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Abstract

One of the reasons why neural networks are used in machine learning is their high expressive
power, that is, the ability to express functions. Expressive power of neural networks depends on
its structures and is measured by some indices. In this paper, we focus on one of these measures
named “expressive number”, which is based on the number of data that can be expressed.
Expressive numbers enable us to see whether the size of a neural network is suitable for the
given training data before we conduct machine learning. However, existing works on expressive
numbers mainly target single hidden layer neural networks, and little is known about those with
two or more hidden layers. In this paper, we give a lower bound of the maximum expressive
number of two hidden layer neural networks and an upper bound of that of multilayer neural
networks with ReLU activation function. This result shows the expressive number of two hidden
layer neural networks is in O(a1a2) where a1 and a2 are the numbers of each hidden layer’s
neurons.
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1 Introduction

Neural networks are widely used in the field of machine learning, such as image or speech recognition.
One of the reasons why neural networks are used is they have high expressive power: how complex
functions they can express. Expressive power of neural networks depends on their structure named
“hyperparameter”, which does not change during learning: the numbers of their hidden layers and
each layer’s neurons, and activation functions. In machine learning, we usually need to determine
the hyperparameter of the neural network before learning. In other words, we should know the
expressive power of the neural network. However, we know a little about expressive power, so, we
study it theoretically.

To develop a rigorous theory of expressive power, i.e., how complex functions a particular neural
network can express, we need to define a measure of the complexity. In this paper, we measure it
by “expressive number” [6]. Expressive number of neural networks is defined as the number N such
that arbitrary data with cardinality N can be expressed in the neural networks. The more complex
a target function in machine learning is, the more training data we need. So, a neural network
that has larger expressive number can express more complex functions. In other words, expressive
numbers can measure the expressive power of neural networks.

Expressive numbers have two advantages as a measure of the expressive power of neural networks.
One advantage is that we can reduce the potential for overfitting before learning. Overfitting is often
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caused by too high expressive power to express training data [15]. By expressive number, we can
compare the expressive power and the complexity of training data easily. So, we can choose a better
neural network by expressive numbers. Another advantage is we can see the differences of expressive
powers between activation functions. Some measures of expressive power, such as the number of
linear regions [10], are defined on neural networks with only ReLU or piecewise linear activation
functions. On the other hand, expressive number is also defined with any activation functions.

Expressive number is a meaningful measure of the expressive power of neural networks. However,
we only know a few properties of expressive numbers: the independence of expressive number from
the input dimension, and the upper and lower bounds of the maximum expressive numbers of single
hidden layer ReLU neural networks [6]. So, the properties of those with two or more hidden layers
are not shown. In this paper, we show an upper bound of expressive numbers of multilayer ReLU
neural networks and a lower bound of these of two hidden layer ReLU neural networks.

The outline of this paper is as follows: In Section 3, we define expressive number and some
notations. Section 4 and Section 5 show the upper and lower bounds of the maximum expressive
numbers, respectively. Besides, we show the maximum expressive number of two hidden layer ReLU
neural networks is proportional to the product of the numbers of each hidden layer’s neurons.

2 Related Work

In the literature, expressive power of neural networks is sometimes described by other measures
besides expressive number. One measure is based on the number of linear regions ([10, 9, 14, 4]).
A linear region on neural networks with ReLU or piecewise linear activation functions is defined as
a maximal connected subset on the input set such that linearity holds. Compared with expressive
number, expressive number of a neural network gives us some information about machine learning,
that is, whether training data can be expressed in the neural network. However, only a little
information can be obtained from the number of linear regions. Other measures based on trajectory
length [12] or knots [3] give us little information too. Furthermore, because linear regions are defined
only on ReLU or piecewise linear activation neural networks, we cannot compare the expressive
powers between those on piecewise linear and those on non piecewise linear activations.

VC-dimension ([8, 7]) is also used as a measure of expressive power, and it enables us to get
an upper bound of the generalization error. In contrast, expressive number tells us the greatest
lower bound of the empirical error is zero when the number of training data is smaller than the
expressive number. Both generalization error and empirical error are usually used as measures of
the whole of learning activity, including the learning algorithm and training data as well as the
structure of neural networks. However, each error has a different role; generalization error evaluates
the difference between the output a neural network returns from unknown data and the true output
of the data, and empirical error is used to judge whether the learning has finished.

As these measures, expressive power is often measured for each fixed structure of a neural network.
However, sometimes, expressive power is described by the smallest number of neurons, which can
express some fixed functions. Rolnick and Tegmark investigated such numbers for several cases of
multivariate polynomials [13].

3 Preliminaries

Fix an activation function σ : R → R. For any k ∈ N and x ∈ Rk, we simply write σ(x) := σ(x0)
...

σ(xk−1)

 where x =

 x0
...

xk−1

.

Given l ∈ N and (a0, . . . , al) ∈ Nl+1, “(a0, . . . , al) neural networks” denote neural networks
that have a0 input neurons, al output neurons and a1, . . . , al−1 hidden neurons ordered from the

input side to the output side. For an (a0, . . . , al) neural network A ∈
l∏
i=1

(Rai×ai−1 × Rai), MPσA :

294



International Journal of Networking and Computing

f

MPσ
A

x1 x2 x3 x4
xi ∈ X

The finite set X is input data and f is an input-output function. We say “the data (X, f) is
solvable” on neural networks when there exists some parameter A of the neural network, i.e.

weights and biases, such that the function MPσA the neural network calculates coincides with f on
the input data X.

Figure 1: Solvability of data (X, f)

Ra0 → Ral denotes the function the neural network A calculates: MPσA = Fl ◦σ ◦ · · · ◦σ ◦F2 ◦σ ◦F1

where A = ((W1, b1), . . . , (Wl, bl)) and Fi : Rai−1 → Rai defined by Fi(x) := Wix+bi for any i. We
simply write MPA for MPσA when σ is clear from the context.

Before introducing expressive number, we define “solvability” as an ability to express the given
data.

Definition 1 (Solvability)
Given X ⊂ Ra0 and f : Ra0 → Ral . We say “the data (X, f) is solvable on (a0, . . . , al) neural
networks” if there exists an (a0, . . . , al) neural network A such that ∀x ∈ X,MPσA(x) = f(x).

The above definition says that the data (X, f) is solvable if there exists a solution to express the
data with no empirical error on (a0, . . . , al) neural networks as Figure 1. In other words, the size
(a0, . . . , al) of neural networks is large enough to express the data (X, f).

Next, we define “expressive number” via a relation between the size of neural networks and the
number of data.

Definition 2 (Expressive number)
We say “(a0, . . . , al) neural networks have expressive number N” if the following condition holds:

For any X ⊂ Ra0 such that |X| = N and any f : Ra0 → Ral , the data (X, f) is solvable on
(a0, . . . , al) neural networks.

Then the maximum expressive number of (a0, . . . , al) neural networks is defined as the maxi-
mum number of expressive numbers the neural networks have.

The definition says that (a0, . . . , al) neural networks have expressive number N if any N data
is solvable on the neural networks. In other words, for any data, if the number of the data is
smaller than the maximum expressive number of (a0, . . . , al) neural networks, the size of the neural
networks is large enough to express the data.

Whereas some papers describe data as an input-output set {(xi, yi)}i∈I ⊂ Ra0×Ral , we describe
data as a pair (X, f) of an input set X and an input-output function f to define expressive number
in a simpler way. If we use the former, the maximum expressive number of any neural network is
always 1 unless we explicitly exclude the case of having different outputs for the same input.

The following properties of expressive numbers have already been shown in [6].
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I-1 (a0, a1, . . . , al) neural networks have expressive number N if and only if (1, a1, . . . , al) neural
networks have expressive number N .

I-2 (n, k, m) ReLU neural networks have expressive number k + 1.

I-3 The maximum expressive number of (n, k, m) ReLU neural networks is less than or equal to
k + 2.

Property I-1 indicates that expressive numbers are independent of input dimensions. Properties
I-2 and I-3 mean that the maximum expressive number of (n, k, m) ReLU neural networks is k+1 or
k+ 2. (Although Property I-2 is shown only on neural networks with ReLU function in [6], we show
it with more general activations in Appendix A.1.) However, the maximum expressive numbers of
two or more hidden layer neural networks were not known.

4 Upper Bound

In the remainder of this paper, the activation function σ is fixed as ReLU(x) := max{0, x}.
We show an upper bound of the maximum expressive number of multilayer ReLU neural networks.

To show the upper bound, we partially use the proof of Property I-3 giving: the upper bound of the
maximum expressive number of single hidden layer neural networks. Then, we use “zigzag function”
to show the upper bound.

Definition 3 (Zigzag function)
Let N ∈ N. x1, . . . , xN ∈ R be a finite sequence and f : R → Rn. We say “f is zigzag on
x1, . . . , xN” if f(xi−1) ≺ f(xi) � f(xi+1) or f(xi−1) � f(xi) ≺ f(xi+1) holds for any 1 < i < N
where the binary relation ≺ is defined as the lexicographical order on Rn. Then, let X be a finite
subset of R. We say “f is zigzag function on X” if f is zigzag on x1, . . . , x|X| where x1, . . . , x|X| ∈ X
is an increasing sequence of all elements of X.

The following lemma appears in the proof of Property I-3.

Lemma 1 (Solvability on Zigzag functions)
Let N ∈ N and k,m ∈ N. For any X such that |X| = N and any zigzag function f : R→ Rm on X,
if the data (X, f) is solvable on (1, k, m) ReLU neural networks then N ≤ k + 2 holds.

Proof.
This lemma’s proof appears in the proof of Theorem 6 (2) (Property I-3) in [6] as an example of the
upper bound of the maximum expressive number of single hidden layer neural networks. The proof
was shown by the following property:

If there exists a neural network A such that MPA(x) = f(x) for any x ∈ X, then the neural
network A has at least N − 1 linear regions [10] and it has at least N − 2 hidden neurons.

Then, we show the upper bound using this lemma.

Theorem 2 (Upper bound)
The maximum expressive number of (n, a1, . . . , al, m) ReLU neural networks is less than or equal

to

(
l−1∏
i=1

(ai + 1)

)
(al + 2).

Proof.
By Property I-1, it is sufficient to prove the theorem in the case n = 1. Let X ⊂ R be a finite set and
f : R→ R such that f is zigzag on X. We assume the data (X, f) is solvable on (1, a1, . . . , al, m)

neural networks. Then, we show |X| ≤

(
l−1∏
i=1

(ai + 1)

)
(al + 2).

To prove this property, we show the following property by induction on l.
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If the data (Y, f) is solvable on (1, a1, . . . , al, m) neural network, then |Y | ≤

(
l−1∏
i=1

(ai + 1)

)
(al+

2) for any a1, . . . , al ∈ N and any Y ⊂ R such that f is zigzag on Y .

When l = 1, it holds by Lemma 1.
When l > 1, by assumption, there exists a (1, a1, . . . , al, m) neural network A such that ∀x ∈

X,MPA(x) = f(x). we can write MPA(x) = MPB(σ(W1x+ b1)) where A = ((W1, b1), . . . , (Wl, bl))

and B := ((W2, b2), . . . , (Wl, bl)). Let K := {− bi
wi
| wi 6= 0, 0 ≤ i < a1} where W1 =

 w0

...
wa1−1


and b1 =

 b0
...

ba1−1

, and k0, . . . , k|K|−1 be all elements of K such that k0 < · · · < k|K|−1. Then,

k0, . . . , k|K|−1 are all boundaries of linear regions given by the first hidden neurons. We define a
partition {X0, . . . , X|K|} of X as

Xj :=


{x ∈ X | x ≤ k0} (j = 0)

{x ∈ X | kj−1 < x ≤ kj} (0 < j < |K|)
{x ∈ X | k|K|−1 < x} (j = |K|)

(If |K| = 0, we define X0 := X.) Let j0 ∈ arg max
0≤j≤|K|

|Xj | and Y := Xj0 . We have |Y | ≥ |X|
|K|+ 1

≥

|X|
a1 + 1

by the pigeonhole principle. Let Ij0 := {i | wikj0−1 + bi ≥ 0 ∧ wikj0 + bi ≥ 0} where

k−1 := k0 − 1 and k|K| := k|K|−1 + 1. Then, for any x ∈ Y , we have i ∈ Ij0 if and only if

wix + bi ≥ 0. So, we define w′i :=

{
wi (i ∈ Ij0)

0 (o.w.)
and b′i :=

{
bi (i ∈ Ij0)

0 (o.w.)
for any 0 ≤ i < a1,

then, we can write σ(W1x+ b1) = W ′x+ b′ for any x ∈ Y where W ′ :=

 w′0
...

w′a1−1

, b′ :=

 b′0
...

b′a1−1

.

Let (1, a2, . . . , al, m) neural network C := ((W2W
′,W2b

′ + b2), (W3, b3), . . . , (Wl, bl)). We can
write f(x) = MPA(x) = MPB(σ(W1x + b1)) = MPB(W ′x + b′) = MPC(x). Thus, the data (Y, f)
is solvable on (1, a2, . . . , al, m) neural networks. Now, we see f is zigzag on Y . Thus, |Y | ≤(
l−1∏
i=2

(ai + 1)

)
(al + 2) holds by the induction hypothesis. Therefore, we have |X| ≤ (a1 + 1)|Y | ≤(

l−1∏
i=1

(ai + 1)

)
(al + 2).

This theorem shows the maximum expressive number of (n, a1, . . . , al, m) ReLU neural networks

is in o(

l∏
i=1

ai).

5 Lower Bound

We show a lower bound of the maximum expressive number of two hidden layer ReLU neural
networks.

First, we prove the maximum expressive number is greater than or equal to the product of the
numbers of its each hidden neurons when the neural networks have a single output.
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Theorem 3 (Lower bound on single output neural networks)
(n, a1, a2, 1) ReLU neural networks have expressive number a1a2.

Proof.
Again, it is sufficient to prove the theorem in the case n = 1 by Property I-1.

We divide the proof into 3 steps:

Step 1: Sort given a1a2 data in ascending order and define parameters of the first hidden
layer as those partition the whole data into a1 groups of a2 elements.

Step 2: Find parameters of the second and the last layers. The parameters are given as a
solution of some equations and inequalities.

Step 3: Construct a neural network from the parameters defined in Step 1 and Step 2. Then,
we show that the neural network expresses the given data.

Step 1 Given X ⊂ R such that |X| = a1a2 and f : R→ R, we show there exists a (1, a1, a2, 1)
neural network A such that MPA(x) = f(x) for any x ∈ X. We associate a pair of indices to
each element of X so that x0,0 < x0,1 < · · · < x0,a2−1 < x1,0 < x1,1 < · · · < x1,a2−1 < · · · <

xa1−1,0 < xa1−1,1 < · · · < xa1−1,a2−1. Let bi :=


x0,0 − 1 (i = 0)
xi−1,a2−1 + xi,0

2
(0 < i < a1)

xa1−1,a2−1 + 1 (i = a1)

, so we have

b0 < x0,0 < · · · < x0,a2−1 < b1 < x1,0 < · · · < x1,a2−1 < b2 < · · · < ba1−1 < xa1−1,0 < · · · <
xa1−1,a2−1 < ba1 and divide input data into a1 groups, that is, {xi,0, . . . , xi,a2−1}0≤i<a1 . Define

W1 :=

1
...
1

 ∈ Ra1×1 and b1 := −

 b0
...

ba1−1

 ∈ Ra1 as parameters of the first layer. Then the function

F1 : R→ Ra1 corresponding to the first layer is written by F1(x) = σ(W1x+ b1). So, we can write

F1(xi,j) =



xi,j − b0
...

xi,j − bi
0
...
0


for any i and j.

Step 2 We show that the neural network can be constructed from the values of ki,j ∈ R,
wj ∈ Ra1 , cj ∈ R and C ∈ R (0 ≤ i < a1, 0 ≤ j < a2) satisfying the following properties:

(1) (−1)ix′i,j−1 < (−1)iki,j < (−1)ix′i,j

(2) twjF1(ki,j) = cj

(3)

j∑
u=0

(twuF1(x′i,j)− cu) + C = f(x′i,j)

where x′i,j :=

{
xi,j (i mod 2 = 0)

xi,a2−1−j (i mod 2 = 1)
and (x′i,−1, x

′
i,a2

) :=


(
bi + x′i,0

2
,
x′i,a2−1 + bi+1

2
) (i mod 2 = 0)

(
bi+1 + x′i,0

2
,
x′i,a2−1 + bi

2
) (i mod 2 = 1)

.

The variables wj and cj characterize the wights and bias of the second hidden layer, so the
output of second hidden neuron j is twjF1(x) − cj when input x is given. Then, the hyperplane
{x ∈ Ra1 | twjx = cj} are the boundary of the linear regions divided by the ReLU activation of the
neuron j. The variable ki,j is the intersection point of each hyperplane with the image of the line
segment x′i,j−1 x

′
i,j by F1 as Fig. 2. The properties (1), (2) characterize them.
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⋯ ⋯
b0 b1 b2

⋯

⋯
x′�0,0 x′�0,1 x′�0,a2− 1 x′�1,0x′�1,1x′�1,a2− 1 x′�2,0

First Hidden Layer

twjx = cj

F1(x′�0, j− 1) F1(x′�0, j)

F1(x′�1, j)

F1(x′�1, j− 1)

F1(x′�2, j− 1)
F1(x′�2, j)

F1(k0,j)
F1(k1,j)

F1(k2,j)

F1(b1)

F1(b2)

F1(b0)

Second Hidden Layer

F1(k0, j+ 1)

F1(k1, j+ 1)

F1(k2, j+ 1)

twj+ 1x = cj+ 1

Figure 2: The parameters of the first and the second hidden layers. In the first layer, the parameters
b0, . . . , ba1 divide input data into a1 groups of a2 elements. The parameters b0, ba1 do not divide
the inputs but are needed to define specific hyperplanes in the second layer. In the second layer, the
elements of each group are separated individually by the hyperplane {x ∈ Ra1 | twjx = cj} defined
by F1(k0,j), . . . , F1(ka1−1,j) for any j.

The variable C characterize the bias of the last layer and the property (3) means the neural net-

work constructed by these variables returns the correct outputs. First, we can write

j∑
u=0

(twuF1(x′i,j)−

cu) =

a2−1∑
u=0

su,i,jσ(su,i,j(
twuF1(x′i,j)−cu)) where su,i,j = sgn(j−u+1/2) sgn(twuF1(x′i,j)−cu) where

sgn : R→ R is defined as sgn(x) =


1 (0 < x)

0 (x = 0)

−1 (x < 0)

. Then, each hyperplane {x ∈ Ra2−1 | twux = cu}

separates the points F1(x′i,0), . . . , F1(x′i,a2−1) into {F1(x′i,j) | j < u} and {F1(x′i,j) | u ≤ j} for any
i. So, we have su,i,j = su,i,j′ regardless of the signs of j − u and j′ − u for any 0 ≤ j, j′ < a2.
Furthermore, by the definition of x′i,j and the continuity of F1, we have su,i,j = su,i+1,j for
any 0 ≤ i < a2 − 1. Therefore, su,i,j is only depend on the variable u, thus, we can write
j∑

u=0

(twuF1(x′i,j)− cu) + C =

a2−1∑
u=0

suσ(su(twuF1(x′i,j)− cu)) + C.

The right-hand side just means the output of a (1, a1, a2, 1) neural network. So, to show the
property (3), we can find the parameters of the neural network.

We give values satisfying (1) – (3) as follows:

• C := min
0≤i<a1

f(x′i,0)− 1.

• The values of cj and ki,j are defined recursively. By Table 1, we see the order to determine
these values is c0, k0,0, . . . , ka1−1,0, c1, k0,1, . . . , ka1−1,1, c2, . . ..

If ct and ki,t are defined for any 0 ≤ t < j and any 0 ≤ i < a1, we can define the following
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Mi,j ∈ R, Bi,j , Di,j : R→ R and Ei,j , E
′
i,j ∈ R.

Mi,j :=

i−1∏
s=0

bs+1 − ks,j
ks,j − bs

Bi,j(x) :=
(−1)i(x− ki,j)

ki,j − bi

Di,j(x) := f(x)− C −
j−1∑
t=0

Bi,t(x)Mi,tct

Ei,j :=
max{x′i,j−1, x′i,j} − bi
(−1)i(x′i,j − x′i,j−1)

|Di,j(x
′
i,j)|

E′i,j :=
max{x′i,j−1, x′i,j} − bi
(−1)i(x′i,j+1 − x′i,j)

|Di,j(x
′
i,j+1)|

Let Ki,j := max{|Di,j(x
′
i,j)|, Ei,j , E′i,j}+ 1. We define cj as

cj := (−1)j max
0≤i<a1

(
i−1∏
s=0

max{x′s,j−1, x′s,j} − bs
bs+1 −max{x′s,j−1, x′s,j}

)
Ki,j

Next, we define ki,j as

ki,j :=
(−1)ix′i,jMi,jcj + biDi,j(x

′
i,j)

(−1)iMi,jcj +Di,j(x′i,j)

So, we have
(ki,j − bi)Di,j(x

′
i,j) = (−1)i(x′i,j − ki,j)Mi,jcj (e1)

Table 1: The dependencies of indices of variables cs, ks,t
variable ct ks,t

Mi,j − s < i ∧ t = j
Bi,j(x) − s = i ∧ t = j
Di,j(x) t < j s = i ∧ t < j
Ei,j t < j s = i ∧ t < j
E′i,j t < j s = i ∧ t < j

Ki,j t < j s = i ∧ t < j

cj t < j s < a1 ∧ t < j
ki,j t ≤ j (s = i ∧ t < j) ∨ (s < i ∧ t = j)

We see in the table that the variable cj is defined by the variables ct satisfying t < j and the
variable ks,t satisfying s < a1 ∧ t < j, and the variable ki,j is defined by the variables ct satisfying
t ≤ j and the variables ks,t satisfying (s = i ∧ t < j) ∨ (s < i ∧ t = j). So, we can define cj and

ki,j in the order of c0, k0,0, . . . , ka1−1,0, c1, k0,1, . . . , ka1−1,1, c2, . . ..

• Define wj := t(w0,j , . . . , wa1−1,j), where

wi,j :=


cj

k0,j − b0
(i = 0)

(−1)i
(ki,j − ki−1,j)Mi−1,jcj

(ki,j − bi)(ki−1,j − bi−1)
(i > 0)

Then the values satisfy the following properties (see Appendix A.2).
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(4)

i∑
s=0

ws,j = (−1)i
Mi,jcj
ki,j − bi

holds for any i and j.

(5) For any i and j, if (−1)sx′s,j−1 < (−1)sks,j < (−1)sx′s,j whenever s < i, then Mi,j(−1)jcj ≥
Ki,j .

(6) For any j, if (−1)jDi,j(x
′
i,j) > 0 holds for any i, then (−1)ix′i,j−1 < (−1)iki,j < (−1)ix′i,j

holds for any i.

(7) (−1)jDi,j(x
′
i,j) > 0 for any i and j.

Now, we show (1) – (3).

The property (1) can be shown by (6) and (7) immediately.

We show (2) by induction on i. We can write F1(ki,j) =



ki,j − b0
...

ki,j − bi
0
...
0


.

When i = 0, twjF1(k0,j) = w0,j(k0,j − b0) = cj .

When i > 0, we have twjF1(ki−1,j) = cj by the induction hypothesis. Thus,

twjF1(ki,j)− cj = twjF1(ki,j)− twjF1(ki−1,j)

=

i∑
s=0

ws,j(ki,j − bs)−
i−1∑
s=0

ws,j(ki−1,j − bs)

= wi,j(ki,j − bi) +

i−1∑
s=0

ws,j(ki,j − ki−1,j)

= (−1)i
ki,j − ki−1,j
ki−1,j − bi−1

Mi−1,jcj + (ki,j − ki−1,j)
i−1∑
s=0

ws,j

= (ki,j − ki−1,j)(
i−1∑
s=0

ws,j − (−1)i−1
Mi−1,jcj

ki−1,j − bi−1
)

Because

i∑
s=0

ws,j = (−1)i
Mi,jcj
ki,j − bi

holds for any i, we have twjF1(ki,j) − cj = 0. Therefore,

twjF1(ki,j) = cj holds for any i.
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We show (3).

j∑
u=0

(twuF1(x′i,j)− cu) + C =

j∑
u=0

(twuF1(x′i,j)− twuF1(ki,u)) + C

=

j∑
u=0

i∑
s=0

ws,u(x′i,j − ki,u) + C

=

j∑
u=0

(x′i,j − ki,u)

i∑
s=0

ws,u + C

=

j∑
u=0

Bi,u(x′i,j)Mi,ucu + C

= Bi,j(x
′
i,j)Mi,jcj +

j−1∑
u=0

Bi,u(x′i,j)Mi,ucu + C

=
(−1)i(x′i,j − ki,j)

ki,j − bi
Mi,jcj −Di,j(x

′
i,j) + f(x′i,j)

Since (ki,j − bi)Di,j(x
′
i,j) = (−1)i(x′i,j − ki,j)Mi,jcj (see (e1)), we have

j∑
u=0

(twuF1(x′i,j)− cu) +C =

f(x′i,j).

Step 3 We construct a neural network A satisfying MPA(x′i,j) = f(x′i,j) for any x′i,j ∈ X.

Define W2 :=


tw0

−tw1
tw2

...
(−1)a2−1 · twa2−1

, c := −


c0
−c1
c2
...

(−1)a2−1ca2−1

, W3 := (1, −1, 1, . . . , (−1)a2−1),

d = C and A := ((W1, b), (W2, c), (W3, d)) then we can write

MPA(x′i,j) =

a2−1∑
u=0

(−1)uσ((−1)u · twuF1(x′i,j)− (−1)ucu) + C

=

a2−1∑
u=0

(−1)uσ((−1)u(twuF1(x′i,j)− cu)) + C

Then we show (−1)u(twuF1(x′i,j)− cu) ≥ 0 if and only if u ≤ j.

(−1)u(twuF1(x′i,j)− cu) = (−1)u(twuF1(x′i,j)− twuF1(ki,u))

= (−1)u(

i∑
s=0

ws,u(x′i,j − ki,u))

= (−1)u(x′i,j − ki,u)

i∑
s=0

ws,u

= (−1)i(x′i,j − ki,u)
Mi,u(−1)ucu
ki,u − bi

Now, we have Mi,u > 0, (−1)ucu > 0 and ki,u − bi > 0. By (1), (−1)ix′i,−1 < · · · < (−1)ix′i,u−1 <

(−1)iki,u < (−1)ix′i,u < · · · < (−1)ix′i,a2−1 holds, so we have u ≤ j ⇔ (−1)iki,u < (−1)ixi,j . Thus,
(−1)u(twuF1(x′i,j)− cu) ≥ 0 holds if and only if u ≤ j.
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Then, we have

MPA(x′i,j) =

a2−1∑
u=0

(−1)uσ((−1)u(twuF1(x′i,j)− cu)) + C

=

j∑
u=0

(twuF1(x′i,j)− cu) + C = f(x′i,j) (∵ (3))

Therefore, (1, a1, a2, 1) ReLU neural networks have expressive number a1a2.

This theorem holds only on neural networks with a single output. Now, we generalize it with
any outputs.

Theorem 4 (Lower Bound)
(n, a1, a2, m) ReLU neural networks have expressive number max{a1(a2divm)+a2 mod m, a2+1}.

Proof.
It is sufficient to show (1, a1, a2, m) ReLU neural networks have both expressive numbers a1(a2 div
m) + a2 mod m and a2 + 1.

First, we show the latter. Given X ⊂ R such that |X| = a2 + 1 and f : R → Rm. Let
W1 := t(1, 0, . . . , 0) ∈ Ra1×1, b1 := t(−minX, 0, . . . , 0) ∈ Ra1 and g(x) := σ(W1x + b1). Since
the restriction of g to X is injective, there exists h : Ra1 → R such that h(g(x)) = x for any x ∈ X.
By Property I-2, (a1, a2, m) ReLU neural networks have expressive number a2 + 1. Thus, there
exists an (a1, a2, m) neural network A such that MPA(y) = (f ◦ h)(y) holds for any y ∈ g(X). Let
B := ((W1, b1), A) be a (1, a1, a2, m) neural network. Then

MPB(x) = MPA(g(x)) = (f ◦ h)(g(x)) = f(x)

holds for any x ∈ X. Therefore, (1, a1, a2, m) ReLU neural networks have expressive number a2+1.
Finally, we show that (1, a1, a2, m) ReLU neural networks have expressive number a1(a2 div

m) + a2 mod m. Let p := a1(a2 divm) and q := a2 mod m. Given X ⊂ R such that |X| = p+ q and
f : R→ Rm. Then let X ′ := {x1, . . . , xp} and X ′′ := {xp+1, . . . , xp+q} where x1, . . . , xp+q are all
elements of X such that x1 < · · · < xp+q. Define fi : R → R as fi(x) := yi(x) for any 0 ≤ i < m
where f(x) = t(y0(x), . . . , ym−1(x)). Then, by Theorem 3, we have MPAi

(x) = fi(x) for any x ∈ X ′
where Ai = ((W1,i, bi), (W2,i, ci), (W3,i, di)) is a (1, a1, a2divm, 1) neural network given in the proof
of the theorem. By the definition of W1,i and bi in Theorem 3, we have W1,i = W1,j and bi = bj

for any 0 ≤ i, j < m. Thus, let W2 :=

 W2,0

...
W2,m−1

, c :=

 c0
...

cm−1

, W3 :=

W3,0 O
. . .

O W3,m−1


and d :=

 d0
...

dm−1

. B := ((W1,0, b0), (W2, c), (W3,d)) is a (1, a1, m(a2 div m), m) neural network

and MPB(x) =

 y0(x)
...

ym−1(x)

 = f(x) holds for any x ∈ X ′.

Let W ′2 :=

0 · · · 0 1
...

...
...

0 · · · 0 1

 ∈ Rq×a1 , c′ := −

 xp − ba1−1
...

xp+q−1 − ba1−1

 ∈ Rq where ba1−1 is as defined

in the proof of Theorem 3, and W ′3 := (w′3,0, . . . , w
′
3,q−1) where w′3,i :=

1

xp+i+1 − xp+i
(f(xp+i+1)−

(MPB(xp+i+1) +

i−1∑
j=0

(xp+i+1 − xp+j)w
′
3,j)) for any 0 ≤ i < q. Let W ′′2 :=

(
W2

W ′2

)
, c′′ :=

(
c
c′

)
,
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W ′′3 := (W3W
′
3) and B′ := ((W1,0, b0), (W ′′2 , c

′′), (W ′′3 ,d)) be a (1, a1, m(a2 divm) + a2 mod m, m)
neural network. Then, MPB′(x) = f(x) holds for any x ∈ X ′ ∪X ′′ = X. Therefore, (1, a1, a2, m)
ReLU neural networks have expressive number a1(a2 div m) + a2 mod m.

From this theorem, the maximum expressive number of (n, a1, a2, m) ReLU neural networks is
greater than or equal to a1(a2 div m) + a2 mod m and a2 + 1. If a1 ≤ m or a2 < m then the lower
bound is equal to a2 + 1, that is also equal to the lower bound of (n, a2, m) single hidden layer
ReLU neural networks (Property I-2). So, this theorem suggests that when we use two hidden layer
neural networks, the numbers of each hidden neurons should be greater than the output dimension.

Besides, we see the maximum expressive number is in O(a1a2/m). In general, the output dimen-
sion m is a constant in machine learning. Thus, we can write the number is in O(a1a2). Furthermore
by Theorem 2, the maximum expressive number N of (n, a1, a2, m) ReLU neural networks satisfies
N ∈ Θ(a1a2).

6 Conclusion

We have shown an upper bound of the maximum expressive number of multilayer ReLU neural
networks and a lower bound of that of two hidden layer ReLU neural networks. Our result suggests
the maximum expressive number N of (n, a1, a2, m) ReLU neural networks satisfies a1(a2 divm) +
a2 mod m ≤ N ≤ (a1 + 1)(a2 + 2), i.e., N ∈ Θ(a1a2). In other words, the maximum expressive
number of two hidden layer ReLU neural networks is proportional to the product of the numbers of
each hidden layer’s neurons. In particular, if m = 1, that is, the neural networks have a single output,
then the maximum expressive number N satisfies a1a2 ≤ N ≤ (a1+1)(a2+2) i.e. N ∼ a1a2. Namely,
(n, a1, a2, 1) ReLU neural networks can express any a1a2 data and there exists (a1 + 1)(a2 + 2) + 1
data that the neural networks cannot express.

Furthermore, from our result, the maximum expressive number of (n, a1, . . . , al, m) ReLU neural

networks is in o(

l∏
i=1

ai). In other words, the upper bound is exponential to the number of layers

when the numbers of each hidden layer’s neurons are the same. Other measures of the expressive
power, such as linear regions, also increase exponentially to the number of layers ([14, 12, 11]). So,

we conjecture the maximum expressive number is also in Θ(

l∏
i=1

ai).
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A Appendix

A.1 Generalization of Property I-2

We have already shown Property I-2 in [6], that is, (n, k, m) ReLU neural networks have expressive
number k + 1. Similar result is shown in [5], i.e., if an activation function σ : R → R achieves 0
and 1, then, (r, n, 1) neural networks express any n data. In other words, if there exists M ∈ R
such that (∀x ≤ M,σ(x) = 0) and (∀x ≥ M,σ(x) = 1), then, (n, k, m) σ neural networks have
expressive number k. These two properties are independent, but we can generalize the properties
into one theorem.

Theorem 5 (Expressive number of single hidden neural networks)
We assume that the activation function σ : R → R satisfies the follows: there exist a, c ∈ R and
y ∈ R satisfying the following properties.

• ∀x ≤ a, σ(x) = y.

• σ(c) 6= y.

Then, (n, k, m) neural networks have expressive number k + 1 for any n, k,m ∈ N.

Proof.
By assumptions, there exist a, c, y ∈ R satisfying (∀x ≤ a, σ(x) = y) and σ(c) 6= y. Then, we have
a < c. It is sufficient to prove the theorem in the case n = 1 by Property I-1. Given X ⊂ R such
that |X| = k + 1 and f : R → Rm, we show there exists an (1, k, m) neural network A such that
MPA(x) = f(x) holds for any x ∈ X. Let x1, . . . , xk+1 ∈ X be the increasing sequence of all
elements of X. We show this theorem by induction on k.
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When k = 0, it holds trivially.
When k > 0, by induction hypothesis, there exists a (1, k − 1, m) neural network A such that

f(xi) = MPA(xi) holds for any i < k + 1. Now we define an (n, k, m) neural network B :=

((V1, c1), (V2, c2)) whereA = ((W1, b1), (W2, b2)), V1 :=

 W1
c− a

xk+1 − xk

, c1 :=

 b1

− c− a
xk+1 − xk

xk + a

,

V2 := (W2,
f(xk+1)−MPA(xk+1))

σ(c)− y
), and c2 := b − y(f(xk+1)−MPA(xk+1))

σ(c)− y
. Then, we have

MPB(xi) = f(xi) for any i ≤ k + 1.
Therefore, (1, k, m) neural networks have expressive number k + 1.

A.2 Proof of properties (4) – (7) in Theorem 3

The property (4) is shown by induction on i.
When i = 0, it holds trivially. For any i > 0,

i∑
s=0

ws,j = wi,j +

i−1∑
s=0

ws,j

= (−1)i(
(ki,j − ki−1,j)Mi−1,jcj

(ki,j − bi)(ki−1,j − bi−1)
− Mi−1,jcj
ki−1,j − bi−1

)

= (−1)i(
ki,j − ki−1,j
ki,j − bi

− 1)
Mi−1,jcj

ki−1,j − bi−1

= (−1)i
Mi,jcj
ki,j − bi

holds as required.
Next, we show (5). By hypothesis, we have min{x′s,j−1, x′s,j} < ks,j < max{x′s,j−1, x′s,j} for any

s < i. Then, bs < ks,j < bs+1 and Mi,j > 0 hold. Thus,

Mi,j(−1)jcj ≥Mi,j

(
i−1∏
s=0

max{x′s,j−1, x′s,j} − bs
bs+1 −max{x′s,j−1, x′s,j}

)
Ki,j

≥Mi,j

(
i−1∏
s=0

ks,j − bs
bs+1 − ks,j

)
Ki,j = Ki,j

for 0 ≤ i < a1.
The property (6) is proved by the complete induction on i. We show the second inequality first:

(−1)i(x′i,j − ki,j) = (−1)i(x′i,j −
(−1)ix′i,jMi,jcj + biDi,j(x

′
i,j)

(−1)iMi,jcj +Di,j(x′i,j)
)

=
(−1)i(x′i,j − bi)Di,j(x

′
i,j)

(−1)iMi,jcj +Di,j(x′i,j)

=
(x′i,j − bi)(−1)jDi,j(x

′
i,j)

Mi,j(−1)jcj + (−1)i(−1)jDi,j(x′i,j)

=
(x′i,j − bi)|Di,j(x

′
i,j)|

Mi,j(−1)jcj + (−1)i|Di,j(x′i,j)|
> 0

The last inequality follows from x′i,j − bi > 0 and Mi,j(−1)jcj ≥ Ki,j > |Di,j(x
′
i,j)| (∵ induction

hypothesis and (5)).
Then we show the first one. From the definition of ki,j , we can write

(ki,j − bi)Di,j(x
′
i,j) = (−1)i(x′i,j − ki,j)Mi,jcj
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(see (e1)). Thus,

ki,j − bi
(−1)i(x′i,j − ki,j)

=
Mi,jcj
Di,j(x′i,j)

=
Mi,j(−1)jcj

(−1)jDi,j(x′i,j)

≥ Ki,j

|Di,j(x′i,j)|
>

Ei,j
|Di,j(x′i,j)|

=
max{x′i,j−1, x′i,j} − bi
(−1)i(x′i,j − x′i,j−1)

≥
x′i,j−1 − bi

(−1)i(x′i,j − x′i,j−1)
(∵ (−1)i(x′i,j − x′i,j−1) > 0)

Since the denominators of both the first and the last terms are positive, we have

(−1)i(x′i,j − x′i,j−1)(ki,j − bi) > (−1)i(x′i,j − ki,j)(x′i,j−1 − bi)

which is simplified to

(−1)iki,j(x
′
i,j − bi) > (−1)ix′i,j−1(x′i,j − bi)

Since x′i,j − bi > 0, we have (−1)iki,j > (−1)ix′i,j−1.
The property (7) is shown by the complete induction on j.
When j = 0, we have (−1)jDi,j(x

′
i,j) = f(x′i,0)− C > 0.

When j > 0,

(−1)jDi,j(x
′
i,j) = (−1)j(f(x′i,j)− C −

j−1∑
t=0

Bi,t(x
′
i,j)Mi,tct)

= (−1)j(Di,j−1(x′i,j)−Bi,j−1(x′i,j)Mi,j−1cj−1)

= (−1)jDi,j−1(x′i,j) +Bi,j−1(x′i,j)Mi,j−1(−1)j−1cj−1

Then, by the induction hypothesis and (6), we have (−1)ix′i,j−2 < (−1)iki,j−1 < (−1)ix′i,j−1 <

(−1)ix′i,j . Thus,

Bi,j−1(x′i,j) =
(−1)i(x′i,j − ki,j−1)

ki,j−1 − bi
> 0

Then, because of the induction hypothesis, (6) and (5), we have Mi,j−1(−1)j−1cj−1 ≥ Ki,j−1 >
E′i,j−1. Thus,

(−1)jDi,j(x
′
i,j) = (−1)jDi,j−1(x′i,j) +Bi,j−1(x′i,j)Mi,j−1(−1)j−1cj−1

> (−1)jDi,j−1(x′i,j) +Bi,j−1(x′i,j)E
′
i,j−1

Then

Bi,j−1(x′i,j)E
′
i,j−1 =

(−1)i(x′i,j − ki,j−1)

ki,j−1 − bi
·

max{x′i,j−2, x′i,j−1} − bi
(−1)i(x′i,j − x′i,j−1)

|Di,j−1(x′i,j)|

=
(−1)i(x′i,j − ki,j−1)

(−1)i(x′i,j − x′i,j−1)
·

max{x′i,j−2, x′i,j−1} − bi
ki,j−1 − bi

|Di,j−1(x′i,j)|

> |Di,j−1(x′i,j)|

The last inequality follows from (−1)iki,j−1 < (−1)ix′i,j−1 and ki,j−1 < max{x′i,j−2, x′i,j−1}. Thus,

(−1)jDi,j(x
′
i,j) > (−1)jDi,j−1(x′i,j) + |Di,j−1(x′i,j)| ≥ 0

Therefore (−1)jDi,j(x
′
i,j) > 0 holds for any i and j.
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