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Abstract

General matrix-matrix multiplication (GEMM) is a commonly used BLAS level-3 routine
in big data analysis and scientific computations. To further enhance the capability for GEMM
computation on GPUs, manufacturers have introduced dedicated hardware for tensor and ma-
trix operations into modern GPU architectures, which is called the Tensor Core unit. Mixed-
precision GEMM based on the Tensor Core units has been introduced into many BLAS libraries
and deep learning frameworks. However, these implementations are usually designed for large
square matrices while these implementations tend to have a low performance for irregular-shaped
matrices, especially for tall-and-skinny matrices.

This paper discusses on optimizing the GEMM computation suited for tall-and-skinny ma-
trices on GPUs with three optimization methods: task mapping, memory access, and efficient
use of Tensor core units by filling multiple fragments. First, the task mapping pattern of GEMM
is optimized to make the implementation avoid launching too many thread blocks even when
the sizes of input matrices are large. Second, the memory access pattern is optimized for half-
precision tall-and-skinny matrices stored in the row-major layout. Third, Tensor Core units are
effectively used even for extremely skinny matrices by filling multiple fragments into a Tensor
Core operation. To examine the effectiveness of the proposed optimization methods, the exper-
iments are conducted in two cases of GEMM that take tall-and-skinny matrices as input. With
the proposed optimization methods, the evaluation results show that the optimized GEMM
algorithms can make 1.07× to 3.19× and 1.04× to 3.70× speedups compared with the latest
cuBLAS library on NVIDIA V100 and NVIDIA A100, respectively. By reducing the usage of
the Tensor Core operations and utilizing the optimized memory access pattern, the optimized
GEMM algorithms can save the energy consumptions of V100 and A100 by 34% to 74% and
62% to 82%, respectively.

Keywords: GEMM, GPU, Optimization

1 Introduction

General matrix-matrix multiplication (GEMM) is widely used in many applications, such as deep
learning and scientific computing. Since the recent researches suggest that some applications have
the tolerance to low-precision or mixed-precision computing, mixed-precision GEMM becomes a
solution to shorten the running time of applications. Mixed-precision GEMM accepts low-precision
matrices as inputs and provides outputs in high-precision. Using low-precision inputs can cut down
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the required data transfer, which is quite effective to improve performance when the performance is
bounded by memory bandwidth.

Half-precision floating-point is one of the most commonly used low-precision formats. A half-
precision element only occupies 2 bytes in memory, which significantly decreases the needed memory
capacity for storage and the data transfer between the memory and the register file compared with
cases of standard single-precision and double-precision data.

The advantages of low-precision and mixed-precision computing drive manufacturers to introduce
mixed-precision computing units into computing platforms, such as NVIDIA’s Volta, Google’s TPU,
and Fujitsu’s A64fx [1][2][3]. To further improve the performance for applications like deep learning,
these platforms feature tensor processing units providing hardware-accelerated matrix and tensor
operations.

On a modern GPU, with the power of tensor processing units, the existing libraries can deliver
high throughput for the mixed-precision multiplication of large matrices. For example, when the
sizes of the two input matrices are 8, 192×8, 192, the latest vendor library delivers a performance of
83 Tflop/s and 294 Tflop/s on NVIDIA V100 and NVIDIA A100, respectively. These performances
of GEMM are very close to their peak performances, 113 Tflop/s and 312 Tflop/s on V100 and
A100, respectively.

There are some applications based on GEMM, in which the shape of the input matrix is tall-
and-skinny, whose one dimension is small and another is much larger. For example, tall-and-skinny
matrix-matrix multiplications are needed when applying the block Gram-Schmidt algorithm for
Krylov basis, where the original matrix usually has 100K to 200K rows and a small number of
columns [4]. Another example is the k-means algorithm, where the distance between a data point
and a centroid is calculated by ||x − y||2 = ||x||2 + ||y|| − 2xy. Here, x indicates the feature vector
of a data point, and y indicates a centroid. The norm of vectors is usually implemented by vector-
vector multiplication. Here, the xy of multiple data points and centroids are combined to make the
computation become a GEMM of matrix X(n× d) by matrix Y (d× c), which can be accelerated by
the BLAS routines [5][6]. In some datasets [7][8], the numbers of dimensions and centroids are much
fewer than the number of data points. As the result, the computation becomes a multiplication of
a tall-and-skinny matrix and a small matrix.

Since the conventional BLAS libraries are generally implemented for large square matrices, some
designs are not suitable for tall-and-skinny matrices. First, the conventional task mapping launches
a large number of thread blocks even for tall-and-skinny matrices, which brings additional reduction
operations or memory accesses. Second, the row-wise access pattern cannot achieve a high bandwidth
for half-precision tall-and-skinny matrices stored in the row-major layout. In addition, in current
GPU architectures, the Tensor Core units can only handle matrices with a fixed size. As a result, a
tall-and-skinny matrix may not be able to fully occupy the input of the Tensor Core units. Therefore,
mixed-precision GEMM for tall-and-skinny matrices on GPUs should be optimized.

The contribution of this paper is the optimization of the GEMM algorithm for tall-and-skinny
matrices in which the conventional implementations are inefficient. Two cases of GEMM are under
consideration. The first case is the multiplications of two tall-and-skinny matrices AT × B. The
second case is A×B, where A is a tall-and-skinny matrix, and B is a small square matrix. By opti-
mizing task mapping, memory access, and use of Tensor core units, the proposed GEMM algorithm
can effectively achieve a speedup over the vendor library.

The rest of this paper is organized as follows. Section 2 discusses the background and reviews
related work. Section 3 proposes an efficient GEMM algorithm for tall-and-skinny matrices. Sec-
tion 4 provides the evaluation results in terms of performance and energy consumption. Section 5
concludes this paper.
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(a) Tiling (b) Splitting the K dimension

Figure 1: Compute GEMM with GPUs.

2 Discussion on GEMM Algorithms for Mixed-Precision Tall-
and-Skinny Matrices on the GPU Architecture

2.1 Modern GPU Architecture

GPUs are widely used to accelerate computation in many applications, such as deep learning and
engineering simulations. NVIDIA V100 GPU is implemented with the Volta architecture [9], which
is a professional accelerator for deep learning and high-performance computing (HPC). A V100
GPU has 80 SMs, and each SM has 64 single-precision floating-point units, 32 double-precision
units, and 64 integer units. Each SM is partitioned into 4 processing blocks, which can execute
4 warps simultaneously. Unlike previous generations [10], which could not execute floating-point
operations and integer operations simultaneously, the Volta architecture has separated floating-
point and integer cores, allowing simultaneous execution of floating-point and integer operations at
full throughput. Besides, The Volta architecture is the first GPU architecture that introduces tensor
processing units, which are called Tensor Core units, to accelerate tensor and matrix operations. By
paring normal arithmetic units and Tensor Core units, a Tesla V100 GPU can provide 14 Tflop/s
for single-precision, 7 Tflop/s for double-precision, and 113 Tflop/s for Tensor Core operations.

Ampere is the newest GPU architecture released by NVIDIA in 2020 [11]. The overall structure
of Ampere is similar to Volta, while introducing some new features. One of the features is the third-
generation Tensor Core units, which support high-precision inputs, for example, double-precision.
The Tensor Core units in the Ampere architecture supports structured sparsity at the hardware
level, which is a frequently used trick in deep neural networks (DNNs) to accelerate training and
inferencing.

2.2 Computing GEMM on GPUs

Tiling is commonly used in many state-of-the-art GEMM libraries, such as cuBLAS and CUT-
LASS [12][13], which are the high-performance vendor libraries. Figure 1 (a) shows a common
GEMM implementation with the tiling optimization on GPUs. Tiling splits a result matrix into
multiple tiles and assigns the tiles as computing tasks to different thread blocks. The computation
within a thread block is further assigned to threads. This strategy works well when the sizes of M
and N dimensions are large because launching more thread blocks can improve the utilization of
GPU hardware resources. In special cases where the sizes of M and N dimensions are not so large,
both cuBLAS and CUTLASS further split computation on the K dimension to improve parallelism,
as shown in Figure 1 (b). When splitting the K dimension, the tiles calculated by thread blocks are
partial results of the final result. Thus, reducing operations in the global memory on these partial
results are required at the end of the computation.

A commonly used memory access pattern for loading a fragment of a row-major matrix is shown
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Figure 2: The row-wise access.

Figure 3: A Tensor Core operation.

in Figure 2. For a row-major matrix, loading elements with row-wise accesses is more efficient
than loading column-wise accesses because memory accesses can be coalesced for adjacent elements.
However, when the matrix is a tall-and-skinny matrix that only has few elements in each row, loading
a row at a time results in a low value of accessed bytes per instruction. Therefore, such a memory
access pattern becomes less efficient for tall-and-skinny matrices.

Furthermore, when the width is not multiple of 2, the starting address of each row becomes only
2-byte aligned. Alignment is crucial because it is required when using vectorized memory access
on GPUs. For example, when the matrix has a size (32 ×K), the beginning of each row is 16-byte
aligned. Thus it can be accessed with vectorized data types such as int4 or float4. When the size
is (30 ×K), threads can access data with a width of 4 bytes, such as int or float. Using larger data
types can reduce the required instructions to load a matrix and improve the speed of data transfer.
Different memory access patterns makes the performance of cuBLAS vary a lot for different inputs.
Thus, memory access should be optimized to achieve high performance for all kinds of inputs.

2.3 Half-Precision Floating-Point Computing

Many studies have shown that deep neural networks have the tolerance to low-precision comput-
ing such as [14][15]. This motivates manufacturers to introduce low-precision computing units for
matrix or tensor operations, which are the most frequently required operations in deep learning.
NVIDIA introduced half-precision arithmetic units in the Pascal architecture [10], and the support
for half-precision arithmetic is further enhanced in the Volta and Turing architectures for GEMM
computation with the Tensor Core units [9][16].

Figure 3 shows a Tensor Core operation of modern GPU architectures. A Tensor Core operation
accepts matrices A, B, and C as inputs, and performs a matrix multiply-and-accumulate operation
D = A × B + C. Matrices A and B should be half-precision matrices, and the matrices C and D
can be either half-precision or single-precision.

Using half-precision floating-point data as inputs can significantly reduce the memory transfer
compared the cases of single-precision and double-precision data because the half-precision data has
only two bytes per element. Moreover, it can reduce the silicon budget for arithmetic units and thus
allows manufacturers to implement more units on a chip.

However, simply replacing high-precision data with low-precision data, the performance may not
be improved because some operations are not optimized for half-precision data yet on GPUs. First,
the optimization of nvcc for memory access is not available for half-precision elements [17]. Second,
using the half-precision data type to access elements requires more instructions compared with using
larger data types. Last but not least, the half-precision arithmetic units on GPUs are paired. Thus,
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instead of directly using the half-precision data type, it is recommended to use the data type that
combines two half-precision elements to operate multiple half-precision elements.

2.4 Related work

Chen et al. have pointed out that the low utilization of GPU resources is the main reason for the
low performance of cuBLAS for irregular-shaped inputs [18]. They have designed two classes of
algorithms for GEMM that involve tall-and-skinny matrices. The first algorithm handles GEMM
of a large-to-medium regular-shaped matrix and a tall-and-skinny matrix. The second algorithm
handles GEMM of a tall-and-skinny matrix and a small regular shaped matrix. The key idea of the
proposed algorithms is to adjust the tiling parameters to make the kernel always memory-bound.
To overlap computation and memory access, they exploit a double-buffering technique for the global
memory accesses. Their objective inputs are column-major matrices, which means that the threads
can access elements efficiently if each thread accesses a row because a tall-and-skinny matrix has a
large number of rows.

Ernst et al. have designed an optimized kernel for the multiplication of two tall-and-skinny
matrices C = AT ×B [19], where ’tall-and-skinny’ is defined as the width of the matrix is no larger
than 64 and the number of rows is larger than 106. In their implementation, the computation
is only parallelized over the loop of the K dimension for thread block-level parallelism to keep a
good computational intensity. For thread-level parallelism, the computation is tiled on the M and
N dimensions to ensure that the register usage does not exceed hardware limitation. Considering
the limitation of existing compilers, they designed a code generator in Python that can unroll
loops with variable iteration count and remove unnecessary guarding statements for each specific
input. With the help of the code generator and selecting the optimal tile size based on evaluated
results, the generated kernels can always achieve at least 2/3 of the ideal performance. Because the
implementation of [19] is designed for double-precision matrices, it does not involve the usage of
Tensor Core units.

Yan et al. have pointed out that there is still space for improvements in Tensor Core-based
GEMM offered by the vendor library [20]. They have benchmarked the CPI of the load instructions
and Tensor Core operations with Streaming ASSembler (SASS). They use the CPI of memory access
and computing operations to guide the process of selecting tiling size and instructions scheduling.
The evaluation results show that their kernels achieve 1.6× to 3× speedups for large matrices
compared with cuBLAS 10.1. Although several studies have been done on optimizing the GEMM
algorithms for tall-and-skinny matrices, Tensor Core-based mixed-precision GEMM algorithms that
involve tall-and-skinny matrices still remain to be optimized, which motivates the study of this
paper.

3 An Efficient mixed-precision tall-and-skinny matrix-matrix
multiplication algorithm for GPUs

This section proposes an efficient GEMM algorithm for two types of GEMM by optimizing the task
mapping, memory access, and the use of Tensor Core units.

3.1 Task Mapping

A CUDA kernel consists of execution units in multiple layers, such as threads and thread blocks [21].
How to map the computation tasks to these units is always a key to design a high-performance kernel.
This subsection analyzes the problems of the conventional task mapping method for GEMM in two
cases of tall-and-skinny matrices to provide the guideline of optimizations.

For the multiplication of two tall-and-skinny matrices C = AT ×B, the computation is only par-
allelized over the K dimension at the thread block level to avoid decreasing computational intensity.
In the conventional implementations, the computation of a thread block is further parallelized over
the M and N dimensions. When the length of the K dimension varies, the number of running warps
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(a) The conventional task mapping method (b) The proposed task mapping method

Figure 4: Task mapping for the multiplication of two tall-and-skinny matrices.

on SMs can only be adjusted by changing the number of thread blocks. However, as Figure 4 (a)
shows, the partial results calculated by thread blocks need to be reduced in the global memory be-
cause thread blocks cannot directly share data even when they execute on the same SM. cuBLAS and
CUTLASS use an additional kernel to reduce partial computing results. Such a reduction method
introduces more memory accesses because it needs to store the partial results to the global memory
so that the results can be accessed by another kernel.

To make reducing partial result efficient, this paper proposes an optimized task mapping method,
as shown in Figure 4 (b). The basic idea is to parallelize the computation over the K dimension for
both thread block-level and warp-level parallelisms. The partial results obtained within a thread
block can be reduced within the SM.

The pseudo code of the proposed task mapping is shown in Algorithm 1. Each warp has its own
buffer for matrices A and B in the shared memory. bk is the height of the fragment that a warp
fetches at a time, which is set to multiples of TC K in Figure 3. At each iteration, each warp fetches
a fragment from matrices A and B, and performs the multiplication. Then, the address of each warp
is shifted with a stride of blockDim× num of warps× bk to prepare for the next iteration.

The proposed task mapping method brings two advantages: First, the number of warps running
on SMs can be adjusted without introducing additional thread blocks. Second, there is no need for
synchronization within a thread block because the data transfer and computation of different warps
are independent.

To avoid using a additional kernel to reduce partial results, this paper uses the CUDA atomic
functions to add the partial results to the global memory. Although the atomic functions that
access the global memory have been optimized by performing the atomic operations in the L2 cache
[22], it is still less efficient than the atomic functions that access the shared memory. Thus, the
partial results are reduced in the shared memory at first, then the results of each thread block are
further reduced in the global memory. Reduction can also be implemented without using the atomic
operations. However, in that case, the kernel has to wait for the completion of all the SM to start the
reduction. In addition, with the proposed task mapping method, the number of the partial results
is limited to the number of SMs, which will not cause much congestion on the memory bus.

To fully use all the SMs on a GPU, the number of thread blocks is set to as same as the number
of SMs. Unlike the conventional designs, the number of required operations for reducing the partial
results of different thread blocks always keeps the same because the number of thread blocks is fixed.

For the multiplication of a tall-and-skinny matrix and a small matrix, the task mapping pattern
can also be optimized by fixing the number of thread blocks. As described in Section 2.2, the
number of launched thread blocks is decided by the sizes of M and N dimensions in conventional
implementations. Figure 5 shows the conventional task mapping method. Since matrix A has a
large number of rows, the number of launched thread blocks will be large. However, the execution of
each thread block is short if the size of the K dimension is small. A large number of thread blocks
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Figure 5: The conventional task mapping for the multiplication of a tall-and-skinny matrix and a
small matrix.

bring much more data transfer because matrix B needs to be loaded by every thread block. For
example, considering A(32768× 32) × B(32× 32) and a tile size(128× 32), the computation tasks
will be assigned to 32768/128 = 256 thread blocks. As the result, the matrix B needs to be loaded
256 times.

Figure 6 shows the proposed task mapping pattern, which always sets the number of thread blocks
to the number of SMs on the GPU. At beginning of the kernel, each thread block loads matrix B into
the shared memory, and then it can be reused by all warps. A thread block continuously performs
computation along the long M dimension. Matrix B is stored in the register files of each warp, and
thus each thread block loads matrix B only once. For example, in the case of NVIDIA Tesla V100,
the number of thread blocks is set to 80, which means matrix B only needs to be loaded 80 times
regardless of how tall matrix A is. This design is also used in the GPU kernel optimization for
RNNs [23].

3.2 Memory access for half-precision tall-and-skinny matrices

This subsection proposes two optimized memory access patterns for half-precision tall-skinny ma-
trices. Loading a single row at a time forces threads to use the 2-byte data type to access elements
when the width of the matrix is not multiple of 2. Since the computation is not parallelized on
the short dimension of a tall-and-skinny matrix, loading multiple rows can solve the problem. For

Algorithm 1 : The proposed Implementation

INPUT: half-precision Matrix A (K ×M), B (K ×N)
OUTPUT: single-precision Matrix C
shared A buf[num of warps][32 × bk]
shared B buf[num of warps][32 × bk]

C frag, A frag, B frag //Tensor Core fragments
offset ← (blockId ×num of warps + warpId) × bk
while offset < K do

A buf[warpId] ← 32 × bk of A
B buf[warpId] ← 32 × bk of B
for j=0 to bk by TC K do

load elements to A frag, B frag
//Perform Tensor Core operation
C frag ← A frag × B frag + C frag

end for
offset ← offset + blockDim × num of warps × bk

end while
C ← Reduction of partial results
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Figure 6: The proposed task mapping method for the multiplication of a tall-and-skinny matrix and
a small matrix.

Figure 7: Load a fragment of a matrix whose width is multiple of 2.

example, the starting address of every 2 rows is always 4-byte aligned regardless of whether the
width is multiple of 2 or not, thus each thread can access a 4-byte data at a time. Using larger data
types to access data is a commonly used approach to the acceleration of the data transfer because
it reduces the required instructions of loading data.

Figure 7 shows an implementation of loading a matrix whose width is multiple of 2. Each thread
accesses 4 bytes in the global memory, and stores the data into the shared memory. The data stored
in the global memory cannot be directly loaded into the shared memory. Thus, the data transfer
has to involve the use of registers.

For a matrix whose width is not multiple of 2, threads cannot directly store the loaded 4-byte
data to the shared memory, because the destination address is not 4-byte aligned. Thus, threads
need to split the loaded data into two half-precision elements, and then store the elements into the
shared memory, as shown in Figure 8.

For the matrix with a width of 32, loading 2 rows exactly needs all the threads of a warp. When
the width of an input matrix becomes smaller, this memory access pattern becomes less efficient as
well because more threads within a warp need to be blocked. For example, when M = 14, only 14
threads are needed to load two rows, which means that more than half of the threads within a warp
are not used. Therefore, skinnier inputs should be handled specially. For matrices whose width is
smaller than or equal to 16 and 8, the proposed method switches to loading 4 rows and 8 rows at
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Figure 8: Load a fragment of a matrix whose width is not multiple of 2.

Figure 9: Load a 64×M fragment.

a time, respectively. With this optimization, the kernel can avoid blocking too many threads for
different inputs when loading matrices from global memory

Another efficient memory access pattern is accessing the 2-D matrix as accessing a 1-D array,
which uses a warp to load 128 bytes at a time. As Figure 9 shows, all of the threads within a
warp always participate in every memory access instruction. This reduces the required instructions
compared with loading a fixed number of rows at a time. More importantly, since cudaMalloc()
guarantees that the starting address of an allocated buffer is 256-byte aligned, all of the accesses of
a warp are 128-byte aligned. Therefore, all the memory instructions can be served by 4 transactions
of the GPU DRAM and 1 transaction of L2 and L1 caches without loading redundant bytes. .

To make the size of accessed data be multiple of 128 bytes, a warp fetches a fragment with 64
rows before computation, which means bk in Algorithm 1 is set to 64 in this case. For example,
when the matrix width is M , a warp takes M iterations to load M × 64× sizeof(half) bytes.

This memory access pattern fully uses every byte fetched by the hardware. However, it is difficult
to design a general kernel with this memory access pattern because the compiler cannot unroll the
loop that loads data from the global memory with a variable number of iterations.

Unrolling the loop of memory access is quite important in CUDA programs. A data assignment
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Figure 10: Extremely skinny matrices cannot fully occupy a Tensor Core operation.

Figure 11: Fill multiple fragments into a Tensor Core operation.

statement between the shared memory and the global memory is composed of two instructions. The
first instruction loads the data into a register, and the second instruction stores the data to the shared
memory. Because a GPU can overlap multiple load instructions, the compiler can optimize the loop
by putting all the load instructions before the store instructions. Without this optimization, the
execution will stall at every iteration to wait for the data loaded from the global memory, resulting
in a significant degradation in performance. To makes use of the optimization, the iterations of a
loop must be constant, otherwise the number of required registers is unknown. Although the matrix
width can be set as a template parameter, the implementation still cannot avoid inserting a large
number of branching statements and template instances for different specific inputs.

3.3 Efficient use of Tensor Core operations for extremely skinny matrices

Due to the hardware restriction, Tensor Core units can only handle multiplications of fragments
with a fixed size. As shown in Figure 10, when the input matrices are even skinnier than the Tensor
Core operation, a part of the computation of the Tensor Core operation is wasted. This can be
optimized by filling multiple fragments of the input matrices into a Tensor Core operation. Figure
11 shows the proposal that uses a Tensor Core operation to handle the multiplication of multiple
fragments when the sizes of the M and N dimensions are smaller than TC M and TC N. A Tensor
Core loading operation loads a small matrix from memory at a time. Thus, this optimization is
implemented by rearranging the data layout in the shared memory. Then, the Tensor Core load
function can load multiple fragments into a Tensor Core fragment, which is like folding the original
input matrices. With the proposed method, more computations of a Tensor Core operation can be
utilized, making the usage of Tensor Core operations more efficient.
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Table 1: Experimental environment
CPU Intel Xeon Gold 6126
OS CentOS 7.7

Toolkit CUDA 11.0
Driver 450.51.06

GPU DRAM (NVIDIA V100) 880GB/s
GPU DRAM (NVIDIA A100) 1550GB/s

Number of SMs (NVIDIA V100) 80
Number of SMs (NVIDIA A100) 108

4 Evaluation

The experiments are conducted for two cases of GEMM computation. The first case is C = AT ×B,
where both A and B are tall-and-skinny matrices. The second case is C = A×B, where A is a tall-
and-skinny matrix, and B is a small square matrix. Inputs are half-precision matrices, and outputs
are in single-precision matrices. All matrices are stored in the row-major layout, and the widths of
matrices vary from 1 to 32. The GPU kernels are implemented with CUDA 11.0. The version of
the GPU driver is 450.51.06. The experiments use cublasGemmEx() to perform the mixed-precision
GEMM in cuBLAS. NVIDIA V100 and A100 are used for evaluation. The system frequencies of
GPUs are fixed to 1230MHz and 1410MHz using the nvidia-smi tool for V100 and A100, respectively.
The details of the hardware specification are given in Table 1.

4.1 Multiplication of two tall-and-skinny matrices

Figure 12 shows the speedup compared with cuBLAS 11. The horizontal axis shows different sizes
of the K dimension, and the vertical axis represents the speedup over cuBLAS. The height of input
matrices is set to 214 up to 222. The sizes of M and N dimensions are set to 32. access by rows
and access by bytes represent the implementations with memory access patterns of loading multiple
rows at a time and loading 128 bytes at a time, respectively. For M = N = 32, both of the two
memory access patterns load 128 bytes at a time. However, bk of access by rows is set to 16, and
bk of access by bytes is set to multiple of TC K. With a smaller bk, the first implementation can
assign the workload more evenly to different warps. Therefore, access by rows performs better than
access by bytes. The difference between the two implementations becomes smaller as the size of the
K dimension increases because all the warps will have enough work to do with a large K dimension.

For a larger K dimension, cuBLAS launches more thread blocks, which produces more global
partial results and thus makes the time for reduction longer. For the proposed method, the number
of global partial results always keeps the same as the number of thread blocks is fixed. Therefore,
the achieved speedup increases as K increases from 214 to 218. When K is set to from 218 to 222, the
percentage of needed time for reduction in overall execution time becomes very low. Thus, there is
only a little difference in performance between the different implementations for the case of K = 222

on Tesla V100. On NVIDIA A100, cuBLAS switch the number of thread blocks from 81 to 324
when K = 222, thus the speedup suddenly increases.

Figure 13 shows the performance of implementation with the optimization of filling multiple
fragments into Tensor Core operations. The horizontal axis shows different sizes of the M and N
dimensions, and the vertical axis represents the speedup against the performance of the implemen-
tation without the optimization. Both of the two implementations use the memory access pattern
of loading a fixed number of rows at a time, and the result with loading 128 bytes at a time is
similar. Currently, the size of the Tensor Core operation is set to 16×16, which means the pro-
posed method is appliable only when M and N are smaller than or equal to 8. Although folding
makes much more computation of Tensor Core operations useful, it brings 1% up to 24% and 1%
up to 48% improvement compared with the implementation without the optimization on V100 and
A100, respectively. When M and N get smaller, the required data transfer decreases. It makes less
computation overlapped by data transfer. Therefore, folding is more effective for small M and N .
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(a) Tesla V100 (b) NVIDIA A100

Figure 12: Comparison with cuBLAS with M = N = 32.

(a) NVIDIA V100 (b) NVIDIA A100

Figure 13: Speedup obtained by filling multiple fragments into Tensor Core operations with M = N
and K = 223.

Filling multiple fragments into a Tensor Core operation is effective at reducing energy consump-
tion as well because it makes kernels use fewer Tensor Core operations. This paper profiles the
energy consumption by measuring the average power draw during the execution of kernels using
the nvidia-smi tool. Figure 14 shows the relative energy consumption of implementations with and
without optimization compared with cuBLAS. The horizontal axis shows different sizes of the M
and N dimensions, and the vertical axis represents the relative energy consumption against cuBLAS.
As the result shows, the implementations of the proposed algorithm are much more energy-efficient
than cuBLAS, except in the case of M = N = 1, where cuBLAS uses CUDA core-based kernels.
The implementation optimized by filling multiple fragments into a single Tensor Core operation
reduces the energy consumption by 7% to 29% and 3% to 39% on V100 and A100, respectively.
Similar to the results in Figure 13, the smaller the sizes of input matrices are, the more effective the
optimization will, be because filling more fragments saves more usage of the Tensor Core operations.
The energy consumption can be further reduced by using the memory access pattern of loading 128
bytes at a time because the redundant data transactions are excluded.

Figure 15 shows the comparison between achieved performance and the ideal performance cal-
culated with the roofline model [24]. The horizontal axis shows different sizes of the M and N
dimensions, and the vertical axis represents the performance. Figure 15 shows that, on both of the
platforms, performances of the two implementations with the proposed optimization methods are
close to the ideal performance for most of the tested cases. The performance of NVIDIA A100 is
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(a) NVIDIA V100

(b) NVIDIA A100

Figure 14: Relative energy consumption with M = N and K = 223.

1.5× higher than the performance of Tesla V100, benefiting from the high bandwidth of the off-chip
memory. The performance on V100 is closer to the ideal performance than the performance on A100.
In A100, there is a new feature called asynchronous copy. Properly using the asynchronous copy
can directly load data from the global memory to the shared memory, which accelerates the data
transfer. Thus, we think if the asynchronous copy is properly used, the achieved bandwidth and
the performance on A100 will be improved. When M = N = 3, the proposed method achieves the
maximum improvements over cuBLAS, which are 3.17× and 3.70× on V100 and A100, respectively.
This is because cuBLAS does not have an efficient data transfer implementation when there are only
few elements in a row of the input matrices, especially when the number of elements is not multiple
of 2.

Although the threads can only access the shared memory with the 2-byte data type when the
sizes of M and N dimensions are not multiples of 2, the performance does not decrease a lot. This
is because the bandwidth of the shared memory is much higher than the global memory, which only
has little impact on the performance. As expected, the implementation with the memory access
pattern of loading 128 bytes at a time has the highest performance for most cases.

4.2 Multiplication of a tall-and-skinny matrix and a small matrix

Figures 16(a) and (b) show the comparison in the case of C = A×B between the proposed method
and cuBLAS on V100. The horizontal axis shows different sizes of the K and N dimensions, and
the vertical axis represents the speedup over cuBLAS. The size of the M dimension is set to 216 and
220 in Figures 16 (a) and (b), respectively. The optimized memory access pattern can be applied to
this case as well. With the optimized memory access pattern, the implementation makes 15%-41%
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Figure 15: Comparison with ideal performance with M = N and K = 223.

(a) M = 216 (b) M = 220

Figure 16: Comparison with cuBLAS for the multiplication of a tall-and-skinny matrix by a small
matrix.

and 7%-29% improvements over cuBLAS when the size of the M dimension is set to 216 and 220,
respectively. When M = 216, cuBLAS launches 216/128 = 512 thread blocks. When M = 220,
cuBLAS launches 220/128 = 8192 thread blocks, which means that the matrix B is loaded 8192
times. On the other hand, the proposed method only launches 80 thread blocks for both of the
cases. However, launching over 8000 thread blocks does not significantly degrade the performance of
cuBLAS. This is because the matrix B is stored in SM’s L1 cache after one thread block on this SM
accesses matrix B in the global memory. Therefore, the other thread blocks on the SM can directly
fetch the matrix B in the L1 cache, which is much more efficient than loading data from the global
memory.

5 Conclusions

Vendor libraries provide high-performance mixed-precision GEMM implementations on GPUs for
large square matrices. However, these implementations are not suitable for tall-and-skinny matri-

280



International Journal of Networking and Computing

ces. In order to improve the performance of mixed-precision GEMM on GPUs for tall-and-skinny
matrices, this paper proposes an efficient GEMM algorithm with three optimization methods. First,
a method that optimizes the task mapping has been proposed to make the kernels avoid launching
too many thread blocks while keeping enough warps running on SMs. Second, two efficient memory
access patterns are exploited to load half-precision matrices from the global memory. Third, to
improve the utilization of Tensor Core operations for extremely skinny inputs, a method that fills
multiple fragments into a Tensor Core operation has been proposed. According to the evaluation
results, the proposed optimization methods can make 1.07× to 3.19× and 1.04× to 3.70× speedups
compared with the latest cuBLAS library on NVIDIA V100 and A100, respectively. With a higher
hardware utilization, the proposed optimization methods can save 34% to 74% and 62% to 82% en-
ergy consumption on NVIDIA V100 and A100, respectively. According to the experimental results,
the height of the fragment that a warp fetches at a time also has an impact on the performance,
especially when the size of the K dimension is not large. This is left to be discussed and optimized
in future work. As the usage of the standard arithmetic units is not considered yet, we would
also like to make an implementation of the proposed method on the standard arithmetic units and
compare the performance and energy efficiency with the Tensor Core in the future. Last but not
least, although the output of the mixed-precision computing is still in single precision, the numerical
behavior is different with the computation with half-precision inputs. Thus, it is necessary to assess
the impact of mixed-precision computing in the real applications in the future.
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