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Abstract

Computational scalability allows neural networks on embedded systems to provide desirable inference
performance while satisfying severe power consumption and computational resource constraints. This
paper presents a simple yet scalable inference method called ProgressiveNN, consisting of bitwise binary
(BWB) quantization, accumulative bit-serial (ABS) inference, and batch normalization (BN) retraining.
ProgressiveNN does not require any network structuremodification and obtains the network parameters from
a single training. BWB quantization decomposes and transforms each parameter into a bitwise format for
ABS inference, which then utilizes the parameters in themost-significant-bit-first order, enabling progressive
inference. The evaluation result shows that the proposed method provides computational scalability from
12.5% to 100% for ResNet18 on CIFAR-10/100 with a single set of network parameters. It also shows
that BN retraining suppresses accuracy degradation of training performed with low computational cost and
restores inference accuracy to 65% at 1-bit width inference. This paper also presents amethod to dynamically
adjust the bit-precision of the ProgressiveNN to achieve a better trade-off between computational resource
use and accuracy for practical applications using sequential data with proximity resemblance. The evaluation
result indicates that the accuracy increases by 1.3% with an average bit-length of 2 compared with only the
2-bit BWB network.

Keywords: deep neural network, bit-wise quantization, progressive inference, batch normalization retraining,
dynamic bit-precision

1 Introduction
The availability of neural networks on edge devices provides a promising solution to privacy, network
connectivity, and real-time responsiveness problems when applying neural networks in healthcare, robotics,
vehicle design, and industries of unpopulated areas. Because neural networks require high computation cost,
deployment on the end user-edge device platforms has not been feasible. Presently, the arrival of more
powerful and low-energy-consumption edge devices affords more options. However, the key problem is that
neural networks require more computational resources than edge devices can afford.

Under severe constraints of computational resources and power consumption on edge devices, computa-
tional complexity reduction is critical in exploiting the benefits of neural networks. Quantization is the most
widely used technique for this purpose. Using low bit-width activations/parameters enables the edge devices
to satisfy the constraints in exchange for sacrificing accuracy. To improve this trade-off, many researchers
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Figure 1: Advantage of computational scalability on edge devices. Inference difficulty depends on tasks, and
low computational inference is sufficient for undemanding tasks. For applications using sequential data such
as audio and video, it is possible to determine proper computational cost based on previous inference results.
Edge devices can reduce energy consumption by adaptively adjusting computational cost.

have proposed binary, ternary, and other low bit-width quantization methods [1–9]. These methods optimize
network models to perform their best with a specific bit-width and format. There is no doubt that they can
achieve outstanding results, but there is room for improvement in edge-device inference.

When performing inference tasks, edge devices can reduce power consumption without any decrease in
accuracy by adjusting their computational resource use according to task difficulty, i.e., less computational
resource use for simple tasks and more for complex tasks, as shown in Figure 1. Adaptive inference, as the
name suggests, is a method that provides computational scalability to machine inference processes. However,
the conventional methods [10–13] require alteration of network structure, causing a high implementation cost
for existing network models. Bit-flexible networks [14, 15] provide an alternative solution without requiring
structural alteration. They train network parameters in a bit-by-bit manner: training a binary network followed
by training a 2-bit network concatenating the 2nd bit to the binary network, and so on. Their use of bit-serial
parameters enables computational scalability for inference tasks; however, the training process remains time-
consuming and too complex to achieve stable performance.

To solve this problem, we propose a simple and scalable inferencemethod called ProgressiveNN, consisting
of three parts: bitwise binary (BWB) quantization, batch normalization (BN) retraining, and accumulative
bit-serial (ABS) inference [16]. ProgressiveNN is a bit-flexible network, and its training process is simple
and applicable even to pre-trained networks. Besides, its network parameters can be obtained in only a single
training. The name, “ProgressiveNN” was coined by analogy with progressive JPEG. As shown in Fig. 2,
progressive JPEG improves “user experience” by displaying gradually. ProgressiveNN can optimize the trade-
off between computational cost minimization and accuracy, aiming at a wide range of potential applications.
This paper presents the details of ProgressiveNN and describes how the trade-off can be dynamically adjusted
in sequential data.

The remainder of this paper is structured as follows. Section 2 introduces related methods. Section 3
describes the details of ProgressiveNN. Then, Section 4 provides the evaluation results on the CIFAR-10 and
CIFAR-100 datasets. Finally, Section 5 concludes this paper.

2 Related Work
This section describes three categories of related methods: low-bit quantization, bit-flexible networks, and
training only BN. The studies on low-bit quantization [3–9] provide dedicated quantization approaches for
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Figure 2: Analogy of progressive JPEG and ProgressiveNN: progressive JPEG gradually enhances the
resolution of an image according to loaded data amount, and ProgressiveNN gradually improves the inference
accuracy according to the bit-width of weights.

extremely low-bit expressions such as binary and ternary. Although these approaches cannot adjust their
computational cost, they clarify the inference potential of networks using low-bit expressions. The studies
on bit-flexible networks [14, 15] provide approaches that support computational scalability without network
alteration. ProgressiveNN belongs to this category. Finally, training only BN [17] was proposed to investigate
the expressive power of BN, which ProgressiveNN exploits as a countermeasure against accuracy degradation
at low bit-width.

Low-bit quantization. Low-precision networks are a well-studied research area. Binary connect [3] replaces
weights with their sign and uses it for inference and training. Binary weight networks [4] introduce a
weight scale factor in binarizing and use the same binarization function. XNOR-Net [5] uses efficient binary
approximations to improve accuracy. Ternary weight networks [6] introduce ternary weights with zero added
to improve accuracy. These networks can significantly reduce computational complexity, but they cannot
provide computational scalability of inference tasks. Our ProgressiveNN presents a solution to this problem.

Bit-flexible networks. FlexNet [14] applies a bit-flexible network for resolving the issue that low-bit convolu-
tional neural networks (CNNs) cannot adjust the inference time and employs a corresponding training method,
called bit-progressive training. This training method gradually learns weights from the most significant bit
(MSB) to the least significant bit (LSB). In addition, a progressive scaling approach was proposed [15] by
introducing a scaling factor to improve low-bit precision in inference. This method improves accuracy by
training and adequately using scaling factors for various bit-widths. The problem is that its training cost is
considerable because this method needs to train weights in a bitwise manner. Therefore, we propose a more
straightforward training method with BWB quantization. Hardware support is indispensable in exploiting
the benefits of bit-flexible networks, including ProgressiveNN. For example, in [18], an architecture, called
bit fusion, was proposed to dynamically change the bit-widths in inference. Although the bit-widths of the
network models for bit fusion are fixed in advance, we can expect that this type of basic framework to work
for bit-flexible networks.

Training only BN. BN is an indispensable component of modern neural networks, but its expressive power
is not fully understood. To improve the understanding on BN, the inference performance achieved by training
BN and freezing other parameters has been investigated [17]. As reported in [17], training only BN with
sufficiently deep ResNets reached 82% test accuracy on CIFAR-10 and 32% top-5 accuracy on ImageNet.
These results are much higher than those of networks with random parameters. In this study, we exploit the
knowledge obtained from [17]. ProgressiveNN recovers its accuracy when using low bit-width weights by
retraining BN for each bit-width.
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Figure 3: Processing flow of ProgressiveNN, which consists of three processes: BWB quantization, BN
retraining, and ABS inference. BWB quantization converts trained floating-point weights to BWB format
through fine-tuning. Inference accuracy degradation caused by low bit-width BWB weights is alleviated
by BN retraining. Then, ABS inference adjusts the computational cost of inference by accumulating inner
products with BWB weights in each bit-width.

3 ProgressiveNN

ProgressiveNN is a bit-flexible network consisting of three processes: BWB quantization, BN retraining,
and ABS inference. A significant difference from conventional methods is that ProgressiveNN does not
require any unusual training method and is applicable even for pretrained networks. As shown in Figure 3,
BWB quantization is a bitwise binary representation that can express each weight in various resolutions. BN
retraining is a countermeasure against accuracy degradation caused by using low bit-width weights. ABS
inference performs the role of providing computational scalability to inference. This section also presents a
method for estimating the proper bit-precision based on low-bit inference results and a use case scenario to
achieve a better computational cost–accuracy trade-off. The following subsections describe the details of the
aforementioned techniques.
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Figure 4: Example of BWB quantization. BWB interprets zero as -1 and one as +1 and multiplies its place
value. Therefore, given that the target value is 5, 4-bit BWB expression is “1010” instead of “0101.” In each
bit-width, the BWB expression indicated by a blue arrow is the nearest value to the target value.

3.1 BWB Quantization
The concept of BWBquantization has been proposed in [14] and [15]. As shown in Figure 4, BWBquantization
considers the nearest value to the quantization target as the quantized value in the corresponding bit resolution
using targeted #-bit representation. The distinct feature of BWB quantization is that an expression of a
target value includes its other expressions with lower bit width. Therefore, BWB quantization allows for a
progressive numeric representation with one network weight. BWB quantization interprets zero as −1 and one
as +1 in each binary digit, multiplies its “place value,” and then accumulates it. For example, the expression
of 5 ∈ I in 4-digit binary is “1010” instead of “0101.” One in the 4th digit means +8, which is the nearest
value to 5 ∈ I in 1-bit resolution. Then, adding −4, zero in the 3rd digit, to +8 makes 4 ∈ I, which is the
nearest value to 5 ∈ I in 2-bit resolution, and so on. N-bit BWB quantization expresses the values from
−(2# − 1) to +(2# − 1) at intervals of 2. ProgressiveNN obtains all BWB values simultaneously by converting
trained floating-point weights to a BWB expression through fine-tuning: several training epochs start from the
floating-point weights with a very low learning rate. Although BWB quantization has no expression for 0 ∈ I,
we allow zero weights because they are implementable as pruned weights with skip instruction in accelerators.

3.2 BN Retraining
We use BN retraining as a countermeasure against accuracy degradation caused by low bit-width expressions.
As mentioned earlier, BWB quantization is a convenient method that extracts 1-bit to #-bit BWB expressions
simultaneously. The problem, however, is that low bit-width BWB weights do not perform well in inference
because there is no dedicated quantization for low bit-width networks. As mentioned in the previous section,
training only BN shows high accuracy even with frozen randomweights. We believe that retraining BN is also
useful against the accuracy drop in low-bit-width BWB expressions. When the maximum BWB expression is
#-bit width, ProgressiveNN retrains only BN parameters for 1 to (# − 1)-bit-width expressions by freezing
other parameters. The retraining cost for this is negligible compared with [14] and [15].

3.3 ABS Inference
ABS inference is a progressive inference using BWB weights. For convenience, we describe the details of
ABS inference in the form of general neural networks, but ABS inference can be extended to CNNs in a
straightforward manner. The inner product value, I, is calculated by

I =

"∑
<=1

|<G<, (1)
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where |< is the <-th weight, and G< is the corresponding input activation. Let |< [=] be the =-th bit of the
<-th BWB weight, i.e. |< [=] ∈ {−1, +1}, where the 0-th bit is the LSB. Then, I can be rewritten as follows:

I =

"∑
<=1

#∑
==1

2=−1|< [= − 1]G<. (2)

We can interchange the order of double summation:

I =

#∑
==1

"∑
<=1

2=−1|< [= − 1]G<. (3)

Using (3) in the MSB-first order enables progressive inference. For calculating I; of a ;-bit network, the
equation is written as

I; =

#∑
==#−;+1

"∑
<

2=−1|< [= − 1]G< (1 ≤ ; ≤ #). (4)

Therefore, the calculation for each bit-width can be written as follows:

I1 =

"∑
<

2#−1|< [# − 1]G<

I2 = I1 +
"∑
<

2#−2|< [# − 2]G<

...

I# = I#−1 +
"∑
<

20|< [0]G<. (5)

As expressed in (5), because the calculation is recursive, ABS inference needs to calculate only the
incremental portion for higher accuracy. In addition, because it uses a single set of BWB weights for 1-bit to
#-bit networks, this technique can reduce memory usage to achieve progressive inference.

3.4 Dynamic Bit-Precision Adjustment
We propose a technique to determine the optimal bit-precision, achieving equivalent accuracy of inference
results with the less computational cost. In sequential data, such as video frames, there is a resemblance
between consecutive inputs. The dynamical bit-precision adjustment exploits this feature. ProgressiveNN
conducts a certain bit-precision inference on the current input and decides to increase or decrease the bit
precision for the next input. We constructed an adjustment criterion based on the entropy of output distribution
from inference. Our technique is inspired by [19], which explores the combination of supermasks by
minimizing the entropy of output distribution.

Figure 5 shows the core concept of the criterion for bit-precision adjustment. We consider this as an
optimization problem that has a trade-off between computational cost and inference loss, as shown in the left
figure. We assume that the computational cost is linearly proportional to the bit-width, and the inference loss
is inversely proportional. The objective function is the sum of both terms, as in (6).

$ (=) = ! (=) + U� (=), (6)

where ! (=) is the =-bit validation loss, � (=) is the =-bit computation cost, and U is the scale factor. The
Pareto solution, =∗, is defined as follows:

=∗ = arg min
1≤=≤#

($ (=)). (7)
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in the center panel (right). 1 in the left figure is the computational overhead. The distribution on the right
figure shows objective function when only samples with entropy less than 48 are processed.

Dataset Bit-width
1 2 3 4 5 6 7 8

CIFAR-10/w/o BN Retraining + Dynamic Quantization 14.6 69.5 92.6 94.5 94.8 94.9 94.9 94,9
CIFAR-10/w/ BN Retraining 90.7 92,3 94.0 94.7 95.0 95.0 95.0 95.0
CIFAR-10/w/ BN Retraining + Dynamic Quantization 90.5 94.3 94.9 95.0 94.9 94.9 95.0 94.9
CIFAR-100/w/o BN Retraining + Dynamic Quantization 1.4 36.8 71.4 76.4 77.8 77.9 77.9 78.0
CIFAR-100/w/ BN Retrainig 65.1 68.2 70.3 72.8 75.6 77.3 78.1 78.0
CIFAR-100/w/ BN Retraining + Dynamic Quantization 64.6 75.7 77.4 78.0 78.1 78.2 78.1 78.1

Table 1: Top-1 accuracy of each bit-width on ResNet18 using the CIFAR-10/100 testing datasets.

Because � (=) is proportional to the bit-width, it can be defined as follows:

� (=) = 0= + 1, (8)

where 0 is the proportional constant and 1 is the overhead of computation the cost. The output distribution %
is the output of the SoftMax function used in neural networks for classification, and the entropy of the output
distribution is defined as follows:

4 = −
∑
8

?8log2pi (9)

where ?8 is the 8-th dimension of %. Given a threshold, the bit-precision adjustment algorithm only processes
the samples when the entropy of output distribution is below the threshold. We call it the entropy threshold
in this paper. Then, we consider the case where the entropy threshold is varied. As shown in the center panel
of Figure 5, the higher the entropy threshold, the more significant the difference between high bit-width loss
and low bit-width loss. This difference is because samples showing the high entropy are difficult to infer,
especially in low bit-width. Also, because the inference loss is associated with the entropy threshold, the
objective function changes its shape for each entropy threshold, as shown in the right panel of Figure 5. Then,
the bit-width of the minimum value switches after a certain entropy threshold. We set the entropy at which
the bit width switches as the threshold for processing with that bit-width. For each bit-width, bit-precision
adjustment algorithm processes the samples with entropies below the corresponding entropy threshold.

4 Experiment
To confirm the validity of ProgressiveNN, we applied it to ResNet18 and evaluated its performance. This
section describes the performance of ABS inference with BWBquantization and the influence of BN retraining
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Figure 6: Top-1 accuracy of each bit-width on ResNet18 using the CIFAR-10 (left) and CIFAR-100 (right)
testing datasets. The horizontal and vertical axes represent the bit-width of the BWB weights and top-1
accuracy, respectively. The red and blue lines denote the accuracies with BN retraining, red lines show the
case of setting the appropriate dynamic range for each BWB layer, and blue lines show the case of setting
a constant range for all BWB layers. The green lines indicate the accuracy without BN retraining under the
same quantization as the red line.

Figure 7: Weight distribution when quantized with 3 bits. The left figure shows the case where each layer is
quantized in the range of approximately three times the standard deviation, and the right figure shows the case
where all layers are quantized in the constant range, and values outside the range are clipped.

on accuracy. Subsequently, we evaluated the computational cost reduction with dynamic bit-precision. After
that, we estimated hardware resource requirement for ProgressiveNN. Finally, we discuss a further reduction
in the computational cost by using activation prediction based on ABS inference.

4.1 Experimental Settings
We evaluated the inference accuracy of ProgressiveNN on classification tasks. The network model used
was ResNet18 [20], implemented with the PyTorch framework [21]. Two CIFAR datasets [22], CIFAR-10
and CIFAR-100, were used for training and testing, and these contained 50,000 images and 10,000 images,
respectively. For training, we adopted the standard data augmentation described in [20]. We used the stochastic
gradient descent with momentum as the optimizer and trained the network model with a batch size of 128 for
200 epochs. The initial learning rate was set to 0.1 and was divided by 5 every 60 epochs. The threshold
for dynamic bit-precision adjustment was obtained by cross-validation, and 10,000 images were randomly
extracted from the CIFAR-100 dataset as validation data.

4.2 Evaluation using ResNet18 on CIFAR-10/100
We adopted 8-bit BWB quantization of the weights of both convolutional and fully connected layers and
8-bit fixed-point quantization of activations and other parameters. Figure 6 shows the top-1 accuracy changes
according to the bit-width; the blue lines and red lines represent the results with BN retraining, and the green
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Figure 8: Distribution of each bit-width of BWB weights in the 1st convolution layer of ResNet18. From the
top-left to the bottom-right, each graph shows the weight distribution in bit-width order. The top-left, 8-bit
weights, shows a unimodal distribution, and narrowing the bit-width distorts the weight distributions when
the bit-width is less than 5.

lines represent the result without BN retraining. Furthermore, the red and green lines represent the result
with quantization in the range of approximately three times the standard deviation for each BWB layer, as
shown on the left of Figure 7; the blue lines represent the result with quantization in the constant range for
all BWB layers, as shown on the right of Figure 7. Figure 7 shows an example of 3-bit quantization, clipping
out-of-range values. In our previous work [16], constant quantization was used with a low-resolution layer,
whereas in this study, dynamic quantization improved the accuracy. Table 1 summarizes the results shown
in Figure 6. From Figure 6, we can confirm that narrowing the bit-width of BWB expressions degrades the
top-1 accuracy. However, it is also possible to confirm that BN retraining recovers the accuracy drop shown
in the result without BN retraining: top-1 accuracy of 1-bit weight network on CIFAR-10 and CIFAR-100
improved to 91% and 65%, respectively. We can also confirm that quantization in the appropriate range for
each BWB layer improves accuracy at low bit-widths.

We found a significant variation between the weight distribution of each bit-width through further analysis.
As shown in Figure 8, 8-bit BWBweights have a unimodal distributionwith a sharp peak at zero, but narrowing
the bit-width distorts weight distributions significantly, especially when the bit-width is less than 5. Note that
we allow zero weights by assuming skip instruction, as mentioned in Section 3.1, although BWB quantization
has no expression for zero. We considered that this distortion is the possible cause of the significant
deterioration in low-bit BWB expressions. To resolve this problem, we focused on BN’s expressive power.
In [17], it is clarified that training only BN enables us to obtain high accuracy even when other parameters are
frozen at randomly initialized values. We straightforwardly extended this idea and retrained BN parameters
for each bit-width less than 8. The result that the red lines represent proves that the straightforward extension
of BN training is useful.

4.3 Evaluation with Dynamic Bit-Precision Adjustment
We evaluated the dynamic bit-precision adjustment based on the entropy of the output distribution. Figure 9
shows the relationship between accuracy and entropy, resulting from experiments using the validation set,
with the horizontal axis representing entropy, and vertical axis denoting the accuracy with processing samples
below the entropy of the horizontal axis. Based on this figure, we can confirm that the accuracy is improved
by increasing the bit-width. We can also confirm that the low entropy output result is confident because of the
accuracy of samples with high entropy being low. Results from 5-bit to 8-bit widths are omitted because they
are almost identical to the result of the 4-bit widths. Based on this result, the average bit length was reduced
by assigning easy tasks with low entropy output and difficult tasks with high entropy output to low and high
bits, respectively. The criterion for judging which bits to assign is the maximum entropy that minimizes the
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Figure 9: Relationship between entropy and accuracy for each bit-width. The vertical axis shows the accuracy
when processing samples below the entropy threshold of the horizontal axis with the corresponding bit-width,
excluding the remainder.

Figure 10: Relationship between objective function and the entropy of each bit-width (left), and objective
function when the entropy changes (right). These figures are for U of 1/70. We can confirm that the bit-width
showing the minimum value changes when the entropy is approximately 1.2 and 2.2, and these entropies are
set as the threshold values.

objective function, as explained in Section 3.4, for each bit-width.
Figure 10 shows the case where U is set to 1/70 in (6). The left figure shows the changes in th objective

function based on the accuracy below each entropy, and the right figure shows the changes in the objective
function for each bit width. From this figure, we can confirm that the bit width showing the minimum values
changes at the entropy of approximately 1.2 and 2.2, and these cross points are set as threshold values which
go up to the next bit, down to the previous bit, or remain the same. The left figure in Figure 11 shows the
accuracy with dynamic bit-precision and the baseline accuracy on CIFAR-100. The right one shows the
changes in the number of samples processed by each bit-width, where the vertical axis represents the number
of samples, and the horizontal axis represents the average bit-length. We can confirm that assigning samples
with high entropy to high bits achieves higher accuracy than using only specific bits. Table 2 lists the accuracy,
average bit length, and the number of samples processed with each bit-width when the scale factor, U, is 1/25,
1/50, and 1/100. When U was 1/25, all samples were processed with 1-bit or 2-bit, whereas when U was
reduced to 1/50 or 1/100, the percentage of 3-bit increased. We found that dynamic bit-precision improves
the accuracy per average bit-length over the baseline. For example, the accuracy with an average bit length
of approximately 2 was 1.3% better than the baseline accuracy with 2-bit weights. From these results, we
can confirm that as the scale factor decreases, the average bit-length and accuracy improve progressively, and
the ratio of the high bits increases. In situations where the amount of computational resources is limited,
selecting an appropriate scale factor according to the condition can achieve the desired trade-off.
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Figure 11: Relationship between the average bit-length and the accuracywith dynamic bit-precision adjustment
(left) and the number of each bit as the average bit length changes (right).

scale factor accuracy average bit-length 1bit 2bit 3bit 4bit
U = 1/25 72.9 1.36 6,440 3,560 0 0
U = 1/50 75.7 1.75 5,011 2,475 2,514 0
U = 1/100 77.0 2.01 3,407 3,092 3,501 0
baseline 1bit: 64.6, 2bit: 75.7, 3bit: 77.4, 4bit: 78.0

Table 2: Accuracy with dynamic bit-precision when U is 1/25, 1/50, and 1/100. We can confirm that adjusting
U can yield an arbitrary trade-off between accuracy and computational complexity.

Figure 12 shows the accuracy of the top 15% of the output with high entropy. This figure shows that
even a 4-bit weighted network has an accuracy of approximately 33% when the entropy of the output is high,
whereas a 1-bit weighted network has an accuracy of approximately 23%. In other words, 67% of inputs can
be wrong for both high and low bits. We can further reduce the computational resources by assigning such
inputs that are wrong in both conditions to low-bits.

4.4 Hardware Resource Requirement for ProgressiveNN
In inference, ProgressiveNN’s computation amount is not much different from a counterpart implementation
based on MAC operations using a fixed-point multiplier because it changes only the calculation order but
not the calculation itself. Also, the additional computation cost for the bit-precision adjustment is negligible
compared with the entire computation amount. The problem is that ProgressiveNN requires a specially
designed processing unit. This section describes a design of processing units for ProgressiveNN, showing

Figure 12: Accuracy of the instances of the top 15% entropy.
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Figure 13: Arithmetic procedure of ProgressiveNN, combining eight 8-bit MAC operations, where |8 repre-
sents the weights and G8 represents the corresponding activation. Red boxes represent the bits of activation
values, and blue boxes represent each weight’s bit used in the current calculation. When the weight bit is 0,
bit inversion occurs in the corresponding activation value, and the +1 for the complementary conversion is
added as the ninth operand.
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Figure 14: Implementation example of accumulation operations
with Wallace Tree using CSA. The left figure shows the accumu-
lation of 9 operands in BWB representation, and the right figure
shows the accumulation of partial products of 8 operands in 8-bit
fixed-point multiplication.

BWB Fixed-point
Level FA HA FA HA
1 20 4 12 4
2 16 0 14 3
3 8 0 7 3
4 9 0 8 2
5 9 1 9 1
6 18 0 18 0

Sum 71 5 68 13

Table 3: Number of FAs and HAs used at
each level in Figure 14.

that its necessary hardware resources are equivalent to multiplier-based implementations.
Figure 13 depicts an example of the arithmetic procedure in ProgressiveNN, combining the eight 8-bit

multiply-accumulate (MAC) operations in MSB-first order. Red boxes represent the bits of activations, and
blue boxes represent each weight’s bit used in the current calculation. Because 1 and 0 represent +1 and -1
in BWB-quantized weights, multiplying a 1-bit weight to an activation value is a sign inversion only when
the weight bit is 0. Considering the sum of +1 for each two’s complement conversion is the ninth operand,
we can build the MAC calculator for ProgressiveNN based on Wallace tree with eight 8-bit activations and
one 4-bit value resulting from eight 1-bit summations. Also, for summing results up from MSB to LSB, the
processing unit needs an accumulator and a left shifter.

The BWB-based MAC calculator mentioned above has a pretty similar structure to a fixed-point MAC
calculator. Figure 14 compares the core parts of both hardware implementations: the left side is a BWB-
based implementation, and the right side is a fixed-point implementation. In Figure 14, we assume that each
implementation uses carry-save adders (CSAs) and ripple-carry adders (RCAs) to simplify comparison, and
the left and right implementation are signed and unsigned configuration, respectively. Table 3 details the
numbers of full adders (FAs) and half adders (HAs) used in each level of both Wallace trees. As shown in
Table 3, required hardware resources are almost equivalent in both cases. Also, the BWB-based calculator

349



ProgressiveNN: Achieving Computational Scalability with Dynamic Bit-Precision Adjustment

Sign 16

HA HA

Sign Inversion (16 XOR, 16 HA)

HA HA

8bit 8bit

16

1’b01’b0

Unsigned Multiplier
Partial Product (64 AND) Wallace Tree: Figure 14 (right)

-12

+3

+12

+3

Absolute value conversion

Partial Product

Wallace Tree
Figure 14 (right)

16bit Sign Inversion

e.g. (-12×3)

Figure 15: The naive fixed-point signed multiplier. This multiplier calculates the two inputs’ absolute values
in advance and performs sign inversion after unsigned multiplication.
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Figure 16: 8-bit fixed-point signed mul-
tiplication using the Baugh-Wooley algo-
rithm.

BWB Fixed-point Fixed-point
w/ Baugh-Wooley

Operation Number NAND Number NAND Number NAND
AND 0 0 64 96 64 96
NOT 8 4 0 0 14 7
XOR 64 128 33 66 0 0
FA 71 603.5 68 578 68 578
HA 5 17.5 41 143.5 13 45.5
Sum 753.0 883.5 726.5

(1.00×) (1.17×) (0.96×)

Table 4: Comparison of the number of operations used by 8-bit
MAC operations. A comparison is made for the NAND gate.

requires extra 64 XOR and 8 NOT gates for the sign inversion, but the naive fixed-point calculator, as shown in
Figure 15, requires 64 AND, 33 XOR, and 28 HA gates to handle signed values as well. This naive calculator
utilizes the unsigned multiplication by calculating the two inputs’ absolute value in advance. The unsigned
multiplication feeds the outputs of the partial product to Wallace Tree shown in the right panel in Figure 14,
and the sign inversion converts the output’s sign based on the two inputs’ sign. However, this comparison is
not fair enough because using the Baugh-Wooley algorithm provides more efficiency for signed fixed-point
multiplication [23]. Figure 16 shows an 8-bit fixed-point signed multiplication using the Baugh-Wooley
algorithm. In this case, signed multiplication requires sign inversion only for 14 bits, which is smaller than the
implementation that considers absolute values. As a result, the efficient fixed-point MAC calculator requires
64 AND and 14 NOT gates.

Table 4 summarizes the hardware resource requirements and compares them in the number of NAND
gates. From this table, we can confirm that the hardware resource requirements for the BWB-based calculator
are equivalent to fixed-point calculators. Furthermore, ProgressiveNN, based on this BWB-based calculator,
has more flexibility than neural networks implemented with fixed-point calculators. It can adjust computation
amount when needed and even reduce unnecessary computation in the early-stage by activation prediction
described in the following section.

4.5 Activation Prediction
In this section, we discuss further reduction in computation by using activation predictionwith ProgressiveNN.
ABS inference adjusts the computational cost by calculating each inner product value, I, in theMSB-first order.
Therefore, once the calculation with 1-bit BWB weights is complete, we can predict with high probability
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Figure 17: Accumulation of each bit-wise inner product observed from four channels of the 1st convolution
layer of ResNet18. The red and blue lines are observed from five images of CIFAR-10. Blue lines represent
the final values that are negative at 8-bit, and red lines represent the final value that is positive at 8-bit. Green
circles denote the minima of all red lines, and the blue lines below the green circles can be omitted for
computation reduction.

whether the inner product takes a negative or positive value in multiple bit-widths. If the activation function
is the rectified linear unit, predicting the sign of the final value in advance can save computational cost for
negative values by immediately stopping calculation. Figure 17 shows the accumulation of each bit-wise
inner product observed from four channels of the first convolutional layer, where each line is obtained from
five input images of the CIFAR-10 dataset. Red and blue lines represent the values that take positive and
negative values at 8-bit, respectively. Green circles represent the minima of all red lines, and we can stop the
calculation for the blue lines below the green circles immediately. Because we examined a small amount of
data in this study, it is not easy to define a general expectation of the effectiveness of activation prediction
using ProgressiveNN. From this point of view, [24] provides helpful information that shows the activation
density of various layers and networks. Activation density is typically higher in early layers but can be as
low as 30% in late layers. Assuming 50% activation density on average, we can reduce the computation for
negative values to 1/8, which is 44% of the entire calculation.

5 Conclusion

In this paper, we proposed ProgressiveNN and its dynamic bit-precision adjustment, which enables computa-
tionally scalable inference, consisting of BWB quantization, BN retraining, and ABS inference. By selecting
the least bit-width of weights, ABS inference can successfully obtain satisfactory inference accuracy with the
minimum computational cost. We showed that retraining BN for each bit-width of BWB expression suppresses
the accuracy drop of ABS inference for low-computational-cost applications. We also analyzed the accuracy
drop before BN retraining and confirmed the distortion of the weight distributions in low-bit BWB expres-
sions. Then, we showed that the dynamic bit-precision adjustment could achieve the desired trade-off between
accuracy and computational cost. Additionally, we indicated hardware resource requirement between BWB-
based calculator and a conventional fixed-point calculator are almost equivalent. Moreover, we introduced the
concept of computation reduction using activation prediction based on ABS inference. Under the constraint
of computational resources and power consumption, the proposed method can achieve high accuracy while
satisfying the constraints. In addition, users can adjust this trade-off for their own purposes. We expect that
the proposed method will help reduce the power consumption of edge devices. The proposed method can also
be applied to existing networks without any network alteration; therefore, we consider this to be applicable
in various fields. In future research, we intend to apply ProgressiveNN to real-time visual-object-recognition
systems on edge devices.
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