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Abstract

In today’s online services, users’ feedback such as numerical rating, textual review, time of
purchase, and so on for each item is often encouraged to provide. Managers of online services
utilize the feedback to improve the quality of their services, or user experience. For example,
many recommender systems predict the items that the users may like and purchase in the
future using users’ historical ratings. With the increase of user data in the systems, more
detailed and interpretable information about item features and user sentiments can be extracted
from textual reviews that are relative to ratings. In this paper, we propose a novel topic and
sentiment matrix factorization model, which leverages both topic and sentiment drawn from the
reviews simultaneously. First, we conduct topic analysis and sentiment analysis of reviews using
Latent Dirichlet Allocation (LDA) and lexicon construction technique, respectively. Second,
we combine the user consistency, which is calculated from his/her reviews and ratings, and
helpful votes from other users of reviews to obtain a reliability measure to weight the ratings.
Third, we integrate these three parts into the matrix factorization framework for the prediction
of ratings. Our experimental comparison using Amazon datasets indicates that the proposed
method significantly improves performance compared to traditional matrix factorization up to
14.12%.

Keywords: Rating prediction, Matrix Factorization, Topic model, Sentiment analysis, Recom-
mender system

1 Introduction

Recommender systems play a significant role in today’s online services and business systems. Their
main goal is to help users discover items that they are interested in purchasing from large-scale of
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items. The history feedback provided by users after their purchase is the basis of the recommender
systems, mainly including digital ratings and textual reviews. As the most effective algorithm for
predicting rating, Collaborative Filtering (CF) [5] assumes that users who are interested in the same
items share similar interests. Matrix Factorization (MF) [10, 13] is the ideal approach among CF
algorithms, which is based on the latent factor model. It characterizes both users and items by
vectors of latent factors that are inferred from user ratings. For a user and an unpurchased item, it
calculates the inner product of their latent vectors as the predicted rating.

However, recent research [4, 2] pointed out the mediocre performance of MF caused by its igno-
rance of the textual reviews, which have users’ detailed opinions about items. In order to solve this
problem, efforts are made to recognize and characterize such opinions into sentiments and topics,
to enhance the performance of MF. Existing studies include the applications of the topic model
[2, 3, 19], sentiment analysis [21, 17], and their combination [14, 22, 20].

In this paper, through effective utilization of users’ feedback, we propose a new approach to
predict the missing ratings of given items and users for the recommender systems. Our idea is
to replace the latent feature matrices of MF with two new fixed matrices, and assign weights for
them to predict rating based on reliability measures. Firstly, we train Latent Dirichlet Allocation
(LDA) [6] model with reviews of users’ historical feedback. For each item, we infer topic probability
distribution for each of its relevant reviews and summarize them as its topic distribution vector. By
gathering all items’ topic distribution vectors, we fix item topic distribution matrix. On the other
hand, we apply sentiment analysis to each review to derive sentiment intensity via Valence Aware
Dictionary and Sentiment Reasoner (VADER). For each user, we combine the topic distribution
vectors and the sentiment intensity of his/her reviews to construct a preference vector. Similarly to
items, all users’ preference vectors are gathered and constitute the fixed user preference distribution
matrix. Secondly, we introduce reliability measures both for users and items, which indicate the
trustworthiness of their reviews and ratings. They are calculated by the sentiment intensity of
relevant feedback and the helpfulness indicator, namely the helpful votes given by other users.
User reliability measure is used as weights of item topic distribution matrix and user preference
distribution matrix both in the training phase and prediction phase. Item reliability measure is used
as parameters to adjust the learning rate in Stochastic Gradient Descent (SGD) process.

In the evaluation, we perform the experiments with Amazon review dataset, to compare the
overall performance of missing rating prediction under various values of parameters. Particularly,
the main contributions of this paper are as follows:

• We simultaneously introduce the topic model, the sentiment analysis, and the reliability mea-
sure into the traditional MF method for better performance.

• Comparing with the other five existing methods for rating prediction, the proposed models
SCMF and SCMFP outperform all other methods in most of the datasets, and SCMFP (resp.
SCMF) derives an improvement up to 14.11% (resp. 14.12%) in terms of RMSE compared
with traditional MF.

The remainder of this paper is organized as follows: Section II overviews related works of latent
factor models and the review extraction. Section III simply describes the fundamental of the basic
latent factor models. Section IV describes the existing methods, i.e., SBMF+R and STMF, because
we utilize the part of the main idea of these methods. Section V describes the detail of our ap-
proaches. Section VI represents the experimental methodologies of the proposed methods and the
results. Finally, section VII gives conclusions and outlines future works.

2 Related Work

With the increase in feedback to published items, researchers are increasingly focusing on how to
integrate the topic model and sentiment analysis of reviews in feedback into recommendation. First,
researchers have tried to use the topic model to directly impact the generation process of the latent
factors of MF methods [11, 2, 3, 15, 18]. The methods of [11, 2] transform the topic distribution
of reviews by LDA to latent factors of MF, while the method of [3] aligns learning rates of MF by
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using the topic distribution. The method proposed by Peña et al. [15] uses the topic distribution
of reviews for the initialization of the latent factors of MF. The method proposed by Shoja et al.
[18] uses the topic distribution by LDA to extract user attributes related to each item category, and
construct the user attributes matrix separately from the user-item matrix. In these methods, they
do not consider the sentiment intensity of textual reviews.

Another consideration is to take the sentiment intensity derived from the reviews as the virtual
rating to augment recommendations. Zhang et al. [21] suggested that combining real ratings with
inferred ratings extracted from emoticons and opinion words of reviews is indicated to return better
recommendations. Hyun et al. [8] proposed a CNN-based recommendation method that is guided to
incorporate the sentiments when modeling the users and items. Shen et al. [17] presented SBMF+R
model based on the probability matrix factorization, incorporated the ratings, sentiment intensities,
and helpful votes from other users for prediction simultaneously.

Since the item features can be shown by the topic model and the user sentiments can be estimated
from sentiment analysis, the combination of the topic model and sentiment analysis becomes popular.
Wang et al. [20] considered the sentiment and topics involved in the reviews and proposed a novel
interpretable model called STMF, especially in explaining user preference. Zhang et al. [22] proposed
a method that combines the topics in reviews via LDA and the emotion of each topic with the
item-based collaborative filtering recommendation (Note that, their method is not the model-based
method.). Although these approaches mainly rely on the use of topic and sentiment analysis of
textual reviews, they lack a measurement of reliability and deep use of the sentiment intensity.

3 Preliminaries

3.1 Problem Definition

The problem that we study is to accurately predict the ratings of unpurchased items based on
the users’ historical feedback, i.e., our purpose is to predict missing values in the user-item rating
matrix. Normally, each feedback includes a rating in the range of [1, 5] and a related textual review.
Suppose there are N users and M items. The rating evaluated by user ui (i ∈ {1, . . . , N}) to item
vj (j ∈ {1, . . . ,M}) is denoted as r5ij and r1ij , where r5ij is the observed rating in the scale of [1, 5]

and r1ij is considered as the converted rating in the scale of [-1, 1] obtained from r5ij as following:

r1ij =
1

2
(r5ij − 3) (1)

Therefore, for the given user ui, the prediction of missing rating r̂5ij on the given item vj is the

problem that we consider. Let R5 and R1 be N ×M user-item rating matrices such that r5ij ∈ R5

and r1ij ∈ R1 respectively.
Also, we denote the textual review of user ui on item vj as dij , and the sentiment intensity of dij

extracted by VADER [7] method in the third-party toolkit NLTK or any method based on lexicon
[17, 1, 9] as s5ij and s1ij , where s1ij is original sentiment intensity in the scale of [-1, 1] and s5ij is in

the scale of [1, 5] converted from s1ij according to the following formula:

s5ij = 2× s1ij + 3 (2)

Let S5 and S1 be N ×M user-item sentiment intensity matrices in which s5ij ∈ S5 and s1ij ∈ S1

respectively.
Additionally, there are other users’ helpful votes on the authenticity of each user’s historical

feedback (rij , dij). To be more specific, (rij , dij) can be upvoted/downvoted as positive/negative
by other users, so the positive votes number for (rij , dij) and total votes number for (rij , dij) are
denoted as fPij and fij respectively.

3.2 Matrix Factorization Model

Matrix Factorization (MF) [10] is an effective method to predict the missing ratings for the recom-
mender systems, which has two common versions—basic MF and biased MF. At first, the biased MF
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will initialize two predefined matrices—user latent feature matrix U and item latent feature matrix
V using K-dimensional latent factor space. The vector Ui ∈ RK of U is assumed to be associated
with user ui while the vector Vj ∈ RK of V is assumed to be associated with item vj , in which the
elements of Ui measure the extent of the interest of ui to such factors and Vj presents the positive
or negative extent of those factors that vj possesses. The inner product of Ui and Vj represents the
interaction of ui and vj , and approximates the corresponding rating r5ij as follows:

r5ij ∼ r̂5ij = µ+ bi + bj + UT
i Vj

where µ is the global bias, i.e., the average of all observed ratings, bi and bj are the user bias for ui
and the item bias for vj , respectively. Therefore, the objective is to learn Ui and Vj through a given
training set, by minimizing the sum-of-squared-error as shown in the following:

ζ =
1

2

∑
i,j

[(r5ij − r̂5ij)2 + λ(‖Ui‖2 + ‖Vj‖2 + ‖bi‖2 + ‖bj‖2)] (3)

where λ is the regularization parameter which can avoid overfitting in learning, and ‖·‖ represents
the L2 norm. A typical way to minimize the objective function (3) is to use the SGD algorithm,
which calculates the gradients of Ui and Vj for each observed rating r5ij as follows:

gUi =− (r5ij − r̂5ij)Vj + λUi

gVj =− (r5ij − r̂5ij)Ui + λVj

gbi =− (r5ij − r̂5ij) + λbi

gbj =− (r5ij − r̂5ij) + λbj

(4)

The basic MF can be obtained by deleting biases µ, bi, and bj together.

3.3 Probabilistic Matrix Factorization Model

Probabilistic Matrix Factorization (PMF) [13] is introduced as a further optimized model, which
is a probability understanding of the basic MF. The user factors and item factors are modeled by
the Gaussian hypothesis as the latent feature matrices U and V , respectively. The conditional
distribution over the observed ratings is defined as follows:

p(R5 | U, V, σ2
R) =

N∏
i=1

M∏
j=1

[N (r5ij | UT
i Vj , σ

2
R)]I

R
ij (5)

where N (x | µ, σ2) is the probability density function of the Gaussian distribution with mean µ and
variance σ2. σ2

R is regarded as the variance of r5ij , and IRij is the indicator function that is equal to 1
if user ui evaluated item vj or 0 otherwise. The zero-mean spherical Gaussian priors are also placed
on user and item feature vectors:

p(U | σ2
U ) =

N∏
i=1

[N (Ui | 0, σ2
UI)]

p(V | σ2
V ) =

M∏
j=1

[N (Vj | 0, σ2
V I)]

(6)

where I is the identity matrix of size K. Therefore, through simple Bayesian inference, we can know
the following inference:

p(U, V | R5, σ2
R, σ

2
U , σ

2
V ) ∝ p(R5 | U, V, σ2

R)p(U | σ2
U )p(V | σ2

V )

=

N∏
i=1

M∏
j=1

[N (r5ij | UT
i Vj , σ

2
R)]I

R
ij

N∏
i=1

[N (Ui | 0, σ2
UI)]

M∏
j=1

[N (Vj | 0, σ2
V I)]
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Figure 1: Construction of SBMF+R.

4 Existing Methods

In this section, we introduce two existing methods, SBMF+R and STMF, on which our proposed
methods are based. They are novel methods for rating prediction which use sentiment value derived
from reviews.

4.1 SBMF+R Model

SBMF+R [17] is an improved model based on PMF, which adds the sentiment intensity extracted
from user reviews, and takes the reliability measure into account simultaneously as shown in Figure
1. We can clearly see in the middle of the figure that the reliability measure is extracted from the
user’s feedback and used in the SGD training.

For this model, with the given historical reviews, the first task is to derive the sentiment intensity
of each review by using a method based on the original lexicon. Based on the sentiment intensity,
the reliability measure is calculated by the way that we explain in section 4.1.1.

Then, SBMF+R adds the sentiment intensity to latent feature matrices of users and items (See
section 4.1.2), and uses the objective function using the reliability measure (See section 4.1.3).

4.1.1 Calculation of the reliability measure

The helpful votes from other users are considered as the helpfulness of the feedback, which reflects
the validity of the feedback. Thus, with the user consistency and positive votes ratio by other users
on feedback, the reliability measure of each rating can be made for assigning its weight. For each
user ui, Mi is denoted as the number of feedbacks published by ui. Thus, the sentiment intensity
of ui is s1ij (j ∈ {1, . . . ,Mi}) inferred from dij via a method based on lexicon [1, 9]. In order to

align s1ij with r5ij , the formula in Eq.(2) is used to get s5ij . Therefore, the user consistency ci of ui is

calculated by the Euclidean distance between the corresponding rating r5ij and sentiment intensity

s5ij :

ci =

√√√√Mi∑
j

(r5ij − s5ij)2.

Then the reliability wuij of rating r5ij is defined as follows:

wuij =
fPij /fij

1− ci
(7)

where fPij /fij represents the positive votes rate of (rij , dij). Then, the denominator of wuij will not
be 0 since the sentiment intensities of users are all decimals. Similarly, the reliability of sentiment
intensity s5ij is 1− wuij . Finally, the interval of reliability factors is normalized into [0, 1].
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Figure 2: Construction of STMF.

4.1.2 Building conditional distribution

In PMF, the user factor and item factor are modeled by the Gaussian hypothesis as latent feature
matrices U and V , respectively. The difference between SBMF+R and PMF is that the conditional
distribution over the sentiment intensity is also defined for fitting the sentiment intensity similar to
Eq.(5) as follows:

p(S5 | U, V, σ2
S) =

N∏
i=1

M∏
j=1

[N (s5ij | UT
i Vj , σ

2
S)]I

S
ij

where σ2
S is regarded as the variance of s5ij , I

S
ij is the indicator function that is equal to 1 if user ui

evaluated item vj or 0 otherwise. Also, the zero-mean spherical Gaussian priors are placed on the
user and item feature vectors as in inference Eq.(6), so the inference can be derived as follows:

p(U, V | S5, σ2
S , σ

2
U , σ

2
V ) ∝ p(S5 | U, V, σ2

S)p(U | σ2
U )p(V | σ2

V )

=

N∏
i=1

M∏
j=1

[N (s5ij | UT
i Vj , σ

2
S)]I

S
ij

N∏
i=1

[N (Ui | 0, σ2
UI)]

M∏
j=1

[N (Vj | 0, σ2
V I)]

4.1.3 Objective function of SBMF+R

The log of the posterior distribution over the user and item features matrices is given by
ln p

(
U, V | R5, S5, σ2

R, σ
2
S , σ

2
U , σ

2
V

)
, if hyper-parameters (σ2

R, σ
2
S , σ

2
U , σ

2
V ) kept fixed, then maximizing

the log-posterior is equivalent to minimizing the sum-of-squared-error as shown in the following:

ζ =
1

2

∑
i,j

{Iij [wuij(r5ij − r̂5ij)2] + Iij [(1− wuij)(s5ij − r̂5ij)2] + λU‖Ui‖2 + λV ‖Vj‖2}

where Iij is the indicator function that is equal to 1 if user ui evaluated item vj or 0 otherwise,
λU = σ2

R/σ
2
U and λV = σ2

R/σ
2
V are the regularization parameters.

4.2 STMF Model

As shown in Figure 2, STMF model [20] initializes two predefined matrices using K-dimensional
space similarly to the latent factor models (e.g., MF, PMF, SBMF+R). However, the difference is
that the item topic distribution Y is a fixed matrix to replace the item latent feature matrix V , and
the user preference distribution X is a fixed one to replace the user latent feature matrix U .

4.2.1 Calculation of the fixed matrices

First, the item topic distribution is constructed from historical reviews via LDA. LDA assumes
that each document is a mixture of several topics, and the presence of each word can be attributed
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to one topic of the document. All reviews to the item vj in feedback are regarded as the overall
“review” dj of vj . Suppose there are K topics overall in dj , its topic distribution proportion is
denoted by θj , which is a K-dimensional stochastic vector. To be more specific, a topic is denoted
by tk with k ∈ {1, . . . ,K}, and each element θkj indicates the proportion of corresponding topic tk
which have been mentioned in dj . So the topic distribution matrix for all items is represented as
Y = [θ1, . . . , θM ].

Unlike the item topic distribution, the user preference distribution comes from the users’ opinions
and preferences via sentiment analysis. Note that STMF model utilizes the sentiment intensity rather
than the result of sentiment classification. Let Mi be the number of feedback of ui. As we know, the
rating is in the scale of [1, 5], while the sentiment intensity s1ij in section 4.1.1 falls into the range of

[-1, 1]. In order to obtain the converted rating r1ij , the operation in Eq.(1) is necessary for aligning

r5ij with s1ij . So the user preference vector of ui denoted by ρi is calculated as follows:

ρi =
1

Mi

Mi∑
j

[
1

2
(s1ij + r1ij)θj ]

where θj ∈ Y is the topic distribution corresponding to each item vj of ui. Therefore, the preference
distribution matrix for all users is represented as X = [ρ1, . . . , ρN ].

4.2.2 Objective function of STMF

Since the relative sizes of X and Y in the model need to be kept, two weight vectors are introduced
as wi and wj . The new rating prediction function is as shown in the following:

r5ij ∼ r̂5ij = µ+ bi + bj + wiX
T
i · wjYj (8)

where µ is the global bias, i.e., the average of all observed ratings, and bi and bj are the user bias
for ui and item bias for vj , respectively. Thus, the new function of sum-of-squared-error is shown as
follows:

ζ =
1

2

∑
i,j

[(r5ij − r̂5ij)2 + λ(‖wi‖2 + ‖wj‖2 + ‖bi‖2 + ‖bj‖2)]

5 Proposed Methods

In this section, we propose Sentiment Combination Matrix Factorization (SCMF) and its upgraded
version (SCMFP) to predict the missing ratings. The structure of SCMF (resp. SCMFP) is shown
in Figure 3 (resp. Figure 4).

For SCMF, first, in the preprocessing of data, we use the methods provided in section 4.2.1
of STMF to establish the user preference distribution X and item topic distribution Y via topic
analysis and sentiment analysis techniques. Then, the user reliability measure wuij , which uses the
rating r5ij and positive votes ratio fPij /fij is established in the way of section 4.1.1 of SBMF+R.
After that, based on the distribution matrices, we utilize the rating prediction function as Eq.(8) in
section 4.2.2 and propose a new objective function by adding the reliability measure.

As the upgraded version SCMFP of SCMF, we add the item reliability measure to SCMF as an
adjustment parameter of the learning rate during training.

5.1 SCMF

With the given set of historical feedback, X and Y are trained from the user reviews with LDA and
VADER independently. As the first step of LDA, the text preprocessing operations like stemming,
lemmatization, word segmentation, stop-word filtering, and number filtering on the original review
data are performed. In order to obtain more explicit and interpretable sentiment intensity, our model
differs from STMF and SBMF+R in which a sentiment processing module VADER is applied to
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Figure 3: Construction for SCMF.

get s1ij . In the text preprocessing of VADER, we only normalize the text to get accurate intensities

without removing the numbers and stop-words. To get s5ij from s1ij , the formula of Eq.(2) is used.
As the weights assigned for X and Y which have been fixed in the model, we make use of the

rating prediction function shown in Eq.(8) in section 4.2.2. In the next step, we find that not only
the rating needs to be fit, but the user’s sentiment also needs to be fit. Thus, we use the reliability
measure of users to separately fit the rating and sentiment to obtain a new objective function. With
the acquisition of the reliability measure wuij according to the method in section 4.1.1, we assign
the weights to each rating r5ij and each sentiment intensity s5ij .

Therefore, the new objective function in order to model X and Y is proposed as follows:

ζ =
1

2

∑
i,j

{[wuij(r5ij − r̂5ij)2] + [(1− wuij)(s5ij − r̂5ij)2]

+ λ(‖wi‖2 + ‖wj‖2 + ‖bi‖2 + ‖bj‖2)]},

where wuij , wi, and wj represent the reliability factor, user weight, and item weight, respectively.
bi and bj denote the user bias and item bias, respectively.

A typical way to minimize the objective function is to use the SGD algorithm similar to Eq.(4),
which calculates the gradients of wi, wj , bi and bj for each observed rating r5ij as follows:

gwi =− [wuij(r
5
ij − r̂5ij) + (1− wuij)(s5ij − r̂5ij)]XT

i · wjYj + λwi

gwj =− [wuij(r
5
ij − r̂5ij) + (1− wuij)(s5ij − r̂5ij)]wiX

T
i · Yj + λwj

gbi =− [wuij(r
5
ij − r̂5ij) + (1− wuij)(s5ij − r̂5ij)] + λbi

gbj =− [wuij(r
5
ij − r̂5ij) + (1− wuij)(s5ij − r̂5ij)] + λbj

(9)

and iteratively updates them in the opposite direction of the gradients.

5.2 SCMFP

In addition to user reliability measure used in SCMF, we establish review reliability measure for
each item based on the user reviews and their helpful votes related to the item, which can be seen
as the usefulness of feedback. When the review reliability measure is high, the feedback of the item
is worth referring into the training of the model. Correspondingly, in our online style of training,
we increase the learning rate for a large updating step for the item. Otherwise, i.e, when the review
reliability measure is low, we reduce the learning rate for a slight one. As shown in Figure 4, the
users’ feedback provides reliability measures both for users and items. They will affect the generation
of wi and wj in matrix decomposition together.

For an item vj , its item consistency tj is calculated as the Euclidean distance between the rating
r5ij and the sentiment intensity s5ij of all feedback for vj . Where Nj is the number of users who
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Figure 4: Construction for SCMFP.

posted feedback for vj , we write the equation for tj as:

tj =

√√√√ Nj∑
i

(r5ij − s5ij)2

Further, we introduce the reliability measure for rating r5ij , based on the helpful votes of its
corresponding review dij and item consistency tj . Inspired by previous study [17], we define it as
wvij as follows:

wvij =
fPij /fij

med− tj
where fPij /fij represents the positive votes rate of dij , and med represents the median value of
consistency tj among all items. The denominator translates tj into the deviation from med. At last,
wvij is normalized into [0, 1] for the convenience of calculation.

Finally, in the SGD training of SCMFP, in order to adjust the updating step of wi and wj , we
take place the original constant of learning rate α with wvij . With the denotation of gradients
gwi, gwj , gbi and gbj following Eq.(9), the updating equations for wi, wj , bi and bj are written as:

wi ← wi − α · wvij · gwi

wj ← wj − α · wvij · gwj

bj ← bj − α · wvij · gbj
bj ← bj − α · wvij · gbj

where α is a pre-defined constant for SCMFP model. Thus, a trustworthy rating which is with
high wvij brings wi and wj significant updates. As a result, the weights of matrices will finally be
fine-tuned to find the most suitable value.

6 Evaluation

6.1 Datasets

In the evaluation for the model’s performance, we select ten categories of 5-core Amazon review
datasets [12] to conduct experiments: “Musical Instruments”, “Patio Lawn and Garden”, “Auto-
motive”, “Instant Video”, “Tools and Home Improvement”, “Office Products”, “Digital Music”,
“Baby”, “Grocery and Gourmet Food”, and “Pet Supplies”. The datasets are extremely helpful to
test the performance of the recommender systems in different scenarios. Each of 5-core datasets
contains reviews, ratings, helpful votes, item metadata, links, and so on. We filter out users and
items with constraints such that each user and each item have at least five feedback respectively.
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Table 1: Statistics of the Amazon datasets.
Dataset #users #items #reviews avg.ratings var.rating avg.sentiments avg.words #pos #total sparsity K
Musical 1,429 900 10,261 4.4887 0.8003 4.1650 91.1 16,119 19,066 0.0080 15
Patio 1,686 963 13,272 4.1865 1.1752 3.9332 159.2 42,914 49,859 0.0082 10
Automotive 2,928 1,835 20,473 4.4718 0.8842 4.0500 86.0 31,612 38,603 0.0038 5
Instant 5,130 1,685 37,126 4.2095 1.2511 3.9737 92.0 48,024 74,958 0.0043 30
Tools 16,638 10,217 134,476 4.3654 1.0724 4.0318 110.9 407,895 472,891 0.0008 5
Office 4,905 2,420 53,258 4.3460 0.8653 4.1073 147.5 162,510 183,894 0.0045 15
Digital 5,541 3,568 64,706 4.2225 1.1796 4.0992 200.0 239,161 342,510 0.0033 15
Baby 19,445 7,050 160,792 4.2141 1.3095 4.0867 99.6 285,670 345,537 0.0012 10
Grocery 14,681 8,713 151,254 4.2430 1.1881 4.1102 94.2 237,201 302,126 0.0012 5
Pet 19,856 8,510 157,836 4.2297 1.3825 4.0195 88.8 216,011 250,124 0.0009 10

Table 2: Statistics of the Amazon datasets (continued).
Dataset avg.wuij avg.wvij avg.fPij /fij var.fPij /fij avg.(1− ci) var.(1− ci) avg.(med− tj) var.(med− tj)
Musical 3.0425 -0.1345 0.2638 0.1764 -0.9674 0.9392 1.4971 4.2425
Patio -0.4137 0.0967 0.3662 0.2005 -1.3448 1.3080 3.0599 6.8721
Automotive 0.5815 0.0500 0.2782 0.1780 -1.2923 1.0816 3.4105 4.3309
Instant -0.4390 0.0330 0.2033 0.1297 -1.1451 1.5811 3.1993 17.5988
Tools -0.3776 0.0995 0.3654 0.2039 -1.5104 1.5758 4.0129 6.1041
Office -0.1116 0.0618 0.2921 0.1826 -1.4241 1.2537 2.0768 4.3757
Digital -0.2099 0.0827 0.5187 0.1794 -2.2332 9.9010 5.7494 7.9775
Baby -0.2484 4.0193 0.2522 0.1629 -1.1577 1.2820 4.5734 11.7065
Grocery -0.1641 0.0499 0.3028 0.1822 -1.5882 2.3697 5.2009 13.5151
Pet -0.8776 0.0560 0.2652 0.1796 -1.4295 1.5316 5.3596 14.2718

Tables 1 and 2 show the statistics for the datasets. For simplicity, the dataset name is represented
as the first word of the name in the following tables. In Table 1, the average of ratings (resp.
the average number of words, the sparsity) of a dataset is calculated as #ratings/#reviews (resp.
#words/#reviews, #reviews/(#users×#items)). The value of “avg.sentiments” means the average
of sentiment intensities of reviews. In addition, the positive votes number and the total votes number
for each dataset are shown as #pos and #total, respectively. In Table 2, the average values of wuij
and wvij and the average and variance values of fPij /fij , 1−ci, and med− tj are shown, respectively.

6.2 Implementation

We compare the proposed models (i.e. SCMF and SCMFP) with the following existing models in
our experiment: basic MF, biased MF, PMF, SBMF+R, and STMF. In the experiment, 80% of each
dataset is regarded as a training set and 20% as a testing set. We conduct 5-fold cross-validation in
training.

In order to implement LDA, we use gensim library in sklearn of Python. Also, the parameter
settings for the method described in Table 3 are used to get more accurate training results. In
addition, we calculate the perplexity score and coherence score of LDA with topic dimension K
varies from 5 to 60. The perplexity [6] is a measure of how well a probability model predicts a
sample while the coherence [16] is a measure of topic quality. The smaller the perplexity, the larger
the coherence, the better the performance of LDA. More specifically, the perplexity score keeps
getting larger as K keeps increasing. However, the maximum coherence scores are mostly different,
focusing on 5 to 30. In Figures 5 and 6, we show the scores for each dataset, and the best value of K
for each dataset is shown in Table 1. For fairness, we do comparison experiments of the dimensions
K of topics, where K is set to 10, 20, and 30 for each method.

For the comparison of methods, first the regularization term and learning rate are fixed as
λ = 0.06 and α = 0.0002, respectively, which are decided by experiments. Concretely speaking,
we tried various pairs of values α = 0.0001, 0.0002, · · · , 0.0007 and λ = 0.01, 0.02, · · · , 0.07 for each
dataset and each method, and chose the average of the best values. For all methods, we set the
number of epochs of each model to 2000. The weight vectors wi and wj are initialized by randomly
generated values following uniform distribution over [0, 1].
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(a) Musical Instruments
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(b) Patio Lawn and Garden
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(c) Automotive
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(d) Instant Video
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(e) Tools and Home Improvement
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(f) Office Products

Figure 5: Perplexity and Coherence.
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(a) Digital Music
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(b) Baby
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(c) Grocery and Gourmet Food
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(d) Pet Supplies

Figure 6: Perplexity and Coherence (continued).

6.3 Evaluation Metric

With the problem we have defined, the performance of each model can be measured by observing
the accuracy of the prediction, that is, for the ratings in the test set, the difference between the
predicted value r̂ij and the real rating value rij can be evaluated. Thus, we use the commonly used
Root Mean Square Error (RMSE) as an indicator, which is calculated as follows:

RMSE =

√∑
i,j(rij − r̂ij)2

T

where T is the number of feedback in the testing set. The model is considered as better as the
obtained RMSE value is getting smaller.

Additionally, in order to further investigate the performance of SBMF+R, STMF and our pro-
posed methods in detail, we re-define the five-level rating values of 1, 2 and 3 as negative, 4 and 5
as positive. Based on this definition, we calculate the accuracy rate of each method for the binary
prediction, i.e., polarity (positive or negative) prediction. We consider that, in some cases of appli-
cations, the accuracy of the polarity prediction may be more important than the accuracy of the
prediction of the exact ratings.

6.4 Results

Table 4 summarizes the results of all datasets with K = 10, α = 0.0002 and λ = 0.06, where the best
performance of each dataset is emphasized in bold. Table 5 (resp. 6) summarizes the improvement of
SCMFP (resp. SCMF) for each dataset. The improvement from each existing method is calculated
by (B−A)/B, where A is the result of SCMFP (resp. SCMF) and B is the existing method. When
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Table 3: Parameter setting for LDA.
Parameter Value

learning method online (EM algorithm)
max iter 500

learning offset 50
random state 0
learning decay 0.7

batch size 128

K = 10, both SCMFP and SCMF show the best improvement in terms of RMSE on ten datasets
as almost 14.1% compared with MF, 7.13% compared with SBMF+R, and 0.69% compared with
STMF on average.

In order to ensure there is a statistical significance between the results of SCMF and existing
methods (resp. SCMFP and other methods including SCMF) at K = 10 respectively, we performed a
t-test on the results for each dataset. In Tables 5 and 6, the symbol †means that p ≤ 0.01. For almost
of all cases, the p-values are less than 0.01. That is, comparing with existing methods, SCMF and
SCMFP show statistical significance in each dataset. There is also a statistical significance between
our proposed methods SCMF and SCMFP as well.

As shown in these results, SCMFP method outperforms other methods including SCMF on the
datasets except “Automotive”, “Digital Music” and “Baby”. If we exclude “Baby” dataset, the
average improvement of SCMFP against SCMF (resp. STMF) is 0.63% (resp. 1.25%). Additionally,
if we exclude SCMFP, SCMF outperforms the existing methods on the datasets expect “Automotive”
dataset. A close analysis against the results of these datasets remains as a future work. In the
statistics shown in Table 2, for dataset “Baby”, the average value of wvij is higher than other
datasets. In such a case, our method may update wi and wj in too large steps in each learning
epoch. Thus, depending on item reliability measure wvij , a dynamic adjustment of its influence on
the training process may be needed. For dataset “Digital Music”, the average values of fPij /fij and

(med− tj) are higher than other datasets. It means that the obtained wvij = (fPij /fij)/(med− tj)
will become very large or small at some point, which may cause a great impact on the dynamic
adjustment.

To further confirm and determine whether there is a statistical significance between the results of
SCMFP (resp. SCMF) with different K, we performed a t-test on them, introducing p-value as the
lowest level in the observed values of the test statistic. However, we found that the RMSE results
of SCMFP (resp. SCMF) lack significant differences, so the results of K = 20 and 30 are omitted
in the table.

The accuracy of the polarity prediction is shown in Table 7. On each dataset, we can see that
SCMFP has achieved the highest accuracy rate and shows the best performance on average. Also,
in Table 8 (resp. 9), we use the same calculation method as Table 5 (resp. 6), to summarize the
improvement of SCMFP (resp. SCMF) for each dataset, where SCMFP (resp. SCMF) shows the
improvement in terms of accuracy of polarity prediction as 1.30% (resp. 0.88%) compared with
STMF on average. In addition, we performed a t-test on the results for each dataset. The symbol
† in Tables 8 and 9 represents that p ≤ 0.01, which means that comparing with existing methods,
SCMF and SCMFP show statistical significance in each dataset.

7 Conclusion

In this paper, we propose SCMF and SCMFP methods to predict the missing ratings for the rec-
ommender systems. From the given textual reviews, the topic distribution and sentiment value are
extracted by LDA and VADER, respectively. They are used to directly construct the fixed user
preference distribution and item topic distribution matrices instead of the latent factor matrices.
Also, in SGD process, the weights for the fixed matrices are iteratively updated by adjusting the
ratio between the user reliability factors of each rating and each sentiment intensity. In SCMFP,
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Table 4: Performance in terms of RMSE of different methods at K = 10, λ = 0.06 and α = 0.0002.
Dataset MF PMF Baised MF SBMF+R STMF SCMF SCMFP
Musical 1.0639 0.9219 0.9985 0.9168 0.9239 0.9169 0.9045
Patio 1.1027 1.0794 1.0514 1.0668 0.9762 0.9692 0.9614
Automotive 1.0880 0.9512 0.9955 0.9485 0.9154 0.9271 0.9209
Instant 1.1321 1.0923 1.0286 1.0889 0.9612 0.9530 0.9437
Tools 1.1574 1.0563 1.0641 1.0443 0.9878 0.9769 0.9721
Office 0.9961 0.9481 0.9197 0.9408 0.8648 0.8555 0.8529
Digital 1.0917 1.0425 0.9899 1.0406 0.9233 0.9190 0.9229
Baby 1.2383 1.1880 1.1748 1.1525 1.0915 1.0773 1.1391
Grocery 1.1451 1.0887 1.0828 1.0773 1.0007 0.9964 0.9930
Pet 1.2886 1.2150 1.2207 1.1931 1.1356 1.1191 1.1061

Average 1.1304 1.0583 1.0526 1.0469 0.9780 0.9710 0.9717

Table 5: The improvement in terms of RMSE of SCMFP on all datasets (%). The symbol † means
that p ≤ 0.01.

Dataset vs MF vs PMF vs Baised MF vs SBMF+R vs STMF vs SCMF
Musical 14.98† 1.89† 9.42† 1.33† 2.10† 1.35†

Patio 12.81† 10.93† 8.56† 9.88† 1.52† 0.80†

Automotive 15.37† 3.19† 7.50† 2.91† −0.59† 0.68†

Instant 16.65† 13.61† 8.26† 13.34† 1.82† 0.98†

Tools 16.01† 7.97† 8.65† 6.91† 1.59† 0.49†

Office 14.38† 10.04† 7.26† 9.34† 1.37† 0.29†

Digital 15.46† 11.47† 6.77† 11.31† 0.05† −0.42†

Grocery 13.29† 8.80† 8.29† 7.83† 0.77† 0.34†

Pet 14.16† 8.96† 9.38† 7.29† 2.59† 1.15†

Average 14.79 8.54 8.23 7.79 1.25 0.63

Baby 8.01† 4.12† 3.03† 1.16† −4.36† −5.74†

Average 14.11 8.10 7.71 7.13 0.69 -0.01

the review reliability factors are used for the adjustment of the learning rate.
In our evaluation, we perform the experiments with ten Amazon review datasets. The results

show that the RMSE of rating prediction by our SCMF and SCMFP methods improve significantly
comparing to traditional MF methods on average. Additionally, the proposed methods can predict
the polarity of ratings more accurately.

In the future, we plan to apply other methods to analyze reviews to build the item topic distri-
bution matrix and the user preference distribution matrix to get better performance.
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