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Abstract

At PKC 2018, Chen et al. proposed SOFIA, the first MQ-based digital signature scheme
having tight security in the quantum random oracle model (QROM). SOFIA is constructed by
applying an extended version of the Unruh transform (EUROCRYPT 2015) to the MQ-based
5-pass identification scheme (IDS) proposed by Sakumoto et al. (CRYPTO 2011). In this paper,
we propose an MQ-based 3-pass IDS with impersonation probability of 1

2
and apply the original

version of the Unruh transform to it to obtain a more efficient MQ-based digital signature
scheme tightly secure in the QROM. The signature size of our digital signature scheme decreases
by about 35% compared with SOFIA in the level I of NIST PQC security category, and is
supposed to be the shortest among that of MQ-based signatures tightly secure in the QROM.

Keywords: Post-quantum cryptography, Multivariate public key cryptography, Identification
scheme, QROM, Unruh transform

1 Introduction

The MQ-problem asks to solve a system of multivariate quadratic equations over a finite field and
is known to be NP-complete [11]. Even though the MQ-problem is basic for multivariate public

0This is an abstract footnote
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key cryptography (MPKC), almost all current schemes [6, 18] are not based on the MQ-problem
but related to problems such as the Isomorphism of Polynomial (IP) problem [17] or the MinRank
problem [5, 9]. At AsiaCrypt 2016, Chen et al. proposed MQDSS [2], the first multivariate signature
scheme whose security is based solely on the MQ-problem. This scheme is obtained by applying an
extended version of the Fiat-Shamir transform [10] to the MQ-based 5-pass identification scheme
(IDS) proposed by Sakumoto et al. [19]. MQDSS is a MQ-based digital signature scheme (DSS)
that has passed into the second round of NIST call for post-quantum proposals [16]. In 2019, the
security of DSSs constructed from the original version of the Fiat-Shamir transform is proven in the
quantum random oracle model (QROM) under some natural settings [8, 14], where QROM means
that a quantum adversary can access the random oracle in superposition. Moreover, in 2020, Don et
al. [7] prove the security of MQDSS in the QROM. However, the security reduction of MQDSS in the
QROM is not tight. In this paper, we define a tight security reduction as follows: for any attackers
on the target security (e.g. EU-CMA security) with a success probability ε, there is an attacker on
the underlying mathematical problem (e.g. MQ-problem) with a success probability ε′ satisfying
ε′ ≥ ε− negl(k), where negl(k) is a negligible function for the security parameter k.

At PKC 2018, Chen et al. [3] proposed a DSS called SOFIA obtained by applying the Unruh
transform [20] to the MQ-based 5-pass IDS proposed by Sakumoto et al. [19]. This DSS is proven
secure in the QROM, and the security reduction is tight. However, one problem with SOFIA is that
it loses its effectiveness: its signature is about three times larger than that of MQDSS.

In both MQDSS and SOFIA, the authors chose Sakumoto et al.’s 5-pass IDS since it has small
impersonation probability of 1

2 + 1
2q (q is the order of the finite field) and small “response” size, and

this choice is appropriate with the Fiat-Shamir transform. However, in the Unruh transform, several
“challenges” are iterated per one “commitment”. This means that the impersonation probability
depends on the number of “challenges” per one “commitment” t. In SOFIA, one sets t = 3 to make
the signature smallest, but this changes the impersonation probability to 2

3 . The number of rounds
will increase if the impersonation probability becomes larger. Therefore, this makes the signature
size larger.

Our contribution. In this paper, we propose a more efficient MQ-based DSS with tight security
proof in the QROM. Our approach is to propose a novel 3-pass IDS with impersonation probability
of 1

2 which is more optimal with the Unruh transform. We also apply the Unruh transform to other
3-pass IDSs by Sakumoto et al. [19] and Monteiro et al. [15] to obtain two other MQ-based DSSs,
and compare these DSSs with SOFIA at the security level I of NIST PQC (see Table 1). As a result,
our DSS is the most efficient among all other DSSs from the Unruh transform. In particular, the
signature size of our DSS is decreased by about 35% compared with SOFIA.

Table 1: Size of signature obtained by applying the Unruh transform to MQ-based identification
schemes in level I of NIST PQC security category. (r: number of rounds, t: number of challenges per
round, 1KB=1024B)

MQ-based signature secure in the QROM r t
signature

(KB)
SOFIA [3] 219 3 46.8
DSS from Sakumoto et al.’s IDS [19] 219 3 34.8
DSS from Monteiro et al.’s IDS [15] 128 4 33.3
DSS from our proposed 3-pass IDS 128 4 29.6

Our technique in designing a new 3-pass IDS combines both IDSs of Sakumoto et al. [19] and
Monteiro et al. [15]. As a result, it has impersonation probability of 1

2 , which is the same as that of
Monteiro et al.’s, whereas that of the 3-pass IDS of Sakumoto et al. is 2

3 . One drawback of our IDS is
that the response size is larger than that of Sakumoto et al.’s and comparable with that of Monteiro
et al.’s (see Table 6). However, if we construct an MQ-based DSS by applying the Unruh transform
to our IDS, then the signature of our DSS is smaller than those of DSSs using the previous 3-pass
IDSs. We stress that the signature size of our proposed DSS is not shorter than that of MQDSS. We
can also construct a DSS by applying the Fiat-Shamir transform to our proposed IDS, but this DSS
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from the Fiat-Shamir transform is not effective than MQDSS and not tightly secure. Therefore, in
this paper, we consider only our DSS from the Unruh transform.

Related work. Recently, Beullens [1] proposed a MQ-based DSS constructed from the Fiat-
Shamir transform, called MUDFISH, which is proven to be EU-CMA secure in the QROM and has
shorter signature than MQDSS. However, the tightness of the security reduction in [8,14] depends on
the construction of IDS, and the proof of MUDFISH in the QROM is not tight. Furthermore, it is
unknown whether there exists a tight security proof of MQDSS in the QROM. On the other hand,
our proposed DSS, constructed by applying the Unruh transform, has a tight security reduction.
Therefore, we can say that our proposed DSS has the shortest signature among the MQ-based DSSs
with the tight security in the QROM.

Organization. Our paper is organized as follows. In Section 2, we give the definitions of IDS
and DSS, and explain the Fiat-Shamir transform and the Unruh transform. In Section 3, we recall
the MQ-problem and explain several MQ-based IDSs and DSSs. In Section 4, we give details of the
proposed IDS with its security proof. In Section 5, we discuss applying the Unruh transform to the
proposed IDS and a comparison of the obtained DSS with other DSSs from other MQ-based IDSs.
The security proof of our DSS is proven in the appendix. We conclude the paper in Section 6.

2 Preliminaries

In this section, we provide notions about the security of IDS and DSS following Chen et al.’s study [3].
We then explain the Fiat-Shamir transform and the Unruh transform.

2.1 Identification Scheme (IDS)

A 3-pass IDS with security parameter k, denoted as IDS(1k), is a triplet of probabilistic polynomial
time (PPT) algorithms IDS = (KGen, P, V ) such that a key generator algorithm KGen is a probabilistic
algorithm that outputs a key pair (sk, pk), and P and V are interactive prover and verifier algorithms.
The P takes as input a secret key sk and V takes as input a public key pk. At the conclusion of the
protocol, V outputs a bit b with b = 1 indicating “accept” or b = 0 indicating “reject”.

A 3-pass IDS with P = (P0, P1) and V = (ChS,Vf) works as follows: P0(sk) computes the initial
commitment com sent as the first message and a state st fed forward to P1. After obtaining the

com from P0, ChS computes the challenge message ch
R← Ch, sampling at random from the challenge

space Ch and sends to P . Now P uses P1(st, ch) to computes the response resp, which is sent back to
V . The V computes Vf(pk, com, ch, resp) to yield the final decision whether to accept or reject.

In P0, we use a commitment scheme Com : {0, 1}k ×{0, 1}∗ → {0, 1}2k for the security parameter
k, that takes as input k uniformly random bits and a message, and outputs a 2k-bit commitment.

In this paper, we assume that Com is computational binding and computational hiding.

Definition 1 (Computational binding). Let Com be a commitment scheme with a security parameter
k. We say that Com is computational binding, if, after publishing Com(x), any adversary cannot find
y 6= x such that Com(y) = Com(x) with non-negligible probability for k.

Definition 2 (Computational hiding). Let Com be a commitment scheme with a security parameter
k. We say that Com is computational hiding, if, given Com(x), any adversary cannot find x with
non-negligible probability for k.

In order to be computationally hiding, the commitment scheme needs a random k bit string as
the input [13].

For the correctness of an IDS, we require that for all (pk, sk) ← KGen(1k), a verifier given pk
outputs “accept” interacting with an honest prover given sk. In addition, we give some definitions
for IDS. Let negl(k) be the negligible function for the security parameter k.

Definition 3 (Key relation). Let IDS(1k) be a 3-pass IDS with a security parameter k and R be a
relation. We say that IDS has key relation R if and only if R is the minimal relation such that

∀(pk, sk)← KGen(1k) : (pk, sk) ∈ R.
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Definition 4 (KOW). Let IDS(1k) be a 3-pass IDS with a security parameter k and key relation R.
We call IDS key-one-way (KOW) if for any quantum polynomial time algorithm A,

Pr[(pk, sk)← KGen(1k), sk′ ← A(pk) : (pk, sk′) ∈ R] = negl(k).

We denote the transcript of messages exchanged in the IDS as trans(〈P (sk), V (pk)〉).

Definition 5 ((computational) HVZK). Let IDS(1k) be a 3-pass IDS with a security parameter
k. We say that IDS is computational honest-verifier zero-knowledge (HVZK) if there exists a PPT
algorithm S, called the simulator, such that for any quantum polynomial time algorithm A and
(pk, sk)← KGen(1k):

|Pr [1← A(sk, pk, trans(〈P (sk), V (pk)〉))]− Pr [1← A(sk, pk, S(pk))]| = negl(k).

Definition 6 (α-extractor). Let IDS(1k) be a 3-pass IDS with a security parameter k and key relation
R. We say that IDS has an α-extractor if |Ch| ≥ α, where Ch denotes the challenge space, and there
exists a polynomial time algorithm K, the extractor, that given a public key pk and α valid transcripts
for pk:

trans(1) = (com, ch(1), resp(1)),

trans(2) = (com, ch(2), resp(2)),

...

trans(α) = (com, ch(α), resp(α)),

where ch(1), ch(2), . . . , ch(α) are different, outputs a secret key sk such that (pk, sk) ∈ R with success
probability 1− negl(k).

2.2 Digital Signature Scheme (DSS)

A DSS with a security parameter k, denoted as DSS(1k), is a triplet of PPT algorithms DSS =
(KGen,Sign,Vf) such that key generator algorithm KGen is a probabilistic algorithm that outputs
a key pair (sk, pk), signing algorithm Sign is a possibly probabilistic algorithm that on input of a
secret key sk and a message M outputs a signature σ, and verification algorithm Vf is a deterministic
algorithm that on input of a pk, M , and σ outputs a bit b with b = 1 indicating “accept” or b = 0
indicating “reject”. For the correctness of a DSS, we require that for all (pk, sk) ← KGen(1k) and
message M , Vf(pk,M, Sign(sk,M)) = 1.

Definition 7 (EU-CMA). Let DSS(1k) be a DSS with a security parameter k. We call such a DSS
EU-CMA secure if for any quantum polynomial time algorithm A making queries to a classical signing
oracle Sig,

Pr
[
Vf(pk,M ′, σ′) = 1 ∧M ′ /∈ Q : (pk, sk)← KGen(1k), (M ′, σ′)← ASig(pk)

]
= negl(k),

where Q is the list of all queried messages made to Sig.

2.3 Fiat-Shamir Transform

The Fiat-Shamir transform [10] is one of the most basic ways that transform a 3-pass IDS into a
DSS. The prover generates a signature by replacing the challenge chosen by the verifier in a 3-pass
IDS with an output of a hash function computed by the prover. This is iterated for several rounds in
order to achieve the required security level.
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Table 2: Signature generation of the Fiat-Shamir transform.
Sign(sk,M)
For j ∈ {1, . . . , r}do

(st(j), com(j))← P0(sk)
md← H(pk,M, {com(j)}rj=1)

Readmdas vector (ch(1), . . . , ch(r))
For j ∈ {1, . . . , r}do

(resp(j))← P1(st(j), ch(j))
σ := (md, {com(j), resp(j)}rj=1)

Table 3: Verification of the Fiat-Shamir transform.
Vf(pk,M, σ)

Readmdas vector (ch(1), . . . , ch(r))
md′ ← H(pk,M, {com(j)}rj=1)

Check that md′
?
= md

For j ∈ {1, . . . , r}do

Check 1
?
= b← Vf(pk, com(j), ch(j), resp(j))

If all checks succeed, output success.

See Tables 2 and 3 for the construction of the Fiat-Shamir transformation. First, P0 is iterated
for r times, and generates com(1), . . . , com(r). Then, the signer determines the challenge as an output
of the hash function H. Finally, the signer executes P1 on the input of st(j) and ch(j) in each round,
and sends the output of H, commitments and responses of each round as a signature.

2.4 Unruh Transform

The Unruh transform [20] also converts an IDS into a DSS. The basic idea is to let the signer generate
several transcripts for one com. Tables 4 and 5 show the details of the transformation.

Table 4: Signature generation of the Unruh transform.
Sign(sk,M)
For j ∈ {1, . . . , r}do

(st(j), com(j))← P0(sk)
For i ∈ {1, . . . , t}do

ch(i,j)
R← Ch \ {ch(1,j), . . . , ch(i−1,j)}

(resp(i,j))← P1(st(j), ch(i,j))
cr(i,j) ← G(resp(i,j))

transfull(j) := com(j), {ch(i,j), cr(i,j)}ti=1

md← H(pk,M, {transfull(j)}rj=1)
Readmdas vector (I1, . . . , Ir)

transred(j) := com(j), {ch(i,j), cr(i,j)}ti 6=Ij ,i=1

σ := (md, {transred(j), ch(Ij ,j), resp(Ij ,j)}rj=1)
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Table 5: Verification of the Unruh transform.
Vf(pk,M, σ)
Readmdas vector (I1, . . . , Ir)
For j ∈ {1, . . . , r}do

cr(Ij ,j) ← G(respIj ,j)
md′ ← H(pk,M, {transfull(j)}rj=1)

Check that md′
?
= md

For j ∈ {1, . . . , r}do

Check that ch(1,j), . . . , ch(t,j) are all distinct

Check 1
?
= b← Vf(pk, com(j), ch(Ij ,j), resp(Ij ,j))

If all checks succeed, output success.

First, P0 generates several commitments com(1), . . . , com(r), and the signer chooses challenges
ch(1,j), . . . , ch(t,j) in each round j. Then, P1 outputs responses for every challenge in each round, and
these responses are blinded by using a length-preserving hash function G. The output of the hash
function H computed by the signer determines which challenges are verified by the verifier. If i is
selected by H, the open response resp(i,j) is included in the signature, otherwise the blinded response
cr(i,j) is included.

3 MQ-based Schemes

In this section, we recall the MQ-problem and introduce several MQ-based identification schemes
and signatures.

3.1 MQ-problem

Let F = (f1, . . . , fm) be a system of quadratic polynomials with n variables (x1, . . . , xn) ∈ Fnq . The
problem to find x ∈ Fnq such that F(x) = y is called the MQ-problem, where y ∈ Fmq , and denoted
by MQ(q, n,m). Garey and Johnson [11] showed that this problem is NP-complete. In addition,
there is no quantum algorithm to solve this problem in polynomial time. Therefore, this problem is
known to be resistant to quantum adversaries.

3.2 MQ-based Identification Schemes

Suppose that F denotes the MQ function without a constant term. In MQ-based IDSs, we use
the polar system G defined by G(a,b) := F(a + b)− F(a)− F(b). Then G has bilinearity: for
a,b, c ∈ Fnq , α ∈ Fq,

G(a + b, c) = G(a, c) + G(b, c),

G(a,b + c) = G(a,b) + G(a, c),

αG(a,b) = G(αa,b) = G(a, αb).

Now, suppose that F(s) = v, which means that a secret key is s and public key is (F,v).

Let us first look at the MQ-based 3-pass IDS proposed by Sakumoto et al. [19], which is one of
the most basic MQ-based IDSs. In the 3-pass IDS proposed by Sakumoto et al., this s is split as
follows:

s

r0

{
t0
t1

r1

, F(r0)

{
e0

e1
.
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Prover(pk, sk) Verifier(pk)

r0, t0
R← Fnq , e0

R← Fmq
r1 ← s− r0, t1 ← r0 − t0
e1 ← F(r0)− e0

ρ0, ρ1, ρ2
R← {0, 1}k

c0 ← Com(ρ0, r1,G(t0, r1) + e0)
c1 ← Com(ρ1, t0, e0)
c2 ← Com(ρ2, t1, e1)
com← H(c0, c1, c2)

ch
R← {0, 1, 2}

If ch = 0, resp← (r0, t1, e1, c0, ρ1, ρ2)
If ch = 1, resp← (r1, t1, e1, c1, ρ0, ρ2)
If ch = 2, resp← (r1, t0, e0, c2, ρ0, ρ1)

If ch = 0
c′1 ← Com(ρ1, r0 − t1,F(r0)− e1)
c′2 ← Com(ρ2, t1, e1)

com
?
= H(c0, c

′
1, c
′
2)

If ch = 1
c′0 ← Com(ρ0, r1,v−F(r1)−G(t1, r1)−e1)
c′2 ← Com(ρ2, t1, e1)

com
?
= H(c′0, c1, c

′
2)

If ch = 2
c′0 ← Com(ρ0, r1,G(t0, r1) + e0)
c′1 ← Com(ρ1, t0, e0)

com
?
= H(c′0, c

′
1, c2)

com

ch

resp

Figure 1: MQ-based 3-pass identification scheme (IDS) proposed by Sakumoto et al.

Then we obtain the following:

v = F(s)

= G(r0, r1) + F(r0) + F(r1)

= G(t0, r1) + G(t1, r1) + e0 + e1 + F(r1).

The prover can prove that he has the secret key without giving any information to the verifier, since
this equation can be seen as the function of r1, not r0. Figure 1 shows the details of this scheme.
In Figure 1, ρ0, ρ1, ρ2 are random k-bit strings for the computationally hiding of the commitment
scheme Com. Sakumoto et al.’s 3-pass IDS has an impersonation probability of 2

3 ; hence, to reach
the desired security level, one needs to repeat the protocol a number of rounds.

Sakumoto et al. [19] also introduced a 5-pass IDS with impersonation probability of 1
2 + 1

2q with q
denoting the order of the underlying finite field, which is used in MQDSS and SOFIA. In this 5-pass
scheme, they use the splitting way like the following:

s

r0 αr0

{
t0
t1

r1

, αF(r0)

{
e0

e1
,

where α is randomly chosen from Fq as the first challenge by the verifier.
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In 2015, Monteiro et al. [15] proposed an MQ-based 3-pass IDS. Their idea is to also further
split r1 and F(r1) as follows:

s


r0

{
t0
t1

F(r0)

{
e0

e1

r1

{
d0

d1
F(r1)

{
u0

u1

.

They also changed the challenge space to {0, 1, 2, 3}; as a result, their protocol has impersonation
probability of 1

2 .
These IDSs are honest-verifier zero-knowledge (HVZK) when the commitment is computationally

binding.

3.3 MQDSS and Attack on the Scheme

MQDSS proposed by Chen et al. [2] is a MQ-based signature constructed by applying the extended
Fiat-Shamir transform [10] to the MQ-based 5-pass IDS proposed by Sakumoto et al. [19] and one
of the candidates of the second round of NIST post-quantum standardization project [16]. Suppose
that exchanged message in 5-pass IDS is denoted by {com, ch1, resp1, ch2, resp2}. In MQDSS, ch1 is
determined as H1(pk,M, com), and ch2 is determined as H2(pk,M, com, ch1, resp1), where M is a
message and H1 and H2 are hash functions. In [2], they prove that MQDSS is EU-CMA secure in
the ROM, but this security reduction is not tight.

In [12], Kales and Zaverucha proposed an attack on MQDSS with the parameters in [4]. This
attack exploits that the original IDS used in MQDSS is a 5-pass scheme. In the 5-pass IDS, the
attacker can impersonate the honest prover, if the attacker succeeds guessing either ch1 or ch2 chosen
randomly by the verifier. The detail of this attack is to split the attacker’s work between two phases.
First, the attacker guesses ch1 for N1 rounds (N1 < r, where r is the number of rounds), and iterates
to input fake commitments until H1 outputs the value corresponding to his guesses in the N1 rounds.
Second, the attacker guesses ch2 for remaining r−N1 rounds, and also iterates to input fake responses
until H2 outputs the value corresponding to his guesses in the remaining rounds. Then, this attack
is successful since the attacker can impersonate by a correct guess for either ch1 or ch2. As a result,
the complexity of this attack is smaller than that of the basic exhaustive search. We must increase
the number of rounds of MQDSS by 30∼ 40% to repair its security against the attack proposed by
Kales and Zaverucha.

3.4 MUDFISH

In [1], Beullens proposed another MQ-based IDS constructed by transforming the identification
protocol with a trusted third party called the “helper” in addition to the verifier and the prover.
In his protocol with three parties, the helper randomly chooses r0, t0, e0, and produces r1 and

{t(c)1 , e
(c)
1 }c∈Fq computed by the same way as the 5-pass IDS by Sakumoto et al., where this c

indicates α in Subsection 3.2. After the prover outputs a commitment, the verifier randomly chooses

a challenge α ∈ Fq, and then, the prover generates a response by using r0, t0, e0, r1, {t(α)1 , e
(α)
1 } made

by the helper. This scheme with helper has a small impersonation probability under the assumption
that the helper is honest. The signature scheme constructed by applying the Fiat-Shamir transform
to the IDS constructed by removing the helper is called MUDFISH. The signature size of MUDFISH
becomes relatively small by using the Merkle tree on commitments and fewer seeds with a binary tree.
As a result, MUDFISH has a smaller size signature than MQDSS. Beullens proved that MUDFISH is
EU-CMA secure in the QROM, but this reduction is not tight.

4 Proposed Identification Scheme

In this section, we first give details of the proposedMQ-based 3-pass IDS. We also prove the security
of this scheme, α-extractor, and honest-verifier zero-knowledge (HVZK). Furthermore, we compare
our IDS with other MQ-based IDSs.
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4.1 Protocol of Proposed IDS

The proposed MQ-based 3-pass IDS is based on the IDSs proposed by Sakumoto et al. [19] and
Monteiro et al. [15]. In our IDS, we also use the polar system G, as with these schemes, but we
change the manner of splitting the information. We divide the secret key s into r0 and r1, r0 is
divided into t0 and t1, and r1 is divided into d0 and d1. This is the same as that of Monteiro et
al.’s. While Monteiro et al. splits both F(r0) and F(r1), we choose to split only G(r0, r1) into e0

and e1. This is described as follows:

s


r0

{
t0
t1

r1

{
d0

d1

, G(r0, r1)

{
e0

e1
.

Then the equation

v = G(r0, r1) + F(r0) + F(r1)

can be seen as an equation having a function of r0 on one side and function of r1 on the other as
follows:

v − e0 − F(r0) = e1 + F(r1).

Figure 2 shows the details of the protocol of our IDS. Firstly, the prover determines r0, r1, t0, t1,
d0, d1, e0, e1 and generates a commitment value com. Secondly, the verifier chooses a challenge ch
from {0, 1, 2, 3}. Thirdly, the prover sends a response resp, and the verifier yields the final decision.

4.2 Security Proofs of Our IDS

We first prove that our IDS has a 3-extractor. Now we show there exists an adversary C that
can cheat a verifier with probability 1

2 . Suppose that C chooses a false secret key s′ randomly
from Fnq and executes other steps similar to an honest prover. If ch is 2 or 3, then C succeeds
in impersonating since F(s) = v is not used in verifying. When ch is 0 or 1, C also succeeds by
computing c2 ← Com(ρ2, t1,d0,v − e0 − F(r0)) and c3 ← Com(ρ3, t0,d1,v − e1 − F(r0)). By using
prior or latter way randomly, these adversaries succeed in cheating with probability 1

2 .

Theorem 1. Our IDS has a 3-extractor when the commitment scheme Com is computationally
binding against any quantum polynomial time algorithm.

Proof. Suppose that given a set of valid transcripts: {(com, 1, resp1), (com, 2, resp2), (com, 3, resp3)}.
Let c0, c1, c2, c3, c4, c5 be the commitment value and

resp1 = (r
(1)
0 , t

(1)
1 ,d

(1)
1 , e

(1)
1 , c1, c2, c4, ρ

(1)
0 , ρ

(1)
3 , ρ

(1)
5 ),

resp2 = (r
(2)
1 , t

(2)
0 ,d

(2)
0 , e

(2)
0 , c0, c2, c5, ρ

(2)
1 , ρ

(2)
3 , ρ

(2)
4 ),

resp3 = (r
(3)
1 , t

(3)
1 ,d

(3)
1 , e

(3)
1 , c0, c3, c4, ρ

(3)
1 , ρ

(3)
2 , ρ

(3)
5 ).

Then we have the following:

c1 = Com(ρ
(2)
1 , r

(2)
1 , e

(2)
0 −G(t

(2)
0 , r

(2)
1 ))

= Com(ρ
(3)
1 , r

(3)
1 ,G(t

(3)
1 , r

(3)
1 )− e

(3)
1 ),

c3 = Com(ρ
(1)
3 , r

(1)
0 − t

(1)
1 ,d

(1)
1 ,v − e

(1)
1 − F(r

(1)
0 ))

= Com(ρ
(3)
3 , t

(2)
0 , r

(2)
1 − d

(2)
0 , e

(2)
0 + F(r

(2)
1 )),

c5 = Com(ρ
(1)
5 , t

(1)
1 ,d

(1)
1 , e

(1)
1 )

= Com(ρ
(2)
5 , t

(3)
1 ,d

(3)
1 , e

(3)
1 ).
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Prover(pk, sk) Verifier(pk)

r0, t0,d0
R← Fnq , e0

R← Fmq
r1 ← s− r0, t1 ← r0 − t0,d1 ← r1 − d0

e1 ← G(r0, r1)− e0

ρ0, . . . , ρ5
R← {0, 1}k

c0 ← Com(ρ0, r0, e0 −G(r0,d0))
c1 ← Com(ρ1, r1, e0 −G(t0, r1))
c2 ← Com(ρ2, t1,d0, e1 + F(r1))
c3 ← Com(ρ3, t0,d1, e0 + F(r1))
c4 ← Com(ρ4, t0,d0, e0)
c5 ← Com(ρ5, t1,d1, e1)
com← H(c0, c1, c2, c3, c4, c5)

ch
R← {0, 1, 2, 3}

If ch = 0,
resp← (r0, t0,d0, e0, c1, c3, c5, ρ0, ρ2, ρ4)
If ch = 1,
resp← (r0, t1,d1, e1, c1, c2, c4, ρ0, ρ3, ρ5)
If ch = 2,
resp← (r1, t0,d0, e0, c0, c2, c5, ρ1, ρ3, ρ4)
If ch = 3,
resp← (r1, t1,d1, e1, c0, c3, c4, ρ1, ρ2, ρ5)

If ch = 0
c′0 ← Com(ρ0, r0, e0 −G(r0,d0))
c′2 ← Com(ρ2, r0 − t0,d0,v − e0 − F(r0))
c′4 ← Com(ρ4, t0,d0, e0)

com
?
= H(c′0, c1, c

′
2, c3, c

′
4, c5)

If ch = 1
c′0 ← Com(ρ0, r0,G(r0,d1)− e1)
c′3 ← Com(ρ3, r0 − t1,d1,v − e1 − F(r0))
c′5 ← Com(ρ5, t1,d1, e1)

com
?
= H(c′0, c1, c2, c

′
3, c4, c

′
5)

If ch = 2
c′1 ← Com(ρ1, r1, e0 −G(t0, r1))
c′3 ← Com(ρ3, t0, r1 − d0, e0 + F(r1))
c′4 ← Com(ρ4, t0,d0, e0)

com
?
= H(c0, c

′
1, c2, c

′
3, c
′
4, c5)

If ch = 3
c′1 ← Com(ρ1, r1,G(t1, r1)− e1)
c′2 ← Com(ρ2, t1, r1 − d1, e1 + F(r1))
c′5 ← Com(ρ5, t1,d1, e1)

com
?
= H(c0, c

′
1, c
′
2, c3, c4, c

′
5)

com

ch

resp

Figure 2: Protocol of the proposed MQ-based 3-pass identification scheme (IDS).

If any of the arguments of Com on the left-hand side is different from that on the right-hand side
in any of the three equations, then we obtain two different arguments of Com, which contradicts its
computationally binding property. If they are the same in the three equations, we obtain the following

equalities: r
(2)
1 = r

(3)
1 , r

(1)
0 −t

(1)
1 = t

(2)
0 , t

(1)
1 = t

(3)
1 , e

(1)
1 = e

(3)
1 , e

(2)
0 −G(t

(2)
0 , r

(2)
1 ) = G(t

(3)
1 , r

(3)
1 )−e

(3)
1 ,
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Table 6: Several MQ-based identification schemes (IDSs).
soundness response size (bits)

Sakumoto et al.’s 5-pass IDS [19] 1/2 + 1/2q 3k + 3ndlog qe
Sakumoto et al.’s 3-pass IDS [19] 2/3 4k + 3ndlog qe
Monteiro et al.’s 3-pass IDS [15] 1/2 8k + 5ndlog qe
Proposed IDS 1/2 9k + 4ndlog qe

v − e
(1)
1 − F(r

(1)
0 ) = e

(2)
0 + F(r

(2)
1 ). Combining these equalities, we obtain

v = e
(2)
0 + e

(1)
1 + F(r

(1)
0 ) + F(r

(2)
1 )

= G(t
(2)
0 + t

(3)
1 , r

(2)
1 ) + F(r

(1)
0 ) + F(r

(2)
1 )

= G(r
(1)
0 , r

(2)
1 ) + F(r

(1)
0 ) + F(r

(2)
1 ).

Therefore, r
(1)
0 + r

(2)
1 is a solution to the given MQ-problem.

When three other valid transcripts are chosen, we can also obtain a solution to the given
MQ-problem in a similar way.

Now we show that our IDS is computationally HVZK.

Theorem 2. Our IDS is computationally HVZK when Com is computationally hiding.

Proof. Let S be a simulator to impersonate an honest prover against the honest verifier without
knowing the secret key. First, S chooses a s′ ∈ Fnq randomly. If ch ∈ {2, 3}, S executes the
algorithm similar to an honest prover using s′ as a true secret key s. If ch ∈ {0, 1}, S only
changes the computation of c2 and c3 such as c2 ← Com(ρ2, t1,d0,v − e0 − F(r0)) and c3 ←
Com(ρ3, t0,d1,v − e1 − F(r0)).

Then S can output a valid transcript, and the response holds randomness. Since Com is
computationally hiding, our IDS is computationally HVZK.

4.3 Comparison with Other MQ-based IDSs

Table 6 compares our IDS with other MQ-based IDSs in terms of impersonation probability
(soundness) and response size. In this table, we suppose that the size of the random strings (ρi)
of the commitment scheme (Com) is k bits and the size of the commitment (ci) is 2k bits, where
k is the security parameter. We also assume that n equals m in MQ(q, n,m) since it is the best
choice in terms of the hardness of the MQ-problem. Table 6 shows that our IDS is better in terms
of soundness but not good in response size. Comparing our proposed IDS with the Monteiro et al.’s
one, our scheme has the same soundness and a slightly shorter response since the security parameter
k is generally smaller than ndlog qe.

5 Our New MQ-based Signature Scheme

We apply the Unruh transform to our MQ-based 3-pass IDS to obtain a new MQ-based DSS. In
this section, we discuss the security, optimization, and parameters for our DSS.

5.1 Formal Statement of Security Proof

We prove that our DSS is EU-CMA secure in the QROM by the following theorem. This theorem is
obtained from Lemma 3 and 4 in the Appendix.
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Theorem 3. Let k be the security parameter and t, r ∈ N be the parameters in Tables 4 and 5.
Suppose the DSS applying the Unruh transform to the 3-pass IDS being HVZK and having an α-
extractor. Let A be a quantum algorithm that breaks the EU-CMA security of the DSS with probability
ε. Then, in the QROM there exists an algorithm MA that breaks the KOW security of the IDS with
success probability

ε′ ≥ ε− ε(4 +
√

2)qSign
√
qH2−

rk
4 − 2(qH + 1)2−(r log

t
α−1 )/2, (1)

where qSign and qH denote the number of queries issued to the signing oracle and the random oracle,
respectively.

This theorem is slightly changed from Theorem 23 in [20], since the IDS in the above theorem
has an α-extractor and no “special soundness”. The inequality (1) shows that our security reduction
is tight if we choose the parameters appropriately.

5.2 Our Optimization

In this subsection, we optimize our DSS. This optimization is carried out without losing the tightness
of our security reduction.

We execute our IDS for all four challenges per one commitment. This means that we do not need
to include which challenges are selected in the signature. This reduces the signature size.

Then, we must include responses for all challenges, which means all blinded or opened values are
included in the signature twice. For example, r0 is included in the response when ch = 0 and ch = 1.
Therefore, we include each blinded or opened r0, r1, t0, t1, d0, d1, e0, e1 into the signature once.
This also reduces the signature size.

When we compute com ← H(c0, c1, c2, c3, c4, c5) in each round, we can build a Merkle tree on
c0, . . . , c5 and add the root of this tree to the signature. By building a Merkle tree appropriately, we
can reduce the number of commitments included in the signature for some challenges. Moreover, the
signer can generate one hash value overall roots of the Merkle tree of each round and include it in
the signature.

Finally, in our DSS, r0, t0,d0 ∈ Fnq , e0 ∈ Fmq are chosen randomly in each round. Therefore, we
can use a PRNG with a small seed to reduce the communication cost in the following. First, we
choose a k-bit seed sd for PRNG randomly, where k is the security parameter and usually smaller
than the bit size of elements of Fnq ,Fmq . Next, from sd, we generate two additional seeds sdr0 and
sdt0,d0,e0 by the PRNG, and we compute r0 and t0,d0, e0 by the PRNG with the seeds sdr0 and
sdt0,d0,e0 , respectively. On the other hand, in our DSS, r1, t1,d1, e1 are determined by r0, t0,d0, e0

and the secret key s. Then, the signer sends sd opened for the verifier and r1, t1,d1, e1 blinded for
the verifier using the length-preserving hash function when ch = 0. Similarly, the signer sends opened
sdr0 , t1,d1, e1 and blinded r1, sdt0,d0,e0 when ch = 1, opened r1, sdt0,d0,e0 and blinded sdr0 , t1,d1, e1

when ch = 2, and opened r1, t1,d1, e1 and blinded sdr0 , sdt0,d0,e0 when ch = 3.
As a result, the signature is composed of 2k-bit random string computed by the hash function H

for the EU-CMA security, md in Table 5, the hash value overall roots of the Merkle tree on c0, . . . , c5
of each round, two or three nodes of the Markle tree of each round required to reconstruct the root,
opened or blinded responses and the random k-bit strings ρi.

5.3 Parameters

We estimate the size of the public key, secret key and signature of our DSS with the security
parameter k in the following. For a quadratic system F(s) = v, the public key (F,v) is expressed by
k + ndlog2 qe bits and the secret key s is expressed by k bits, since the seed for the public and secret
key is k bits and the bit size of elements of Fnq for the public key is ndlog2 qe. Next, the number
of challenges per one round t holds t ≥ α − 1 = 2, and the number of rounds r is r ≈ 1.71k for
t = 3, and r = k for t = 4 due to (α−1t )r ≤ 2−k. Therefore, we choose t = 4 for achieving a smaller
signature. When we apply the optimizations discussed in Subsection 5.2, the signature size becomes
4k + (9.25k + 4ndlog2 qe + 2)r bits. This value is estimated by calculating the average, since the
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Table 7: Applying the Unruh transform to several MQ-based identification schemes (IDSs).
t signature size (bits)

Sakumoto et al.’s 5-pass IDS [19] 3 6.84k2 + 12.0kndlog qe+ 7.42k
Sakumoto et al.’s 3-pass IDS [19] 3 10.3k2 + 5.13kndlog qe+ 7.42k
Monteiro et al.’s 3-pass IDS [15] 4 9.75k2 + 5kndlog qe+ 6k
Proposed IDS 4 9.25k2 + 4kndlog qe+ 6k

Table 8: Parameter of our proposed signature.
Security category k q n = m r

I 128 4 88 128
III 192 4 128 192
V 256 4 160 256

Table 9: Comparing signature in each security level (1KB=1024B)
Security
category

DSS
Public key

size (B)
Secret key
size (B)

Signature
size (KB)

Security
reduction

I
MQDSS 46 16 27.7 non-tight

MUDFISH 38 16 14.4 non-tight
Our scheme 38 16 29.6 tight

III
MQDSS 64 24 58.5 non-tight

MUDFISH 56 24 32.9 non-tight
Our scheme 56 24 65.8 tight

V
MQDSS 87 32 106.0 non-tight

MUDFISH 72 32 55.6 non-tight
Our scheme 72 32 114.2 tight

signature size of our optimized scheme is depending on the challenge in each round. (If we build a
Merkle tree on commitment values such as H(H(c0, c5), H(c1, c3), H(c2, c4)) in each round, the sizes
of opened and blinded response in each round are 8k + 4ndlog2 qe bits for ch = 0, 9k + 4ndlog2 qe
bits for ch = 1, 2 and 11k + 4ndlog2 qe bits for ch = 3.)

In Table 7, we compare several signature schemes constructed by applying the Unruh transform
to several MQ-based IDSs in terms of signature size. We omit the signature scheme constructed
from Beullens’ IDS, since the structure of Beullens’ IDS is very different from other MQ-based IDSs
as stated in Subsection 3.4. We leave the way of efficiently applying the Unruh transform to the
Beullens’ IDS as future work. For each scheme, we choose t so that the scheme has the shortest
signature, and optimize them like our proposed scheme. This table shows that our proposed IDS
has the shortest signature among the schemes constructed by applying the Unruh transform to
MQ-based IDSs. Compared to the signature size of SOFIA, that of our DSS decreases by up to
about 35%.

In Table 8, we provide concrete parameters to make our DSS achieve NIST PQC security level
I, III and V. We choose the parameter of MQ-problem following the discussion by Chen et al. [4]
about the MQ-problem.

In Table 9, we show the key and signature size of our proposed signature scheme in NIST PQC
security level I, III and V, and that of MQDSS and MUDFISH as reference values. The signature
size of MQDSS is larger than the value in [4], since we increase the number of rounds by considering
the attack on MQDSS [12]. Furthermore, MQDSS uses 2k-bit random strings as an input on the
commitment scheme, whereas MUDFISH and our scheme use k-bit random strings, which may affect
the signature size in Table 9 slightly. Note that our scheme has tight security reduction and the
reduction of the other two schemes are not tight.
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6 Conclusion

We proposed a MQ-based 3-pass IDS, which is obtained by changing the manner of dividing the
secret key from the IDSs proposed by Sakumoto et al. and Monteiro et al. We showed that our DSS
obtained by applying the Unruh transform to the proposed IDS is tightly EU-CMA secure in the
QROM, and the signature size is smaller than all other DSSs, such as SOFIA, obtained by applying
the Unruh transform to other MQ-based IDSs.

By using the recent security results of the Fiat-Shamir transform in the QROM at CRYPTO 2019,
the MQ-based DSSs from the Fiat-Shamir transform such as MUDFISH is proven to be EU-CMA
secure in the QROM. However, tight security proof for the MQ-based DSS from the Fiat-Shamir
transform has not been proposed. Therefore, our DSS currently has the shortest signature among all
MQ-based DSS with tight security proof.

We leave whether there is another MQ-based DSS with tight security reduction having a smaller
signature than our DSS or a tight proof for MQDSS or MUDFISH as future work.
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A Signature from IDS Having α-extractor

We prove the security of our DSS obtained by applying the Unruh transform to our 3-pass IDS with
α-extractor and computational HVZK. We prove that our DSS is EU-CMA secure in the ROM in
Subsection A.1 and in the QROM in Subsection A.2.

A.1 EU-CMA Security in the ROM

We show that a quantum algorithm that breaks the EU-CMA security can be used to extract a valid
secret key. Our proof is mainly based on the proof in the study by Chen et al. [3].

Lemma 1. Let k be the security parameter and t, r ∈ N be the parameters in Tables 4 and 5. Suppose
the DSS applying the Unruh transform to the 3-pass IDS having an α-extractor. Let A be a quantum
algorithm that implements a key-only-attack (KOA) forger, which given only the public key pk outputs
a valid message-signature with probability ε. Then, in the classical ROM there exists an algorithm
MA that given oracle access to any such A breaks the KOW security of the IDS in essentially the
same running time as the given A and with success probability

ε′ ≥ ε− (qH + 1)2−r log
t

α−1 ,

where qH denotes the number of queries issued to the random oracle. Moreover, MA only manipulates
the random oracle G and leaves random oracle H untouched.

Proof. This lemma is almost proved by the proof in Lemma 3.1 in the study by Chen et al. [3].
Therefore, we show only a sketch of the proof.

Let EA be the event that A outputs a valid message-signature pair (M,σ). Note that MA can
open all blinded responses in the signature because MA learns all of A’s queries.

Let T (j, i) be the following string: (com(j), ch(i,j), resp(i,j)), and E¬ext: ∀j ∈ {1, . . . , r}, T (j, i) is
valid in at most α− 1 elements of {1, . . . , t}. We try to evaluate the probability of E¬ext, since the
secret key can be recovered if α or more strings of T (j, i) (i ∈ {1, . . . , t}) are valid. In order for the
signature to pass the verification, H must choose one of i ∈ {1, . . . , t} having a valid response. Thus,

this probability is (α−1)r
tr = 2−r log

t
α−1 . Now let qH be the number of queries to H. Then

Pr[EA ∧E¬ext] ≤ (qH + 1)2−r log
t

α−1 ,
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as A can try at most qH tuples.
Consequently, we obtain the following:

ε′ ≥ Pr[EA ∧ ¬E¬ext]

= Pr[EA]− Pr[EA ∧E¬ext]

≥ ε− (qH + 1)2−r log
t

α−1 .

Lemma 2. Let k be the security parameter and t, r ∈ N be the parameters in Tables 4 and 5. Suppose
the DSS applying the Unruh transform to the 3-pass IDS being HVZK. Let A be a quantum algorithm
that breaks the EU-CMA security of the DSS with probability ε. Then, in the classical ROM there
exists an algorithm MA that breaks the KOA security of the DSS in essentially the same running
time as the given A and with success probability

ε′ ≥ ε(1− qSignqH2−rk),

where qSign and qH denote the number of queries issued to the signing oracle and the random oracle,
respectively. Moreover, MA only manipulates H and leaves G untouched.

This lemma is almost the same as Lemma 3.2 in the study by Chen et al. [3].
We obtain the following theorem from the two previous lemmas.

Theorem 4. Let k be the security parameter and t, r ∈ N be the parameters in Tables 4 and 5.
Suppose the DSS applying the Unruh transform to the 3-pass IDS being HVZK and having an α-
extractor. Let A be a quantum algorithm that breaks the EU-CMA security of the signature scheme
with probability ε. Then, in the classical ROM there exists an algorithm MA that breaks the KOW
security of the IDS in essentially the same running time as the given A and with success probability

ε′ ≥ ε− εqSignqH2−rk − (qH + 1)2−r log
t

α−1 ,

where qSign and qH denote the number of queries issued to the signing oracle and the random oracle,
respectively.

A.2 EU-CMA Security in the QROM

We show that a quantum algorithm that breaks the EU-CMA security can be used to extract a valid
secret key in the QROM. Our proof is mainly based on the proofs in previous studies [3, 20].

Lemma 3. Let k be the security parameter and t, r ∈ N be the parameters in Tables 4 and 5.
Suppose the DSS applying the Unruh transform to the 3-pass IDS having an α-extractor. Let A be
a quantum algorithm that implements a KOA forger, which given only the public key pk, outputs a
valid message-signature with probability ε. Then, in the QROM there exists an algorithm MA that
given oracle access to any such A breaks the KOW security of the IDS with success probability

ε′ ≥ ε− 2(qH + 1)2−(r log
t

α−1 )/2,

where qH denotes the number of queries issued to the random oracle. Moreover, MA only manipulates
G and leaves H untouched.

Proof. This lemma is mainly proved by the proof in Lemma 3.5 in the study by Chen et al. [3] and
Theorem 18 in that by Unruh [20]. Therefore, we show only a sketch of the proof.

The changes in the proof from that in the classical ROM are as follows. First, MA cannot
learn A’s random oracle queries to G. A previous study [21] showed that a random function is
indistinguishable from a 2q-wise independent function (where q is the number of oracle queries
carried out), and random polynomials of degree 2q − 1 are 2q-wise independent. Therefore, MA can
open the blinded responses in the signature by replacing G with a random polynomial of degree
2q − 1 and inverting the polynomial. (The preimage will not be unique, but the number of possible
preimages will be small enough so that we can scan through all of them [20].) Second, the probability

of EA ∧E¬ext changes to 2(qH + 1)2−(r log
t

α−1 )/2 by Lemma 7 in the study by Unruh [20].
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Lemma 4. Let k be the security parameter and t, r ∈ N be the parameters in Tables 4 and 5. Suppose
the DSS applying the Unruh transform to the 3-pass IDS being HVZK. Let A be a quantum algorithm
that breaks the EU-CMA security of the DSS with probability ε. Then, in the QROM there exists an
algorithm MA that breaks the KOA security of the DSS with success probability

ε′ ≥ ε{1− (4 +
√

2)qSign
√
qH2−

rk
4 },

where qSign and qH denote the number of queries issued to the signing oracle and the random oracle,
respectively. Moreover, MA only manipulates H and leaves G untouched.

This lemma is almost the same as Theorem 15 in the study by Unruh [20].
We obtained Theorem 3 in Subsection 5.1 from these two lemmas.
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