue in F∗p(x0)
from Lemma 3.

The former requirement is satisfied for any x0. If x0 ≡ 4 (mod 6), the latter requirement is also
satisfied since ( 2

p(x0)
)3 6= 1 under this condition as found in Lemma 12. �

Theorem 10 Under the same assumptions as Theorem 9, the BLS curve with k = 3n is immediately
determined as E/Fp(x0) : y2 = x3 + 16 for any n > 0.

Proof of Theorem 10. The authors verify the cofactors of the possible group orders, which n(x0) =
p(x0) + 1 − t(x0) is the group order of the BLS curve. If x0 ≡ 4 (mod 6), 9 always divides n(x0),
however, 2 does not divide that. Note that the other group orders cannot be divisible by 9. According
to (a) and (c) in Lemma 4, the coefficient b of the BLS curve is quadratic residue and cubic non-
residue in F∗p(x0)

and 4b is cubic residue in F∗p(x0)
. From Lemma 12, such the coefficient can be

chosen as b = 16. �
Unfortunately, the authors can not determine the correct twist E′/Fp(x0)3

n−1 by using Lemma 4

since the field Fp3n−1 in which twist is defined always makes the coefficient b of the BLS curves

E/Fp(x0) being cubic residue in F∗
p(x0)3

n−1 . However, the authors make the following prediction from

the experimental results of the determination of the twist equation with some small n.
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Conjecture 1 With x0 satisfying Eq. (16), suppose that the tower of extension fields is constructed
as in Theorem 9 and E/Fp(x0) be the BLS curve determined as in Theorem 10. The correct twist of
degree 3 of E can be determined as E′/Fp(x0)3

n−1 : y2 = x3 + 16z2 where z = u3 ∈ Fp(x0)3
n−1 with

u ∈ Fp(x0)3
n such that u3

n

= 2.

Moreover, there is a possibility that Conjecture 1 can be proven by using another twist determination
technique given by Yasuda et al. in [39], however, their technique is not so simpler than Costello et
al.’s one [11] and require the knowledge of number theory. According to [39], the authors just find
that if the following Conjecture 2 is true, Conjecture 1 is true.

Conjecture 2 Let ε be a primitive cube root of the identity in F∗p(x0)
which is represented as ε ≡

−(1 + t(x0) · V (x0)−1)/2 (mod p(x0)). If x0 ≡ 4 (mod 6), the following is always true.

ε · 2
p(x0)−1

3 ≡ 1 (mod p(x0)).

The authors leave proof of the above conjectures as the future works.

7 Application

In this section, the authors apply our proposal and provide sample parameters x0 for generating the
proposed BLS subfamilies of curves with k = 2m · 3 and 3n for m,n ∈ {2, 3}, i.e., k = 9, 12, 24,
and 27. For k = 24, although Costello et al. provided many candidates of x0 in [11], the authors
reproduce the parameters based on the current security analysis [17]. According to the suggestions
of [17], the authors adopt the curves with k ∈ {9, 12} and {24, 27} for the pairings at the 128 and
192-bit security levels, respectively. For the 128-bit security, the authors search x0 which gives rise
to r(x0) with log2 r(x0) ≥ 256 and p(x0) with log2 p(x0)k ≥ 5, 472 for k = 9 and log2 p(x0)k ≥ 5, 376
for k = 12. For the 192-bit security, the authors also search x0 which gives rise to r(x0) with
log2 r(x0) ≥ 384 and p(x0) with log2 p(x0)k ≥ 12, 202 for k = 24 and log2 p(x0)k ≥ 11, 496 for
k = 27. The parameters x0 having the low-Hamming weight are found for efficiency reasons of the
pairings. According to [31], for k = 3n such that 2 - k, since it is also effective for fast Miller’s

algorithm to choose x0 with the specific binary representations such that x0 =
∑log2 x0−1

i=0 2iti where
ti ∈ {0, 1} or {−1, 0}, the authors adopt that for searching x0.

Tables 3 and 4 show the sample parameters x0 for the pairings with the BLS family of curves
with k = 12, 9, 24 and 27. The important fact is that all parameters result in the fixed field and curve
constructions as in Tables 1 and 2 depending on the congruence classes of x0. Although the twist
equations for the case of k = 3n are just conjecture, the authors verify that all the parameters for the
cases k = 9 and 27 can provide the correct twist in Table 2. This fixed field and curve constructions
allow us to reduce the initial settings of the pairings. Moreover, if there are existing implementations
of the pairings with some x0 in a certain congruence class, we can reuse the implementation codes
of the field and curve arithmetics for these of the pairings with new x0 as long as x0 is chosen from
the same congruence class. Thus, the proposal contributes to not only finding new parameters but
also smooth updating of x0 corresponding to the progress of the security analyses. Note that the
recent work [1] also carefully found x0 even though they might not have the knowledge for finding
nice x0 except for k = 24.

8 Evaluation

The authors evaluate the parameters for the pairings on BLS curves with k = {9, 12, 24, 27} given
in Sect. 7 by an implementation. For efficient implementation, the authors adopt the state-of-the-
art optimizations described below. For Miller’s algorithm, the authors adopt efficient formulas for
computing Miller’s algorithm given by Costello et al. in [10]. The projective and affine formulas
are adopted for the pairings at the 128 and 192-bit security level, respectively. For the case of the
curves with k = 9 and 27, the revised version of Miller’s algorithm by Nanjo et al. in [31] is adopted
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Table 3: Sample parameters x0 for the attractive BLS subfamilies of pairing-friendly elliptic curves
with k = 12 and 24 for the pairings at the 128 and 192-bit security levels, respectively.

(a) k = 12, 128-bit security level.
No. x0 x0 HW(x0) log2 p(x0) log2 p(x0)k log2 r(x0)

(mod 72)
1 7 −276 − 228 − 223 − 20 4 455 5453 305
2 7 +275 − 261 + 231 − 20 4 449 5381 300
3 7 −275 + 252 + 240 + 27 − 20 5 449 5381 300
4 7 −275 + 254 − 236 + 24 − 20 5 449 5381 300
5 7 −275 + 270 + 250 − 244 − 20 5 449 5378 300
6 16 −277 − 259 + 29 [1] 3 461 5525 309
7 16 −277 + 250 + 233 [1] 3 461 5525 308
8 16 +275 + 265 − 245 − 210 4 449 5382 301
9 16 −275 − 226 + 221 − 210 4 449 5381 301
10 16 +275 − 260 + 245 + 224 4 449 5381 300
11 31 +276 − 272 − 212 − 20 4 454 5447 304
12 31 +275 + 240 − 236 − 20 4 449 5381 301
13 31 +275 − 270 − 25 − 20 4 449 5378 300
14 31 −275 − 255 − 242 + 240 − 20 5 449 5381 301
15 31 −275 − 251 + 240 − 214 − 20 5 449 5381 301
16 64 +275 + 254 − 227 3 449 5381 301
17 64 +276 − 270 + 266 3 455 5452 304
18 64 +275 + 269 + 264 + 235 4 449 5383 301
19 64 +275 + 255 − 254 − 227 4 449 5381 301
20 64 −275 + 245 + 243 − 26 4 449 5381 300

(b) k = 24, 192-bit security level.
No. x0 x0 HW(x0) log2 p(x0) log2 p(x0)k log2 r(x0)

(mod 72)
1 7 −251 − 228 + 211 − 20 [11] 4 509 12202 409
2 7 +251 − 232 − 220 + 23 − 20 5 509 12202 408
3 7 −251 − 234 + 224 + 214 − 20 5 509 12202 409
4 7 −251 + 230 − 224 − 213 − 20 5 509 12202 408
5 7 −251 − 248 − 221 − 213 − 20 5 511 12243 410
6 16 +251 + 241 + 234 + 211 4 509 12203 409
7 16 −251 − 248 + 245 + 239 [11] 4 510 12238 410
8 16 +251 + 241 − 236 − 25 4 509 12203 409
9 16 +252 − 249 + 220 + 210 4 517 12396 415
10 16 +252 − 248 − 246 + 215 4 518 12414 416
11 31 +251 − 215 − 28 − 20 [11] 4 509 12202 408
12 31 −252 − 228 + 218 − 20 [11] 4 519 12442 417
13 31 −251 + 230 − 219 + 211 − 20 5 509 12202 408
14 31 +251 + 227 − 212 + 23 − 20 5 509 12202 409
15 31 −251 + 238 − 210 + 24 − 20 5 509 12202 408
16 64 −251 + 234 − 24 3 509 12202 408
17 64 −252 − 239 + 216 [1] 3 519 12443 417
18 64 −251 + 235 − 234 − 24 4 509 12202 408
19 64 +251 + 227 + 217 + 24 4 509 12202 409
20 64 +251 − 239 + 233 − 210 4 509 12202 408
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Table 4: Sample parameters x0 for the attractive BLS subfamily of pairing-friendly elliptic curves
with k = 9 and 27 for the pairings at the 128 and 192-bit security levels, respectively.

(a) k = 9, 128-bit security level.
No. x0 x0 HW(x0) log2 p(x0) log2 p(x0)k log2 r(x0)

(mod 6)
1 4 −277 − 262 + 220 3 615 5530 461
2 4 −277 − 219 + 29 3 615 5530 461
3 4 −277 − 275 − 232 3 617 5553 463
4 4 +277 + 262 + 235 + 225 4 615 5530 461
5 4 +276 + 274 + 246 + 222 4 609 5481 457
6 4 −276 − 275 − 270 − 225 − 21 5 612 5501 459
7 4 −276 − 274 − 265 − 263 − 219 5 609 5481 457
8 4 −276 − 275 − 257 − 251 − 218 5 612 5500 458
9 4 −276 − 274 − 254 − 234 − 228 5 609 5481 457
10 4 +276 + 274 + 242 + 231 + 227 5 609 5481 457
11 4 +276 + 275 + 274 + 260 + 219 5 613 5516 460
12 4 +276 + 274 + 265 + 254 + 211 5 609 5481 457

(b) k = 27, 192-bit security level.
No. x0 x0 HW(x0) log2 p(x0) log2 p(x0)k log2 r(x0)

(mod 6)
1 4 −222 − 212 + 28 − 26 4 439 11838 395
2 4 +223 − 218 + 214 − 210 4 458 12354 412
3 4 −223 − 217 + 28 − 21 4 459 12390 413
4 4 +222 + 218 + 213 + 24 + 21 5 441 11886 397
5 4 −222 − 221 − 219 − 26 − 21 5 453 12216 408
6 4 −223 − 217 − 211 − 210 − 28 5 459 12390 413
7 4 −223 − 218 − 28 − 27 − 23 5 460 12402 414
8 4 +222 + 221 + 219 + 214 + 29 + 27 6 453 12218 408
9 4 +222 + 220 + 214 + 29 + 24 + 22 6 445 12014 401
10 4 +222 + 214 + 211 + 28 + 24 + 22 6 439 11841 395
11 4 +222 + 217 + 29 + 27 + 25 + 24 6 440 11862 396
12 4 −222 − 221 − 215 − 213 − 211 − 29 6 451 12159 406
13 4 −222 − 211 − 210 − 29 − 28 − 26 6 439 11838 395
14 4 −222 − 211 − 210 − 29 − 26 − 24 6 439 11838 395
15 4 −222 − 221 − 217 − 212 − 210 − 28 6 451 12170 406
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as appropriate according to x0 of the loop parameter. For the final exponentiation algorithm, we
adopt the state-of-the-art algorithm given by Hayashida et al. in [19]. For the curves with k = 12
and 24, we also use the compressed squaring in the cyclotomic subgroup in the full extension field
given by Karabina in [23], which is available during computation of the hard part of the final
exponentiation. Unfortunately, the curves with k = 9 and 27 cannot have such efficient squaring in
the final exponentiation.

With the above optimizations, the authors implement the software for executing the pairings
by C language. The authors use the big integer arithmetics are implemented by using mp limb t

data type of the GMP library [16]. The software is compiled with GCC 8.3.0 with the option -O2

-march=native and is executed by 3.50GHz Intel(R) Core(TM) i7-7567U CPU running macOS Big
Sur version 11.2.3. To evaluate the parameters, the average execution times of 100,000 trials of
Miller’s algorithm and final exponentiation are measured. Note that the measurement is performed
by repeating the functions for 1,000 random inputs 100 times.

Tables 5 and 6 show the results of the average execution time of Miller’s algorithm and final
exponentiation. The results are analyzed as follows:

• Comparing the results between the same curves, the execution times of the pairings on the
curves with small HW(x0) are typically faster than that of the curves with large HW(x0) since
the performance of the pairing depends on the signed binary representation of x0. Although
some results do not follow this trend, the authors consider that it might come from the effects
of cache and parallel processing. Rather than that, the execution times more strongly depend
on the word size of p(x0). For example, for the curves with k = 24, the parameters of No. 18
could not result in the best performing pairing due to the word size of p(x0) even though that
has the smallest Hamming weight. Besides, the authors could not find the difference between
the congruence classes for the curves with k = 12 and 24, however, Costello et al. described
that the difference of the twist isomorphisms between the congruence classes can affect the
performance of Miller’s algorithm in [11]. The authors consider that this effect might be small
enough to ignore in this environment.

• Comparing the results between the same security levels, it is clear that the curves with k = 12
and k = 24 result in higher performance of the pairings at the 128 and 192-bit security
levels comparing with the curves with k = 9 and 27, respectively. This cause of that the
curves with k = 9 and 27 have low degree twists which can have disadvantage for computing
Miller’s algorithm. Besides, these curves cannot result in an efficient squaring in the cyclotomic
multiplicative subgroup of the full extension field for computing the final exponentiation.

As a result, among the candidates shown in this paper, the authors suggest the curves with
k = 12 with the parameters of No. 1, 6, 7, 11, and 17 for the pairing at the 128-bit security level.
The authors also suggest the curves with k = 24 with the parameters of No. 16 for the pairing at
the 192-bit security level.

9 Conclusion

In this paper, the authors extend the previous work [11] and provide the restrictions of the integer
x0 for generating the specific subfamilies of the BLS family of pairing-friendly elliptic curves with
embedding degree k = 2m · 3 and 3n for any integer m,n > 0. The proposed BLS subfamilies of
curves with k = 2m · 3 result in efficient field arithmetics and immediately determination of the
BLS curves E/Fp(x0) and correct twist E′/Fp(x0)2

m−1 of degree 6 of E. Similarly, the proposed

BLS subfamily of curves with k = 3n also results in efficient field arithmetics and immediately
determination of the BLS curves E/Fp(x0), however, the correct twist E′/Fp(x0)3

n−1 of degree 3 of

E are not mathematically determined at this time. As a future work, the authors would like to
overcome this remaining issues by providing proof of Conjectures 1 and 2.
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Table 5: Average execution times for computing Miller’s algorithm and final exponentiation for the
pairings on BLS curves with k = 12 and 24 at the 128 and 192-bit security levels, respectively.

(a) k = 12, 128-bit security level.
No. x0 x0 HW(x0) Word Miller’s alg. Final exp. Total

(mod 72) size [ms] [ms] [ms]
1 7 −276 − 228 − 223 − 20 4 8 1.54 1.54 3.08
2 7 +275 − 261 + 231 − 20 4 8 1.59 1.60 3.20
3 7 −275 + 252 + 240 + 27 − 20 5 8 1.62 1.69 3.31
4 7 −275 + 254 − 236 + 24 − 20 5 8 1.62 1.69 3.30
5 7 −275 + 270 + 250 − 244 − 20 5 8 1.57 1.64 3.21
6 16 −277 − 259 + 29 [1] 3 8 1.53 1.52 3.05
7 16 −277 + 250 + 233 [1] 3 8 1.54 1.52 3.06
8 16 +275 + 265 − 245 − 210 4 8 1.59 1.66 3.25
9 16 −275 − 226 + 221 − 210 4 8 1.59 1.66 3.25
10 16 +275 − 260 + 245 + 224 4 8 1.59 1.66 3.25
11 31 +276 − 272 − 212 − 20 4 8 1.51 1.52 3.03
12 31 +275 + 240 − 236 − 20 4 8 1.59 1.61 3.20
13 31 +275 − 270 − 25 − 20 4 8 1.54 1.57 3.11
14 31 −275 − 255 − 242 + 240 − 20 5 8 1.61 1.70 3.30
15 31 −275 − 251 + 240 − 214 − 20 5 8 1.61 1.70 3.30
16 64 +275 + 254 − 227 3 8 1.59 1.58 3.17
17 64 +276 − 270 + 266 3 8 1.52 1.51 3.03
18 64 +275 + 269 + 264 + 235 4 8 1.62 1.67 3.28
19 64 +275 + 255 − 254 − 227 4 8 1.60 1.66 3.27
20 64 −275 + 245 + 243 − 26 4 8 1.60 1.65 3.25

(b) k = 24, 192-bit security level.
No. x0 x0 HW(x0) Word Miller’s alg. Final exp. Total

(mod 72) size [ms] [ms] [ms]
1 7 −251 − 228 + 211 − 20 [11] 4 8 2.82 5.38 8.20
2 7 +251 − 232 − 220 + 23 − 20 5 8 2.84 5.77 8.62
3 7 −251 − 234 + 224 + 214 − 20 5 8 2.84 5.77 8.60
4 7 −251 + 230 − 224 − 213 − 20 5 8 2.85 5.81 8.66
5 7 −251 − 248 − 221 − 213 − 20 5 8 2.84 5.77 8.61
6 16 +251 + 241 + 234 + 211 4 8 2.79 5.49 8.28
7 16 −251 − 248 + 245 + 239 [11] 4 8 2.81 5.54 8.35
8 16 +251 + 241 − 236 − 25 4 8 2.78 5.48 8.27
9 16 +252 − 249 + 220 + 210 4 9 3.31 6.49 9.80
10 16 +252 − 248 − 246 + 215 4 9 3.32 6.52 9.84
11 31 +251 − 215 − 28 − 20 [11] 4 8 2.81 5.36 8.17
12 31 −252 − 228 + 218 − 20 [11] 4 9 3.36 6.37 9.73
13 31 −251 + 230 − 219 + 211 − 20 5 8 2.83 5.77 8.60
14 31 +251 + 227 − 212 + 23 − 20 5 8 2.84 5.77 8.61
15 31 −251 + 238 − 210 + 24 − 20 5 8 2.85 5.81 8.66
16 64 −251 + 234 − 24 3 8 2.79 5.12 7.91
17 64 −252 − 239 + 216 [1] 3 9 3.30 6.03 9.34
18 64 −251 + 235 − 234 − 24 4 8 2.82 5.55 8.37
19 64 +251 + 227 + 217 + 24 4 8 2.81 5.55 8.36
20 64 +251 − 239 + 233 − 210 4 8 2.82 5.57 8.39
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Table 6: Average execution times for computing Miller’s algorithm and final exponentiation for the
pairings on BLS curves with k = 9 and 27 at the 128 and 192-bit security levels, respectively.

(a) k = 9, 128-bit security level.
No. x0 x0 HW(x0) Word Miller’s alg. Final exp. Total

(mod 6) size [ms] [ms] [ms]
1 4 −277 − 262 + 220 3 10 2.38 3.41 5.79
2 4 −277 − 219 + 29 3 10 2.37 3.39 5.76
3 4 −277 − 275 − 232 3 10 2.33 3.38 5.71
4 4 +277 + 262 + 235 + 225 4 10 2.35 3.36 5.71
5 4 +276 + 274 + 246 + 222 4 10 2.34 3.34 5.69
6 4 −276 − 275 − 270 − 225 − 21 5 10 2.38 3.46 5.84
7 4 −276 − 274 − 265 − 263 − 219 5 10 2.41 3.51 5.92
8 4 −276 − 275 − 257 − 251 − 218 5 10 2.38 3.48 5.86
9 4 −276 − 274 − 254 − 234 − 228 5 10 2.39 3.49 5.89
10 4 +276 + 274 + 242 + 231 + 227 5 10 2.37 3.40 5.77
11 4 +276 + 275 + 274 + 260 + 219 5 10 2.34 3.35 5.69
12 4 +276 + 274 + 265 + 254 + 211 5 10 2.37 3.41 5.77

(b) k = 27, 192-bit security level.
No. x0 x0 HW(x0) Word Miller’s alg. Final exp. Total

(mod 6) size [ms] [ms] [ms]
1 4 −222 − 212 + 28 − 26 4 7 2.41 13.1 15.5
2 4 +223 − 218 + 214 − 210 4 8 2.80 15.3 18.1
3 4 −223 − 217 + 28 − 21 4 8 2.84 15.3 18.2
4 4 +222 + 218 + 213 + 24 + 21 5 7 2.31 12.7 15.1
5 4 −222 − 221 − 219 − 26 − 21 5 8 2.70 15.6 18.3
6 4 −223 − 217 − 211 − 210 − 28 5 8 2.80 16.1 18.9
7 4 −223 − 218 − 28 − 27 − 23 5 8 2.78 16.0 18.8
8 4 +222 + 221 + 219 + 214 + 29 + 27 6 8 2.72 15.3 18.0
9 4 +222 + 220 + 214 + 29 + 24 + 22 6 7 2.36 13.3 15.7
10 4 +222 + 214 + 211 + 28 + 24 + 22 6 7 2.35 13.2 15.6
11 4 +222 + 217 + 29 + 27 + 25 + 24 6 7 2.35 13.3 15.6
12 4 −222 − 221 − 215 − 213 − 211 − 29 6 8 2.82 16.6 19.4
13 4 −222 − 211 − 210 − 29 − 28 − 26 6 7 2.44 14.3 16.7
14 4 −222 − 211 − 210 − 29 − 26 − 24 6 7 2.43 14.2 16.6
15 4 −222 − 221 − 217 − 212 − 210 − 28 6 8 2.81 16.6 19.4
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