
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 11, Number 2, pages 154–171, July 2021

An MMCM-based high-speed true random number generator for Xilinx FPGA

Naoki Fujieda and Sogo Takashima

Department of Electrical and Electronics Engineering, Faculty of Engineering,
Aichi Institute of Technology, Toyota, Aichi, 470-0392, Japan

Received: February 5, 2021
Revised: April 19, 2021
Accepted: June 1, 2021

Communicated by Shinya Takamaeda-Yamazaki

Abstract

For a true random number generator (TRNG) on an FPGA, the use of a pair of clocking
elements has an advantage of minimal usage of its logic elements. This paper presents a novel
high-speed TRNG for recent Xilinx FPGAs using their clocking elements called mixed-mode
clock managers (MMCMs). By following the proposed parameter selection methods, both better
randomness and higher throughput of generated bitstrings can be achieved. According to our
evaluation on an Artix-7 FPGA with the most promising sets of parameters, 38.2% (42 out of
110) of the sets passed AIS-31 Procedure B, which means that an appropriate parameter set can
be found by ten or less trials with more than 99% probability. The average throughput of them
was 2.44 Mbit/s, which was comparable to recent FPGA-based TRNGs. An initial prototype
of dynamic reconfiguration of the parameters is also presented in this paper.

1 Introduction

For secure computing and networking systems, a true random number generator (TRNG) is an
important component to obtain unpredictable random numbers. They are used as, for example, an
encryption key and nonce of challenge-response protocols. A TRNG utilizes a physical phenomenon
as a source of entropy, of which the AIS-31 standard [11] requires an appropriate stochastic model.

There are some types of TRNGs that are suitable for FPGA (field programmable gate array)
implementations and compliant with the AIS-31 [16]. They use physical phenomena of internal logic
or complementary elements, while thermal noise of resisters [24] or transistors [14] is often used in
ASIC (application-specific integrated circuit) implementations. Coherent sampling [1, 12, 13] is one
of the operating principles of them.

Coherent sampling-based TRNGs with clocking elements, such as phase-locked loop (PLL) [4]
and digital clock manager (DCM) [10], have an advantage of being implementable with a minimal
number of logic elements. Coherent sampling requires two clock signals that have slightly different
frequencies. Instead of using two ring oscillators, they use frequency synthesized signals from one
oscillator or an external clock input. They require two clocking elements but fewer logic elements.
In general, an FPGA-based computing and networking system requires a large number of logic
elements, while most of clocking elements remain unused. They let precious logic resources use for
other parts of the system.

In this paper, we present a novel coherent sampling-based TRNG using recent clocking elements
of Xilinx FPGAs called MMCMs (mixed-mode clock managers) [22]. MMCM is available for Virtex-6
and 7 series (or newer) FPGAs and a PLL for these FPGAs is its subset [22]. Although it offers finer

154



International Journal of Networking and Computing

Q3

QD

ClkB

ClkA

Time 0 tB tQ = NtB

ClkA

ClkB

Q0

Q

2tB

Q1 Q2

Q4 Q5

ClkA

Q0 Q1 Q2

Q3 Q4

Q0

Q5

Figure 1: Example of coherent sampling where the frequency ratio is 7 : 6.

multiplying and dividing factors to be set as parameters than earlier DCMs, it was not clear how to
effectively use its functionality for TRNGs. At first, we demonstrate that simply porting an existing
DCM-based TRNG [10] is not enough for a newer FPGA. We then propose selection strategies of
parameter sets of MMCMs and show that entropy and bit rate of generation are increased by the
selected parameter sets. We also present an initial prototype of dynamic reconfiguration of the
parameters. The most important contribution of this paper is to show the feasibility of TRNGs with
clocking elements in a system based on recent Xilinx FPGAs.

We have presented a preliminary version of this study in the PDAA workshop of CANDAR 2020
[6]. Major differences from the preliminary version are as follows.

• An evaluation result with additional sets of parameters is presented in Section 5.

• A prototype system with dynamic reconfiguration of parameters is developed and evaluated,
which is described in Section 6.

• Other types of TRNGs suitable for FPGAs are reviewed in Section 7.

The organization of this paper is as follows. A brief explanation of the basis of our research,
coherent sampling and MMCM, is presented in Section 2. Section 3 describes porting of the existing
DCM-based method, while Section 4 presents the proposed selection of parameter sets of MMCMs.
The quality of random numbers, the generation bit rate, and the amount of hardware of the MMCM-
based TRNG are evaluated in Section 5. Section 6 describes the development and evaluation of a
prototype of dynamic reconfiguration. A review on other types of TRNGs suitable for FPGAs is
presented in Section 7. Finally, we conclude the paper in Section 8.

2 Background

2.1 Principle of Coherent Sampling

Figure 1 depicts the operating principle of coherent sampling with an example. It requires two clock
signals that have slightly different frequencies. These signals, ClkA and ClkB, are given to the data
and clock input ports of a D flip-flop (D-FF), respectively. For ease of explanation, we assume that
the ratio of the frequencies is fA : fB = (N +1) : N . The example of Figure 1 shows the case of the
ratio of 7 : 6. The periods of the respective clocks are denoted by tA and tB .

Suppose that the both clock signals rise at time zero. The time when the both clocks rise at the
same time again will be tQ = NtB . As ClkB goes slightly slower than ClkA, it can effectively capture
a waveform of a single cycle of ClkA with N samples. As a result, the output of the D-FF becomes

155



An MMCM-based high-speed TRNG for Xilinx FPGA

a series of consecutive ‘1’s and consecutive ‘0’s. The expected value of the number of consecutive
‘1’s is N/2 (if the duty cycle of ClkA is 1/2).

TRNGs utilize the jitter of these clock signals. When the vicinity of edge of ClkA (such as Q0 and
Q3 in Figure 1) is captured, the output of the D-FF may vary with slight time jitter. Also, when the
both edges come quite close, D-FF may fall into a metastable state due to timing violation, which
results in random output. These phenomena make the actual number of consecutive ‘1’s uncertain.
Its LSB (least significant bit) can be used as a source of entropy, which is obtained by a T flip-flop (a
D-FF and an XOR gate). To harvest enough entropy, the jitter σJ should be sufficiently larger than
the difference of the periods td = tB − tA = tA/N . Without considering the effect of metastability,
the standard deviation of the number of ‘1’s is proportional to σJ/td.

2.2 Coherent Sampling-based TRNG

One of the methods to obtain clock signals for coherent sampling-based TRNGs is to use two ring
oscillators [12, 15, 19]. Even though the oscillators have the same topology, their oscillation frequen-
cies may slightly differ because of manufacturing variation. If we got a proper period difference td,
we would generate high-quality random numbers at a fast rate (in an order of Mbit/s). However,
improper td results in the lack of entropy (too large td), or reduction of the bit rate of generation
(too small td). It was a serious problem for practical use to properly adjust td. A solution for this
problem has recently been proposed, which uses route-selectable ring oscillators [15]. To improve the
generation bit rate, a mutual sampling method [19] was proposed, which captured ClkB by ClkA in
addition to capturing ClkA by ClkB. It was reported, however, that the quality of random numbers
was degraded due to the correlation among the output bits [19].

Another method for clock signals is to utilize clocking elements such as PLLs [4] and DCMs
[10]. Since factors of multiplication and division can be set as parameters, it is easy to get a proper
frequency ratio. When an external clock source is used, no ring oscillators are required. Even
when clocks must be generated internally (i.e. an external clock source is unreliable), only one ring
oscillator is required. This type of TRNGs have an advantage of minimizing the number of required
logic elements in exchange for two additional PLLs or DCMs. A shortcoming of this method is
relatively large power consumption of clocking elements.

Our research is based on a DCM-based TRNG proposed by Johnson et al. [10], whose target
is Xilinx Virtex-5. The parameters of Virtex-5 DCM are multiplier M and divisor D. They both
must be integer and meet 2 ≤ M ≤ 33 and 1 ≤ D ≤ 32. Proper range of N is 400 ≤ N ≤ 1000
(i.e. tA/400 ≥ td ≥ tA/1000) [10]. They presented 23 sets of parameters that meets these conditions
[10]. For example, from an input clock of fIN = 100 MHz, they generated ClkA of (15/31)fIN ∼
48.39 MHz and ClkB of (14/29)fIN ∼ 48.28 MHz. In this case, the frequency ratio is 435 : 434 (i.e.
N = 434) and the expected value of the number of ‘1’s is 217. The numbers of ‘1’s are obtained
at the rate of 48.28/434 ≃ 0.111 Msample/s. In the DCM-based TRNG, three LSBs of the number
of ‘1’s are extracted and the generated bitstring is post-processed by the von Neumann Corrector
[21]. Its bit rate of generation is, theoretically, 0.111 × 3 × 1/4 ≃ 0.083 Mbit/s. Although this
rate varies with parameters, the actual rate was 0.210 Mbit/s on average according to an additional
evaluation with various parameters [7]. In this paper, in consideration of a requirement of AIS-31
[11] for a random bitstring without post-processing, only one LSB of the number of ‘1’s is extracted
and post-processing is not applied unless explicitly stated.

There are two methods to deal with the number of ‘1’s: the number of consecutive ‘1’s [13] and
the sum of the number of ‘1’s in N samples [1]. When using two ring oscillators, the latter method is
not available because the frequency ratio cannot be exactly determined. With clocking elements, the
both methods can be used. The DCM-based TRNG by Johnson et al. adopted the former method
[10]. The former method detects the falling edge of output of the D-FF, instead of counting the
number of samples, which makes hardware simpler. However, since sampling the vicinity of edge
happens consecutively, ‘0’s (’1’s) may appear in consecutive ‘1’s (‘0’s). When counting the number
of consecutive ‘1’s in the former method, this causes quite small counter values, which have smaller
entropy than counter values near the expected value [7]. This research adopts the latter method to
avoid such a negative effect.

156



International Journal of Networking and Computing

fIN

/ D

fPFD

PFD, CP,

LF, VCO

/ Q

fVCO fOUT

/ M

fIN

1

D
fIN

M

D
fIN

M

D � Q

fVCO

1

M

Figure 2: Simplified block diagram of a mixed-mode clock manager (MMCM).

2.3 Mixed-mode Clock Manager

Figure 2 abstracts the operation of the mixed-mode clock manager (MMCM) [22]. Functions un-
related to this research are omitted from this figure. The input clock of frequency of fIN is first
divided by D, and then passed phase frequency detector (PFD), charge pump (CP), loop filter (LF),
and voltage-controlled oscillator (VCO). The input frequency of the PFD fPFD is

fPFD =
1

D
fIN . (1)

The output of the VCO is fed back to the PFD after divided by M . Since this feedback signal is
controlled in order to have the same frequency as fPFD, the following equation holds:

fPFD =
1

M
fV CO. (2)

From Equations (1) and (2), the output frequency of the VCO fV CO is multiplied by M and becomes

fV CO = M · fPFD =
M

D
fIN . (3)

The output of the MMCM is obtained by dividing the VCO output by Q, whose frequency fOUT is

fOUT =
M

D ·Q
fIN . (4)

The parameters of the MMCM, D, M , and Q, have the following constraints:

1 ≤ D ≤ 106, (5)

2 ≤ M ≤ 64, (6)

1 ≤ Q ≤ 128. (7)

D must be integer, while M and Q can be integer or fraction with 1/8 interval. These parameters
enable setting of the output frequency to be finer than the earlier DCM.

These frequencies have constraints due to the characteristics of the PFD and the VCO. They are
slightly different with FPGA family and speed grade. The target FPGA of our evaluation, Artix-7
of speed grade -1, has the following constraints [23]:

10 ≤ fPFD ≤ 450 [MHz], (8)

600 ≤ fV CO ≤ 1200 [MHz], (9)

4.68 ≤ fOUT ≤ 800 [MHz]. (10)

The input frequency is set to fIN = 100 MHz in this research. According to Equations (8) and (9)
for D and M/D, respectively, the effective constraints of the parameters are as follows:

1 ≤ D ≤ 10, (11)

6 ≤ M

D
≤ 12. (12)

157



An MMCM-based high-speed TRNG for Xilinx FPGA

OE

MMCMA

Coherent

Sampling

CNT

MMCMB

ClkA

ClkB

Data

Packer

ClkIN

OUT

UART

TXD

N Pack_EN

Constants

Figure 3: Block diagram of an evaluation system of TRNG.

Table 1: Parameters of MMCM to simply port the DCM-based TRNG [10].
ID Target MA DA QA MB DB QB

J01
DCM 15 31 - 14 29 -

MMCM 7.50 1 15.50 7.00 1 14.50

J02
DCM 21 22 - 20 21 -

MMCM 10.50 1 11.00 10.00 1 10.50

J22
DCM 30 31 - 29 30 -

MMCM 7.50 1 7.75 7.25 1 7.50

J23
DCM 31 32 - 30 31 -

MMCM 7.75 1 8.00 7.50 1 7.75

In addition, the MMCM offers the power down mode [22] to save power consumption when it
is not in use. Although it might be a solution of the shortcomings of PLL/DCM-based TRNGs
referred to in Section 2.2, we do not consider it in this paper.

3 Porting of DCM-based TRNG

All of our evaluations in this paper use a Digilent Arty FPGA board, which includes an Artix
XC7A35T FPGA. Circuits are synthesized by Vivado 2019.2 with the default options unless explicitly
stated.

Figure 3 abstracts our evaluation system. From the 100-MHz input clock on the Arty board,
two clock signals are generated by two MMCMs. A coherent sampling module counts the number of
‘1’s for each N samples. A data packer packs the LSBs of eight counter values into a single byte. A
sequence of bytes (i.e. random numbers) is sent to a PC via UART. The baud rate is set to 3 Mbps
or 6 Mbps in order that the UART transmitter does not become a bottleneck.

In this evaluation system, a programming file must be generated for each set of parameters of
MMCMs. In other words, their parameters are given as constants. As the number of samples N
varies with the parameters, N is also given as a constant. In addition, data packing can be disabled
by setting another constant, Pack EN, to zero to send a sequence of counter values.

In this section, we simply port the DCM-based TRNG by Johnson et al. [10] to FPGAs with
MMCMs. Although 23 parameter sets for DCMs were listed in their paper [10], because of the
constraints on M and D, or Equations (11) and (12), these parameters cannot be directly adopted.
To make the parameters comply with MMCMs, Q is used as a dividing factor instead of D, and
then both M and Q are divided by two (if M ≤ 24) or four (if M > 24). Table 1 shows a part
of the parameter sets obtained from this strategy. We assigned numbers of J01, J02, ..., and J23
to the parameter sets of the DCM-based TRNG [10]. We use J as their initial because they were
originally presented by Johnson et al. The parameters MA, DA, QA are for ClkA and MB , DB , QB

are for ClkB. We measured 107 counter values (the number of ‘1’s for each N samples) for each
parameter set and plotted their distribution.

158



International Journal of Networking and Computing

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

J01

197 217 237

0
.0

0
.1

0
.2

0
.3

0
.4 J02

200 220 240

0
.0

0
.2

0
.4

0
.6

0
.8 J03

200 220 240

0
.0

0
.2

0
.4

0
.6

J04

209 229 249

0
.0

0
.2

0
.4

J05

212 232 252

0
.0

0
.2

0
.4

0
.6

J06

217 237 257

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

J07

221 241 261

0
.0

0
.2

0
.4

0
.6

0
.8

J08

226 246 266
0
.0

0
.2

0
.4

0
.6 J09

236 256 276

0
.0

0
.2

0
.4

0
.6

J10

243 263 283

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

J11

244 264 284

0
.0

0
.2

0
.4

0
.6

J12

255 275 295

0
.0

0
.1

0
.2

0
.3

0
.4

J13

267 287 307

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

J14

284 304 324

0
.0

0
.2

0
.4

J15

290 310 330

0
.0

0
.1

0
.2

0
.3

0
.4 J16

292 312 332

0
.0

0
.2

0
.4

J17

305 325 345

0
.0

0
0
.1

0
0
.2

0
0
.3

0

J18

317 337 357

0
.0

0
.1

0
.2

0
.3

0
.4

J19

344 364 384

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

J20

371 391 411

0
.0

0
.1

0
.2

0
.3

0
.4

J21

400 420 440

0
.0

0
.1

0
.2

0
.3

0
.4

J22

429 449 469

0
.0

0
0
.1

0
0
.2

0

J23

460 480 500

Figure 4: Distribution of counter values using the parameters shown in Table 1. For the all plots,
the X-axis is the counter value and the Y-axis is the occurrence frequency.

Figure 4 depicts the distributions of counter values with all of the parameter sets. The X-axis
represents the counter value and the Y-axis represents the occurrence frequency for each value. A
gray vertical line in the center corresponds to the expected value of the counter, N/2. The variance
of the counter values was much smaller than the results of the previous experiments with Virtex-5
DCMs [7]. In particular with J01 parameter set, 98% of the values were the same: 216. As we will
evaluate in more detail in Section 5, TRNGs constructed from these parameters do not give enough
entropy and, as a result, they fail statistical tests in most cases. It might be because logic and
clocking elements of the newer FPGAs become more fault tolerant: jitter of MMCMs, setup time
of D-FFs, and hold time of them might get smaller. Also, their bit rate of generation are about 0.1
Mbit/s, which is an order of magnitude slower than other type of TRNGs suitable for FPGAs [16].
The conclusion of this section is that a simple porting of the DCM-based TRNG is not enough in
either randomness or throughput.

4 Enhanced Parameter Selection

4.1 Method for Larger Entropy

As we have overviewed in Section 2.1, there are two ways to increase the variance of the number
of ‘1’s: decreasing the difference of the periods td or increase the jitter σJ . Decreasing the period
difference should be avoided because it has a tradeoff with the generation bit rate. Instead, we

159



An MMCM-based high-speed TRNG for Xilinx FPGA

Table 2: Frequency and peak-to-peak jitter of the output of MMCM.
M D Q Freq. [MHz] Jitter [ps]

7.75 1 8.00

96.875

141.837
15.50 2 8.00 184.566
23.25 3 8.00 229.787
31.00 4 8.00 273.577
38.75 5 8.00 305.392
46.50 6 8.00 343.210
54.25 7 8.00 383.515
62.00 8 8.00 427.425

Table 3: Parameters of MMCM to obtain larger jitter.
ID Method MA DA QA MB DB QB

J01
NM 7.50 1 15.50 7.00 1 14.50
JT 60.00 8 15.50 63.00 9 14.50

J02
NM 10.50 1 11.00 10.00 1 10.50
JT 63.00 6 11.00 60.00 6 10.50

J22
NM 7.50 1 7.75 7.25 1 7.50
JT 60.00 8 7.75 58.00 8 7.50

J23
NM 7.75 1 8.00 7.50 1 7.75
JT 62.00 8 8.00 60.00 8 7.75

adjust the parameters in order to increase the jitter while keeping the frequency unchanged.

Concretely speaking, we multiply both M and D by the same integer. When multiplying and
dividing factors are large, the effect of internal noise becomes large and the jitter becomes increased.
For example, Table 2 summarizes the peak-to-peak jitter of ClkA of J23 parameter set, when M and
D are multiplied by 2, 3, ..., and 8. These values can be found from the clocking wizard of Vivado
[22]. The worst case jitter becomes three times larger. Although the reason of this increase of jitter
is not explicitly described in Xilinx’s user guide [22], it should be interpreted as the effect of clock
dividers. Since a clock divider includes a counter, its bit width becomes large as the divisor increases,
resulting in a large propagation delay. This implies that the multiplier for M and D should be as
large as possible. The maximum multiplier, say Dmax, is constrained by Equation (6) as follows:

Dmax =

⌊
64

M

⌋
, (13)

where ⌊x⌋ is the maximum integer that is not more than x. Since M/D remains unchanged, no
additional constraints come from Equation (12).

Table 3 illustrates some parameter sets modified by the above strategy. The method to obtain
parameter sets shown in Section 3 is represented as NM (Normal). The method proposed here is
represented as JT (Jittery). Both M and D are multiplied by Dmax to maximize the jitter while Q
is kept unchanged. This modification is applied to both ClkA and ClkB.

Figure 5 depicts the distribution of counter values where the JT method is applied. Note that
the scale of the Y-axis is not the same as Figure 4. The variation of counter values apparently
got larger: their standard deviation became 2.6 times larger on average and 10 times larger at a
maximum (J01). Considering the effect of quantization (that counter values must be integer), this
result basically matches the increase of jitter.

With some sets of parameters, most obviously with J22, irregularity of distribution was observed.
Even numbers appeared more frequently than odd numbers in more than half of the cases. We leave
it for future work to find out why this phenomenon occurs, though resolving it would further improve
the quality of random number.

160



International Journal of Networking and Computing

0
.0

0
0
.1

0
0
.2

0
0
.3

0

J01

197 217 237

0
.0

0
0
.1

0
0
.2

0

J02

200 220 240

0
.0

0
0
.1

0
0
.2

0

J03

200 220 240

0
.0

0
0
.1

0
0
.2

0

J04

209 229 249

0
.0

0
0
.1

0
0
.2

0

J05

212 232 252

0
.0

0
0
.1

0
0
.2

0

J06

217 237 257

0
.0

0
0
.1

0
0
.2

0 J07

221 241 261

0
.0

0
0
.1

0
0
.2

0
0
.3

0
J08

226 246 266
0
.0

0
0
.1

0
0
.2

0

J09

236 256 276

0
.0

0
0
.1

0
0
.2

0

J10

243 263 283

0
.0

0
0
.1

0
0
.2

0

J11

244 264 284

0
.0

0
0
.1

0
0
.2

0

J12

255 275 295

0
.0

0
0
.1

0
0
.2

0

J13

267 287 307

0
.0

0
0
.1

0
0
.2

0
0
.3

0

J14

284 304 324

0
.0

0
0
.1

0
0
.2

0

J15

290 310 330

0
.0

0
0
.0

4
0
.0

8
0
.1

2

J16

292 312 332

0
.0

0
0
.0

4
0
.0

8
0
.1

2 J17

305 325 345

0
.0

0
0
.0

4
0
.0

8

J18

317 337 357

0
.0

0
0
.0

4
0
.0

8

J19

344 364 384

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8

J20

371 391 411

0
.0

0
0
.0

4
0
.0

8 J21

400 420 440

0
.0

0
0
.0

4
0
.0

8 J22

429 449 469

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8

J23

460 480 500

Figure 5: Distribution of counter values using the parameters shown in Table 3.

4.2 Method for Higher Throughput

In this section, we consider dividing N samples of the coherent sampling into K sections of N/K
samples and counting the number of ‘1’s for each section, where K is a natural number and N is
divisible by K. This will make the generation bit rate of the TRNG be K times higher. From
a lesson from mutual sampling [19], the count should be independent from each other; otherwise,
unwanted correlation may occur. In this situation, each section must sample the logically same
waveform. This can be done by multiplying the frequency of the sampled clock (ClkA) by K or,
more specifically, dividing the parameter QA by K. Of course, the resultant QA must be a permitted
value as a parameter of the MMCM.

Figure 6 illustrates this idea in the case ofK = 2, by a similar example to Figure 1. The frequency
ratio is now changed from 7 : 6 to 14 : 6. From the principle of coherent sampling, in this case the
waveform of two cycles of ClkA is captured by N samples. If each of the counter values of the first
half (Q0, Q1, and Q2 in the example) and the last half (Q3, Q4, and Q5) is counted independently,
the generation bit rate can be doubled while avoiding the effect on the entropy (the variance of the
counter values).

Table 4 shows some parameter sets after applying this method with K = 2 while keeping the JT
method applied. We denote this combination of the proposed methods as CB (Combined). Since N
had to be divisible by K, we applied the CB method to 13 (out of 23) parameter sets where N was
even. Only QA is halved and the other parameters are left unchanged.

According to an evaluation, the distribution of the counter values was almost unchanged. The
generation bit rate was exactly doubled because the circuit to count the number of samples is

161



An MMCM-based high-speed TRNG for Xilinx FPGA

Q4

ClkB

ClkA'

Time

Q0 Q1

Q2

Q3

Q5

ClkA'

Q0 Q1

Q2

Q3

Q5

ClkA

Q0 Q1 Q2

Q3 Q4 Q5

0 tB tQ = NtB
2tB

Q0

Q4

Figure 6: Example of coherent sampling where the frequency ratio is 14 : 6.

Table 4: Parameters of MMCM to obtain higher throughput.
ID Method MA DA QA MB DB QB

J01
JT 60.00 8 15.50 63.00 9 14.50
CB 60.00 8 7.75 63.00 9 14.50

J02
JT 63.00 6 11.00 60.00 6 10.50
CB 63.00 6 5.50 60.00 6 10.50

J21
JT 58.00 8 7.50 63.00 9 7.25
CB 58.00 8 3.75 63.00 9 7.25

J23
JT 62.00 8 8.00 60.00 8 7.75
CB 62.00 8 4.00 60.00 8 7.75

* J22 is not available because its N is odd.

deterministic. We will conduct a detailed evaluation in Section 5.

4.3 Selection Strategy

Based on the examinations shown in Section 4.1 and Section 4.2, we consider selection of parameter
sets in order to maximize the effectiveness of the proposed CB method. First, to maximize the
generation bit rate,

QA ∈ N (14)

in the NM and JT methods and the multiplier K = QA. This means QA = 1 in the CB method.
From the constraints of the frequencies of the VCO and the output, (9), (10), the range of MA

becomes

6 ≤ MA ≤ 8. (15)

As a result from Equations (13) and (15), DA in the JT and CB methods becomes either 8, 9, or 10,
which maximizes the jitter. For ClkB, although arbitrary parameters can be set as long as Equation
(12) is met, we constrain the range of MB as

6 ≤ MB ≤ 8, (16)

to make DB be also either 8, 9, or 10. Finally, parameters that meets constraints on the output
frequency are selected: the integer ratio of the frequencies is (N + 1) : N , N is within a predefined

162



International Journal of Networking and Computing

Table 5: Grouping of the parameter sets.
Name Condition # of Sets

A 150 ≤ N < 220 77
B 220 ≤ N < 300 64
C 300 ≤ N < 400 46
D 400 ≤ N < 600 67
E 600 ≤ N ≤ 1000 65
All 150 ≤ N ≤ 1000 319

Table 6: Parameters of MMCM that can maximize jitter and throughput.
ID Method MA DA QA MB DB QB

NM 6.000 1 7.000 6.500 1 7.625
A01 JT 60.000 10 7.000 58.500 9 7.625

CB 60.000 10 1.000 58.500 9 7.625
NM 6.000 1 7.000 7.250 1 8.500

A02 JT 60.000 10 7.000 58.000 8 8.500
CB 60.000 10 1.000 58.000 8 8.500
NM 6.250 1 7.000 6.875 1 7.750

A03 JT 62.500 10 7.000 61.875 9 7.750
CB 62.500 10 1.000 61.875 9 7.750

NM 7.875 1 15.000 6.750 1 12.875
E63 JT 63.000 8 15.000 60.750 9 12.875

CB 63.000 8 1.000 60.750 9 12.875
NM 8.000 1 15.000 6.125 1 11.500

E64 JT 64.000 8 15.000 61.250 10 11.500
CB 64.000 8 1.000 61.250 10 11.500
NM 8.000 1 15.000 7.125 1 13.375

E65 JT 64.000 8 15.000 57.000 8 13.375
CB 64.000 8 1.000 57.000 8 13.375

range, and N is divisible by K. The number of possible sets of parameters is at most an order of
hundreds of thousands. We conducted full search to find promising parameter sets.

In this paper, we set the range of N to 150 ≤ N ≤ 1000. The number of samples per count,
N , affects the tradeoff between the generation bit rate and the quality of random numbers. We
decreased the lower limit of N from 400, which was used in the DCM-based TRNG [10] and the
preliminary version of this study [6], to aim for as high throughput as possible.

We found 319 sets of parameters in a range of sampling frequency between 50 and 100 MHz. We
grouped them according to N as shown in Table 5. We gave an ID to each of them using the name of
the corresponding group and a serial number in the group. For example, the parameter sets where
150 ≤ N < 220 were assigned numbers of A01, A02, ..., and A77. Table 6 summarizes a part of them.
There are two parameter sets which have also enumerated in the DCM-based TRNG [10]: E03 and
E10 are identical to J19 and J23 (except for the value of K in the CB method), respectively. Full lists
of the parameter sets are available at a GitHub repository https://github.com/nfproc/MMCM_TRNG.

5 Evaluation

5.1 Min-entropy

In this section, we evaluate the effect of the proposed parameter selection on the entropy, the bit
rate of generation, and the amount of hardware of an MMCM-based TRNG. We first evaluate the
entropy based on the parameter sets from the DCM-based TRNG (i.e. J01–J23). We measured

163



An MMCM-based high-speed TRNG for Xilinx FPGA

Table 7: Min-entropy of generated random bitstrings.
ID NM JT CB ID NM JT CB

J01 0.0294 0.9964 0.7988 J13 0.7646 0.8534 -
J02 0.9254 0.6097 0.6157 J14 0.9749 0.6827 0.6623
J03 0.2614 0.6742 - J15 0.9762 0.5669 0.7551
J04 0.4915 0.5647 - J16 0.4921 0.6435 0.8879
J05 0.9117 0.9191 0.7953 J17 0.8709 0.9839 0.9935
J06 0.4927 0.7687 - J18 0.9895 0.7425 -
J07 0.9800 0.6926 - J19 0.7684 0.9936 1.0000
J08 0.4113 0.7566 - J20 0.8910 0.9917 -
J09 0.6232 0.6316 0.6782 J21 0.8384 0.8969 0.8906
J10 0.7167 0.8034 - J22 0.6670 0.7579 -
J11 0.9621 0.6798 0.6442 J23 0.9863 0.9963 0.9959
J12 0.3369 0.8610 0.8002 Avg. 0.7114 0.7855 0.8090

(0.7458) (0.8047)

the occurrence frequency of the LSB of 107 counter values. We calculated the min-entropy of the
sequence of LSBs as H∞ = − log2{max(p0, p1))}, where the occurrence frequencies of the LSB of ‘0’
and ‘1’ are denoted as p0 and p1, respectively.

Table 7 enumerates the calculated min-entropy. The row Avg. corresponds to the arithmetic
mean of the evaluated sets. The arithmetic mean of the 13 sets to which the CB method is applicable
is noted in parentheses. The minimum value for each method is shown in boldface type. The results
indicates that the min-entropy is basically increased by applying the JT method. In particular, any
case that only one counter value frequently appeared, as shown in J01 of Figure 4, were not observed
in the JT and CB methods. No significant differences were observed between JT and CB.

5.2 AIS-31 Statistical Tests

We then evaluate the quality of random bitstrings, generated by concatenating the LSBs of the
counters, using AIS-31 [11] Procedure B statistical test suite. We used all of the 319 parameter sets
found in Section 4.3. This test suite assumes that the input bitstring is no less than 7 Mbit long and
not post-processed. If the decision is not reliable (i.e. failing in only one of the tests), the tests are
conducted again with another bitstring. We thus generated 16 Mbits of bitstring for each parameter
set. We also calculated the generation bit rate by measuring the time to obtain the bitstring.

Figure 7 summarizes the result of the statistical tests, while Figure 8 plots the average of gener-
ation bit rate. The X-axis represents a kind of method and a group of parameter sets, while Y-axis
is the proportion of sets passed or failed (Figure 7) or the generation bit rate (Figure 8). Failed
parameter sets are excluded from the calculation of the average bit rate. Since none of the sets
passed the test in the group B of the NM method, its average bit rate was not available (N/A). If
the proporion of passed sets is smaller than 10%, corresponding bars in Figure 8 are marked in gray.

While only 14 sets (out of 319) passed when the existing method is simply ported (NM), 197
sets and 134 sets passed in JT and CB, respectively. Interestingly, though the proportion of passed
sets was almost the same among the groups in the JT method, it decreased by the decrease of N in
the CB method. A possible reason is that the number of samples N/K became too small relative to
the deviation of counter value. An expected usage in actual applications is to find an appropriate
parameter set through testing some possible sets using dynamic reconfiguration (see Section 6 for
our initial prototype). Increase of the number of passing parameter sets means the reduction of the
time spent for such an advance preparation. For example, in the groups B and C, 38.2% (42 out
of 110) of the sets passed the test with the CB method. This means that, if a parameter set is
randomly selected, we can find an appropriate parameter set by ten or less trials on these sets with
more than 99% probability. However, the proportion of passed sets dropped to less than 5% in the
group A, which means searching for appropriate parameter set from them is impractcal.

164



International Journal of Networking and Computing

0%

20%

40%

60%

80%

100%

A B C D E All A B C D E All A B C D E All

P
ro

p
o
rt

io
n
 o

f 
S

et
s

PASS FAIL

Group

Method NM JT CB

Figure 7: Proportion of parameter sets that passed AIS-31 Procedure B.

0

500

1000

1500

2000

2500

3000

3500

4000

A B C D E All A B C D E All A B C D E All

T
h
ro

u
g
h

p
u

t 
[k

b
it

/s
]

Group

Method NM JT CB

N
/A

Figure 8: Generation rate of random bits.

Regarding the generation bit rate, CB achieved 1.59 Mbit/s on average while NM and JT were
0.167 Mbit/s and 0.225 Mbit/s, respectively. In other words, the proposed TRNG was about ten
times faster than the simple porting of the existing method by Johnson et al. [10]. It was even 7.6
times faster than their implementation on a Virtex-5 FPGA [7]. In particular, when we extract the
groups B and C as the most promising parameter sets, the average bit rate reached 2.44 Mbit/s. It
was comparable to other types of recently proposed FPGA-based TRNGs [16].

5.3 NIST SP 800-22 Test Suite

We conduct a more detailed statistical test, NIST SP 800-22 test suite [17], to random numbers
generated by the proposed method with a simple post-processing. We chose E10 (basically equivalent
to J23) and B01 (the first set in the group B that passed AIS-31) parameter sets with the CB
method. As a post-processing method, the random bitstring was XOR-ed with an output sequence
of 4-bit (E10) or 8-bit (B01) linear feedback shift register (LFSR) by software. This corresponds to
a quite simple debiasing. As recommended in AIS-31 [11], we obtained 1,073 1-Mbit bitstrings and
conducted the tests to each of them. The generation bit rate of the bitstrings was 0.808 Mbit/s and
2.667 Mbit/s, respectively.

165



An MMCM-based high-speed TRNG for Xilinx FPGA

Table 8: Result of the NIST SP 800-22 test suite. A simple post-processing with a 4-bit (E10) or
8-bit (C01) LFSR was applied.

E10 C01
name p-value proportion p-value proportion

Frequency 0.37287 99.35% 0.29542 98.79%
BlockFrequency 0.72770 98.97% 0.61767 99.07%

CumulativeSumsUp 0.85956 99.35% 0.07620 98.97%
CumulativeSumsDown 0.38881 99.44% 0.60990 99.16%

Runs 0.05050 98.97% 0.77034 98.97%
LongestRun 0.21278 99.25% 0.28874 98.88%

Rank 0.24976 98.97% 0.12067 99.16%
FFT 0.82609 99.16% 0.60407 98.88%

NonOverlappingTemplate 0.16313 99.00% 0.10119 99.01%
OverlappingTemplate 0.06071 98.60% 0.43040 99.07%

Universal 0.02751 98.79% 0.40681 99.07%
ApproximateEntropy 0.60990 98.97% 0.44073 99.07%
RandomExcursions 0.97985 98.98% 0.74299 99.06%

RandomExcursionsVariant 0.01551 99.36% 0.13748 98.88%
Serial1 0.93685 98.70% 0.26065 99.35%
Serial2 0.57125 98.60% 0.40021 98.88%

LinearComplexity 0.01405 99.07% 0.15433 98.42%

Table 9: Number of logic elements for TRNG.
Method LUT D Flip-flop

NM 19 18
JT 19 18
CB 17 18

Table 8 summarizes the result of the NIST test suite. For each test, a p-value and the proportion
of passed bitstrings are shown. The test is considered as pass if the p-value is no less than 10−4 and
the proportion is within 3σ range from 99%. The post-processed bitstrings passed the NIST test
suite, for all of the tests meets these conditions. The raw bitstrings did not pass the tests but it was
expected result. Procedure B of AIS-31 targets raw bitstrings and they have small bias acceptable
there. They are expected to be used with a post-processing.

5.4 Amount of Hardware

Finally, we evaluate the amount of hardware after synthesized, placed and routed. Evaluated circuits
were the coherent sampling and the data packer in Figure 3. The UART transmitter and a post-
processing circuit (assumed in Section 5.3) is not included. To avoid packing with other circuits,
we add a -flatten hierarchy none synthesis option. We used the E10 parameter set in the same
way as Section 5.3.

Table 9 shows the summary of the implementation results. The number of required LUTs (look-
up tables) or flip-flops was comparable to the DCM-based TRNG [10] and much smaller than other
circuits.

166



International Journal of Networking and Computing

OE

DynClkA

Coherent

Sampling

CNT

DynClkB

ClkA

ClkB

Data

Packer

OUT

UART

TXD

AXI

I/F

N

Pack_EN

TRNG Module

MMCMA

MMCMB

F
ro

m
 A

X
I 

In
te

rc
o
n
n
ec

t

Figure 9: Block diagram of the evaluation system modified for dynamic reconfiguration.

Table 10: Parameters of MMCMs that consists only of integers.
ID MA DA QA MB DB QB N

D17 57 8 1 64 8 9 64
E25 60 10 1 61 8 14 61
E31 63 9 1 61 8 12 61
E57 64 8 1 59 8 12 59
E58 57 8 1 61 8 15 61
D63 58 8 1 62 8 15 31

6 Prototyping of Dynamic Reconfiguration

6.1 System Design

In this section, we describe and evaluate a prototype system for dynamic reconfiguration of param-
eters. As explained in Section 3, the evaluation system in the previous sections has constants of
MMCM parameters, the number of samples per count, and whether the data packer is enabled.
Changing parameters of MMCMs in operation requires dynamic reconfiguration of MMCM [18].
Furthermore, in an FPGA-based system, circuits are usually packaged as IP cores and controlled by
a processor via an AXI interface.

Based on above considerations, we built the system using IP cores and a MicroBlaze soft pro-
cessor. Figure 9 describes basic components of the system controlled by MicroBlaze. To achieve
dynamic reconfiguration of an MMCM, we use a DynClk (dynamic clocking) IP developed by Dig-
ilent [3]. Components except MMCMs in Figure 3 are packed into another IP, depicted as TRNG
module in Figure 9. To enable modification of the number of samples (N) and whether the data
packer is enabled (Pack EN), an AXI interface (AXI I/F) circuit is added to the TRNG module.

On the development of the software, we slightly modified the driver of the DynClk core. It
originally takes a target output frequency as an argument and the parameters of the MMCM (M ,
D, and Q) are calculated from it. We modified it to bypass this calculation and to provide the
parameters directly. Also, since the driver did not support fractional values for M and D and it was
expected that modification will take a lot of time and effort, we chose parameter sets that consisted
only of integers. From the parameter sets in the groups D and E, we found six sets shown in Table
10.

6.2 Verification of Operation

We ran a test program on the prototype system, where the counter values were generated for ten
seconds for each set of parameters. Figure 10 plots the time variation of the distribution of counter
values throughout the runtime of the program. The x-axis represents the elapsed time and the y-axis
stands for counter value. The more frequently the counter value appears, the darker the color of the

167



An MMCM-based high-speed TRNG for Xilinx FPGA

0 10 20 30 40 50 60

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

Time [s]

C
o

u
n

te
r 

V
a
lu

e

D17 E25 E31 E57 E58 D63

Figure 10: Time variation of the distribution of counter values.

Table 11: Number of logic elements for the prototype system.
Component LUT D Flip-flop

Whole System 2,366 2,382
MicroBlaze 1,061 934
TRNG Module 487 359

UART 428 277
Others 59 82

DynClk 239 352
AXI Interface 187 269
Others 52 83

corresponding cell. The distribution was measured every 0.5 seconds.
From Figure 10, a change of the distribution was observed every ten seconds. For each section,

the mode value appeared near the expected value of the counter, or N/2. Therefore, we can conclude
that the prototype system is operating as we expect.

6.3 Amount of Hardware

We evaluate the amount of hardware of the system after synthesized, placed and routed. Experi-
mental conditions were almost the same as Section 5.4 with the exception of the version of Vivado,
which was 2020.1 rather than 2019.2.

Table 11 summarizes the number of logic elements required for the prototype system. Note that
the row DynClk corresponds to a single DynClk core, while the system includes two DynClk cores.
The system used about 11% of LUTs and 6% of flip-flops of an XC7A35T FPGA, almost half of
which were required for a MicroBlaze processor. The TRNG module used 487 LUTs and 359 flip-
flops but they are mostly used by the UART transmitter, which was slightly complicated because
of additional functionality for debug. The AXI interface circuit required only tens of logic elements
because it only has to receive eleven bits of parameters (ten bits for N and one bit for Pack EN)
from software.

Although we leave it future work to develop a more advanced prototype, we discuss a future
outlook for it here. It will integrate MMCMs with a function of DynClk into the TRNG module.
Most of the logic elements in the DynClk core are used by its AXI interface circuit, which receives
about 200 bits of the values to be written to the MMCM from software. However, in the MMCM-
based TRNG, these values can be precalculated and stored in a ROM. The required numbers of
LUTs and flip-flops will be greatly reduced by this optimization, in exchange for an increase of
RAM blocks.

168



International Journal of Networking and Computing

Table 12: Comparison of recent TRNGs on Xilinx FPGAs.
Type Target Area (LUT/FF) Bit Rate (Mbit/s)

MMCM (This work) Artix-7 17/18 2.44
DCM [7] Virtex-5 19/26 0.21

Configurable COSO [15] Spartan-6 108/39* 3.30
TC-TERO [5] Artix-7 40/29 1.91
RS Latch [8] Artix-7 716/974 20.0

Self-timed Ring [16] Spartan-6 346/256 154
* including self-calibration circuit

7 Related Work

A summary of comparison of the proposed MMCM-based TRNG with other types of recent TRNGs
on Xilinx FPGAs is shown in Table 12. There have been some types of TRNGs that achieved small
number of logic elements and high throughput at the same time. Our MMCM-based TRNG now
became one of them. Considering a risk that some types of TRNGs will come out to be compromised
in the future, it is important that there are multiple types of TRNGs that have different operating
principles.

As we have explained in Section 2.2, it is possible to obtain clock signals for coherent sampling
using configurable (route-selectable) ring oscillators [15]. They have copies of a set of a NAND gate
and buffers that compose a ring and replace the buffers with multiplexers. Selection inputs of the
multiplexers are used as parameters. This enables to select the route of the ring and, consequently,
the frequency of the ring by the parameter. It already has a mechanism of self-calibration to find
an appropriate parameter set automatically. However, the probability of getting one from random
parameters is relatively low (few percent), which means that it might take long time to complete
the self-calibration.

The idea of configurable ring oscillator can be extended to another type of TRNGs called a
transition effect ring oscillator (TERO) [5, 20]. It uses an oscillatory behavior of an RS latch that
transits from the metastable (forbidden) state to one of the stable states. The number of oscillation
will be randomly distributed if the ring is well balanced. A TC-TERO [5] has been proposed as
a configurable TERO with some additional optimizations. Although the operating principle of the
TERO is totally different from coherent sampling, they have the same weakness of low probability
to get an appropriate parameter.

An RS latch-based TRNG [8, 9] also utilizes the metastable state of an RS latch, but it focuses
on the final output after the oscillation. Since the output of the RS latch is more biased than the
number of oscillation, this type of TRNG places a number of RS latches and XORs their output to
ensure enough entropy.

A Self-timed ring (STR) [2, 16] is a ring of inverters and circuit elements called Muller C-gates,
which are used in a handshake protocol of an asynchronous circuit. In a STR-based TRNG, outputs
of the C-gates are sampled and XORed to generate a random bit.

RS latch-based and STR-based TRNGs have similar advantage and disadvantage: quite high
throughput but large logic area. They generate tens or hundreds of Mbit of random numbers per
second, but they require hundreds of LUTs and flip-flops. The STR-based TRNG has another
disadvantage of low degree of freedom in placement of elements. Hundreds of elements must be
carefully placed for its proper operation.

8 Conclusion

In this paper, we proposed an improved true random number generator for Xilinx FPGAs, using
MMCMs. We showed that careful selection of MMCM parameters improved both the randomness
and the throughput of the TRNG. The bit rate of generation became an order of magnitude larger

169



An MMCM-based high-speed TRNG for Xilinx FPGA

than the previous DCM-based TRNG. We also demonstrated the feasibility of dynamic reconfigu-
ration of the parameters by our prototype system.

We are developing a more advanced prototype. We will finally package the outcome of the
research into a TRNG IP core handy for FPGA system developers, where an appropriate parameter
will be set automatically.

Acknowledgement

We would like to thank Mr. Yuto Hirano, who partially contributed to the prototyping of dynamic
reconfiguration.

References

[1] F. Bernard, V. Fischer, and B. Valtchanov. Mathematical Model of Physical RNGs Based on
Coherent Sampling. Tarta Mountains Mathematical Publications, 45(1):1–14, 2010.

[2] A. Cherkaoui, V. Fischer, A. Aubert, and L. Fesquet. A Self-timed Ring Based True Random
Number Generator. In 19th IEEE International Symposium on Asynchronous Circuits and
Systems, pages 99–106, 2013.

[3] Digilent Inc. axi dynclk. https://github.com/Digilent/vivado-library/tree/master/ip/
axi_dynclk, cited 30 January, 2021.

[4] V. Fischer and M. Drutarovsky. True Random Number Generator Embedded in Reconfigurable
Hardware. In 3rd Workshop on Cryptographic Hardware and Embedded Systems, pages 415–430,
2002.

[5] N. Fujieda. On the feasibility of TERO-based true random number generator on Xilinx FPGAs.
In 30th International Conference on Field-Programmable Logic and Applications, pages 103–108,
2020.

[6] N. Fujieda and S. Takashima. Enhanced use of mixed-mode clock manager for coherent
sampling-based true random number generator. In 8th International Symposium on Computing
and Networking Workshops, pages 197–203, 2020.

[7] N. Fujieda, M. Takeda, and S. Ichikawa. An Analysis of DCM-based True Random Number
Generator. IEEE Transaction on Circuits and Systems II: Express Briefs, 67(6):1109–1113,
2020.

[8] Naoki Fujieda and Shuichi Ichikawa. A latch-latch composition of metastability-based true
random number generator for Xilinx FPGAs. IEICE Electronics Express, 15(10):20180386:1–
20180386:12, 2018.

[9] H. Hata and S. Ichikawa. FPGA implementation of metastability-based true random number
generator. IEICE Transactions on Information & Systems, E95-D(2):426–436, 2012.

[10] A. P. Johnson, R. S. Chakraborty, and D. Mukhopadyay. An Improved DCM-Based Tunable
True Random Number Generator for Xilinx FPGA. IEEE Transaction on Circuits and Systems
II: Express Briefs, 64(4):452–456, 2017.

[11] W. Killmann and W. Schindler. A proposal for: Functionality classes for random number
generators, version 2.0. Federal Office for Information Security, 2011.

[12] P. Kohlbrenner and K. Gaj. An embedded true random number generator for FPGAs. In 12th
International Symposium on Field Programmable Gate Arrays, pages 71–78, 2004.

170



International Journal of Networking and Computing

[13] Y. Lao, Q. Tang, C. H. Kim, and K. K. Parhi. Beat Frequency Detector–Based High-Speed True
Random Number Generators: Statistical Modeling and Analysis. ACM Journal on Emerging
Technologies in Computing Systems, 13(1):1–25, 2016.

[14] N. C. Laurenciu and S. D. Cotofana. Low cost and energy, thermal noise driven, probability
modulated random number generator. In 2015 IEEE International Symposium on Circuits and
Systems, pages 2724–2727, 2015.

[15] A. Peetermans, V. Rožić, and I. Verbauwhede. A Highly-Portable True Random Number Gen-
erator based on Coherent Sampling. In 29th International Conference on Field Programmable
Logic and Applications, pages 218–224, 2019.

[16] O. Petura, U. Mureddu, N. Bochard, V. Fischer, and L. Bossuet. A survey of AIS-20/31
compliant TRNG cores suitable for FPGA devices. In 26th International Conference on Field
Programmable Logic and Applications, pages 1–10, 2016.

[17] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel,
D. Banks, A. Heckert, J. Dray, and S. Vo. A statistical test suite for random and pseudorandom
number generators for cryptographic applications. NIST Special Publication 800–22, Rev. 1a,
2010.

[18] J. Tatsukawa. MMCM and PLL Dynamic Reconfiguration. Application Note XAPP888 v1.8,
Xilinx Inc., 2019.

[19] B. Valtchanov, V. Fischer, and A. Aubert. Enhanced TRNG based on the coherent sampling.
In 3rd International Conference on Signals, Circuits and Systems, pages 1–6, 2009.

[20] M. Varchola and M. Drutarovsky. New high entropy element for FPGA based true random
number generators. In Proc. 12th Workshop on Cryptographic Hardware and Embedded Systems,
pages 351–365, 2010.

[21] J. von Neumann. Various techniques used in connection with random digits. Monte Carlo
Method, National Bureau of Standards Applied Mathematics Series 12, pages 36–38, 1951.

[22] Xilinx Inc. 7 Series FPGAs Clocking Resources. User Guide UG472 v1.14, 2018.

[23] Xilinx Inc. Artix-7 FPGAs Data Sheet: DC and AC Switching Characteristics. Data Sheet
DS181 v1.25, 2018.

[24] H. Zhun and C. Hongyi. A truly random number generator based on thermal noise. In 4th
International Conference of ASIC, pages 862–864, 2001.

171


