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Abstract

As most existing sensors are powered by batteries, the coverage provided by a sensor network
degrades over time and eventually disappears if energy is not restored. A popular approach to
energy restoration is to use a robot acting as a mobile battery charger/changer. The robot
decides where to move next according to a predefined on-line energy restoration strategy. The
effectiveness of such a strategy depends on the number of nodes it is able to maintain operational
at any given time, as well as on for how long a node whose battery is depleted remains non-
operational.

The ideal optimal on-line strategy (called OPTIMAL) occurs when the robot knows at any time
the current status of all sensors, and it computes the best request to satisfy next, based on this
information. Although optimal in terms of effectiveness, this centralized strategy would con-
stantly require up-to-date global information; hence its high computational and communication
costs make it not feasible.

We consider a drastically different on-line strategy (called LIC), which is simple and fully
decentralized, uses only local communication, requires no computations, and is highly scalable.
In our strategy, the robot visits the sensors in a predefined circular order, moving in a “clockwise”
direction and only when aware of a pending request. A sensor whose battery is about to
become depleted originates a recharging request and waits for the robot; the request is forwarded
according to the circular order in a “counter-clockwise” direction until it reaches either the robot
or another sensor waiting for the robot.

We show the perhaps unexpected result that, once the system becomes stable, in most
networks the effectiveness of LIC is equivalent to that of OPTIMAL. In other words, in most cases,
in spite of its simplicity and its extremely small (communication and computation) costs, the
proposed decentralized strategy is as effective as the optimal centralized one. We augment our
theoretical results with experimental analysis, confirming all the analytical results and showing
among other things that the system stabilizes very quickly.

1A preliminary version of this paper appeared in the proceedings of the Seventh International Symposium on
Computer and Networking (CANDAR) 2019.

62



International Journal of Networking and Computing

1 Introduction

1.1 Framework, Problem, and Related Work

Wireless sensor networks are widely employed in a large variety of contexts and applications, mainly
to monitor the conditions of the area in which they are deployed. Most existing sensors are powered
by batteries whose lifetime is limited; once the battery becomes depleted, the node is no longer
sensing and, in absence of redundant coverage, this sensing hole creates a coverage hole in the
monitored area. Indeed, the coverage provided by the network degrades over time and eventually
disappears if no action is taken. Extensive research has being carried out on how to address this
problem, mainly concentrating on energy management strategies, whose goal is to prolong the lifetime
of the network and delay the progressive coverage decay by balancing the energy levels among the
sensors (e.g., [1, 17]).

A very different line of research has been on energy restoration, with the ambitious goal to
maintain the network operating perpetually. In this line are proposals to enhance the sensors with
(radically different) additional capabilities. For instance, the sensors could be provided with the
means to harvest energy from the environment and to convert it to electrical energy, enabling them
to recharge their batteries (e.g., [27, 31]). A different direction is to add mobility to the sensors,
enabling them to move to recharge facilities deployed throughout the sensing area (e.g., [20, 28]).
The drawback of these types of approaches is the increased complexity, and thus cost, of the sensor
nodes; this at a time when technology trends are scaling sensors to be smaller and cheaper.

An alternative to adding more complexity to the nodes has been the proposal of using one or
more external mobile devices, typically called robots, which would go around to restore energy to
nodes with (near) depleted energy. The restoration can take place by either recharging the depleted
batteries or by replacing them entirely with fully charged one. Fueled by the recent evolution in
wireless power transfer techniques [13], the research on sensor recharging by mobile robots has been
quite intensive (e.g., [2,5,16,19,26,34,36]). The alternative of replacement has been considered in the
literature (e.g., [21,32]), albeit with less intensity. For a comparison between these two alternatives
see [21].

Notice that the idea of using a mobile robot in sensor networks is not new, as it has been proposed
for data gathering and aggregation, for network repairs, as well as for other network maintenance
tasks (e.g., [14, 15, 22]). Other examples of these approaches can be found in research papers in
robotics (e.g., [3, 6]).

In this paper we are interested in energy restoration by a single mobile robot. Regardless of
whether restoration is by recharging or replacement, after servicing a node, the robot must choose
where to move next. The algorithm followed by the robots to make this decision, here called energy
restoration strategy, may prescribe the acquisition of information from the sensors (e.g., energy
level, location, etc.) and require possibly complex computations by the robot. Since the decision
can be made based solely on current (and older) information, the strategies are necessarily on-line
algorithms. In these strategies, a node whose battery is (about to become) depleted issues a request
for the robot; the robot moves to service the requests so to optimize some cost parameters, based
on the information currently available. Almost all the existing on-demand strategies are however
centralized (e.g., [9–11, 26]): the information about all the requests is communicated to the robot
that then computes where to go next; alternatively, the information is communicated to the base
station, which takes the decisions and provides the mobile robot with instructions. In addition to
the high communication costs required, the optimization requirements to be met by the decision are
typically accompanied by a high computational complexity; these factors imply a difficulty to scale
for these strategies. Hence the interest is for decentralized strategies.

The existing decentralized strategies are [2, 21, 25]; in [21] the concern is to maximize the time
until the first interruption of the sensing activity of a single sensor; in [2], which is not on-demand
(i.e., the order in which the nodes are recharged is fixed), the total amount of energy that can be
put in the system is bounded (i.e. the energy restoration process is limited); in [25] the described
technique applies only to linear sensor networks.
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1.2 Effectiveness, Costs and Contribution

The fact that some sensors might become inactive is not a problem if an energy restoration strategy
is in place that guarantees that every inactive sensor is recharged and becomes operational again.
From the point of view of maintaining as much as possible of the network operational at all times,
the effectiveness of an energy restoration strategy depends on the number of sensors guaranteed to
be operational at any given time. We shall call this measure operational size or, with an abuse of
notation, coverage. Note that effectiveness can be equivalently measured by the number of sensing
holes in the network at any given time (the smaller the number, the more effective the strategy);
interestingly, unless the deployment has k > 1 redundant coverage, this measure corresponds to the
number of coverage holes at that time.

The other effectiveness measure of interest is the time from the moment a sensor ceases to be
operational to the time when the robot arrives to serve it; i.e., for how long a sensing hole lasts. We
shall call this measure disconnection time.

Associated with each energy restoration strategy are also the computation and communication
costs incurred when the robot operates in the network according to that strategy.

The effectiveness and the costs of the strategy employed by the robot to service the sensors
depends on many factors, a crucial one being the amount of information about the network status
available at any given time to the robot.

From the effectiveness point of view, the “ideal” optimal on-line strategy, which we shall call
simply OPTIMAL, is clearly when the robot knows at any time the current status of all sensors,
and it computes on-line the request it must satisfy next so to minimize the number of sensing
holes and/or their duration. Even more that any other on-line strategy, in addition to a high
computational complexity, OPTIMAL would require constantly up-to-date global information; hence
the communication costs required to implement it severely limit its feasibility.

In this paper, we propose a drastically different on-line strategy, which we shall call Local In-
formation and Communication (LIC). In this strategy, the robot visits the sensors in a predefined
circular order, moving in a “clockwise” direction when aware of a pending request. A node whose
battery is about to become depleted originates a recharging request and waits for the robot; the re-
quest is forwarded in a “counter-clockwise” direction until it reaches either the robot or another node
waiting for the robot. In other words, each node communicates only locally: with the neighbouring
sensors in the circular order (to send or receive a request), or with the robot if currently there (to
communicate the presence of a pending request); the robot moves only from one node to the next
in the cyclic order, is aware only of whether or not there is a pending request, and has no need of
memory or calculation. In contrast to the existing centralized strategies, this simple on-line strategy
is fully distributed and decentralized, uses only local communication, requires no computations, and
it is highly scalable.

1.3 Main Results

We study the effectiveness and costs of LIC, both analytically and experimentally in an abstract
setting.

Like in every energy restoration strategy, effectiveness depends on two crucial system parameters:
the battery life, i.e., the amount of time ∆ a fully charged battery lasts under normal operations;
and the recharging time, i.e., the amount of time ρ required for the charging/replacement once the
robot is at the sensor’s site. Let N (∆, ρ) denote the (infinite) class of sensor networks with those
specific component characteristics.

We establish several results related to the stability of the system under LIC, whereas the network
is deemed to be in a stable state if the order in which the nodes are charged in a round is the same
in every round. In particular, we prove analytically that almost all networks in N (∆, ρ) become
stable under LIC; when that happens, although the set of operational nodes changes in time, its size
remains unchanged; furthermore this value is the same regardless of the initial network size. We
also determine the disconnection time for such stable networks, providing a precise characterization
of the performance and effectiveness of LIC.
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We then compare the effectiveness of LIC with that of the optimal (but expensive to implement)
strategy OPTIMAL We show the perhaps unexpected result that, in most networks, the effectiveness
of LIC is equivalent to that of OPTIMAL. In other words, in most cases, in spite of its simplicity and its
extremely small (communication and computation) costs, the decentralized strategy is as effective
as the ideal optimal one.

We support our theoretical results with experimental analysis, showing that the system stabilizes
very quickly and confirming all the theoretical bounds established for coverage size and disconnection
time.

2 Model

Let X = {x0 . . . , xn−1} be the set of sensor nodes, or simply nodes, forming the network. Each node
has sensory equipment that allows it to monitor its surroundings; it also has provision for wireless
communication within a limited range.

Let π be a cyclic order of the nodes; successive nodes in the order (e.g., xπ(i) and xπ(i+1), where
all operations on the indices are modulo n) are called neighbours, and can communicate (possibly
by multiple hops).

Normal operations require sensing and occasional communication; both operations consume en-
ergy, which is provided by an on-board battery of limited capacity. When the battery is nearly
depleted, the node becomes non-operational, thus creating a sensing hole in the network; and the
remaining energy is used for local communication necessary for the recharging. In the following,
with an abuse of notation, we will say that the battery is depleted when the node becomes non-
operational.

Let ∆ denote the amount of time it takes for a fully charged battery to become depleted under
normal operations. Each node monitors the energy level of its battery and determines whether it is
below a fixed threshold. We denote by τ the amount of time, under normal operations, elapsed from
the moment the battery falls below the threshold to the time it becomes depleted. In the following,
for ease of discussion, we will sometimes refer to ∆ as the battery life or capacity, and to τ as the
threshold.

A mobile robot R is available in the system to recharge/replace the nodes’s batteries; once R
reaches a node, if the energy level of the node is below the threshold, the robot will restore the
energy. We denote by ρ the amount of time it takes for a battery to become replaced/recharged;
i.e., if the robot reaches a node x whose battery is below the threshold at time t, x’s battery will be
fully charged at time t+ ρ; we assume that x will start being operational as soon as the robot starts
restoring its energy. The robot can move from node to node; we denote by di,j the time it takes the
robot to travel from node xi to xj . We assume uniform distances among neighbours in the circular
order; that is, dπ(i),π(i+1) = d ≥ 1 (0 ≤ i ≤ n− 1).

We now introduce the measures we use to study the effectiveness of energy restoration strategies.
Let S be an energy restoration strategy. The operational size, or coverage, at time t under S (denoted
by Coverage(S, t)) is the number of operational nodes at that time. Note that the coverage implicitly
measures the number Holes(S, t) = n− Coverage(S, t) of the sensing holes at time t.

The disconnection time for a node x is the amount of time from the moment x becomes inactive
to the time when the robot arrives to serve x. Disconnection time is, of course, zero if the node
is charged before it becomes inactive. More precisely, the disconnection time for node x at time
t under S (denoted by Disconnect(S, t, x)) is the amount of time x had been inactive when last
serviced by the robot before or at time t. This measures indicates for how long a sensing hole lasts.

Since the focus of this study is on the effectiveness of the recharging strategies and on their
computing and communication costs, we will not address how the robot acquires the means to service
the sensor nodes (e.g., by stopping at a recharging station, by extracting it from the environment,
etc.) and we assume (as in [30,36]) that the robot is always capable of doing so.
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3 Decentralized Strategy: LIC

We now describe a simple decentralized on-demand strategy, which uses only local information and
requires only local communication, hence the name Local Information and Communication (LIC).

The proposed strategy assumes the availability of a cyclic ordering π of the nodes (see Figure 1);
the construction of such an order is discussed in Section 6. Once each node xπ(i) has identified its
two neighbours xπ(i−1) and xπ(i+1), the algorithm can start.

Figure 1: a) A deployed sensor network. b) A cyclic order π of the nodes.

3.1 Description

Starting from its initial position at an arbitrary node, the robot visits the nodes according to the
circular order π, moving in the “counter-clockwise” direction (i.e., from xπ(i) to xπ(i+1)) when aware
of a pending request. A node whose battery is about to become depleted originates a recharging
request and waits for the robot; the request is forwarded in the “clockwise” direction (i.e., from xπ(i)

to xπ(i−1)) until it reaches either the robot or another node waiting for the robot, creating in this
way a trail to be followed by the robot when it becomes available. Note that a request contains no
specific information (e.g., id, location, etc.) about the node issuing or forwarding it. All nodes have
the ability to receive and forward a single request even if they are not operational.

Summarizing, (1) each node communicates only locally: with the neighboring nodes in the cyclic
order (to send or receive a request), or with the robot if currently there (to communicate the presence
of a pending request); (2) the robot moves only from one node to the next in the cyclic order, is
aware only of whether or not there is a pending request, and has no need of additional memory or
calculation.

Algorithm LIC prescribing the behavior of the nodes and of the robot is shown in Figure 2, using
the State×Event→Action notation. With respect to the protocol, a node x can be in one of two
states, Regular or Waiting, and keeps track of whether or not it has received a pending request
from its predecessor in the order (Boolean variable Q(x)). Initially all nodes are in state Regular,
Q(x) = 0 for all x ∈ X , and the robot is at an arbitrary node.

3.2 Properties: Tours and Weakness

A tour from node x is defined as the visit of all the nodes by the robot starting from x (and possibly
charging it) and ending when arriving again at x. Let ∆̂ = ∆− τ denote the amount of time before
a fully charged battery falls below the threshold.

Lemma 1. Let xπ(i) require recharging both at the beginning and at the end of a tour from it; then
also xπ(i−1) requires recharging when reached by the robot in this tour.

Proof. Let xπ(i) be found to be needing recharging at time t0, fully recharged at time t1 = t0 + ρ,
and found empty again at the end of this tour, at time t2.

By contradiction, let the previous node xπ(i−1) be found not needing recharging when visited by
the robot in this tour. Let k ≥ 0 be the number of the nodes (other than xπ(i)) that have been
recharged in this tour. In other words, the robot has spent in this tour kρ time units to charge them
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Regular
when battery level reaches threshold

if Robot is not here then
send request to counter-clockwise neighbour;

become waiting;

receiving request
Q(x) := 1;
send request to counter-clockwise neighbour;
become waiting,

Waiting
receiving request:

Q(x) := 1.

receiving Robot (/*robot arrives here*/)
if battery level at or below threshold
Be Charged;

if Q(x) = 1 then
Q(x) := 0;
send Robot to clockwise neighbour;

become Regular,

Figure 2: Protocol LIC executed by node x.

before reaching x0 at time t2; that is, t2 ≥ t1 + kρ+ nd. Since xπ(i) is found needing recharging at
time t2, we must have

kρ+ nd ≥ ∆− τ = ∆̂.

On the other hand, the time elapsed between the time t′ = t0 − d the robot left xπ(i−1) in the
previous tour from xπ(i) and the time t′′ it reached it again in this tour is at least (k+1)ρ+nd, since
xπ(i) was recharged in this interval. Since xπ(i−1) is assumed to be found non needing recharging,
we must have

(k + 1)ρ+ nd < ∆̂

a contradiction.

Analogously,

Lemma 2. Let xπ(i) require recharging both at the beginning and at the end of a tour from it; then
also xπ(i+1) will need to be recharged when reached by the robot in the next tour from xπ(i).

Proof. Let xπ(i) be found needing recharging by the robot at time t0, fully recharged at time t1 =
t0 + ρ, and found needing recharging at the end of the tour, at time t2. Let k ≥ 0 be the number
of other nodes recharged in this tour. For node xπ(i) to be needing recharging at time t2, we must

have kρ+ dn ≥ ∆̂.
Consider now the state of node xπ(i+1) when it is reached by the robot once xπ(i) has been

recharged. The time elapsed from the previous visit is greater than or equal to (k + 1)ρ+ dn (since
also xπ(i) was recharged in this interval). Since (k + 1)ρ + dn = kρ + ρ + dn > ∆̂, it follows that
node xi+1 needs recharging when it is reached by the robot.

We say that x is weak if there exists a tour from x where x needs recharging both at the beginning
and at the end of the tour. Let tweak be the first time when this happens. Lemmas 1 and 2, together,
prove the following important property:
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Theorem 1. If there is a weak node then from time tweak every node visited by the robot is found
to need recharging. This holds regardless of the threshold τ .

This, in turns, has important consequences on the size of the coverage of the network:

Theorem 2. Let n > m = d ∆
(ρ+d)e. If there is a weak node, then there exists a time t, such

that, ∀t′ > t,m ≤ Coverage(LIC, t′) ≤ m + 1, and all nodes have the same disconnection time:
∀x ∈ X , Disconnect(LIC, t′, x) = (n− 1)(ρ+ d) + d−∆.

Proof. Let xπ(i) be weak; thus, there is a tour where xπ(i) will be recharged both at the start and
the end of that tour; let t be the time when the recharging at the end of that tour will be completed.
By Theorem 1, from this time on the robot finds only nodes needing recharging; since it takes ρ time
units for the robot to recharge a node and d time units to move to the next node, by time t′ = t+ ∆
the robot has recharged the consecutive nodes xπ(i+1), xπ(i+2), ..., xπ(i+m−1) where m = d ∆

(ρ+d)e and

all operations on the indices are modulo n; if ∆ is not a multiple of ρ+ d, then it is currently
recharging xπ(i+m), otherwise also xπ(i+m) has been fully recharged. But, at this time t′ = t + ∆,
xπ(i)’s battery is totally depleted, and so obviously is the battery of all the nodes after xπ(i+m) up
to and including xπ(i). This means that, at time t0 = t+m(ρ+ d), exactly n−m nodes have their
battery completely empty; hence Coverage(LIC, t0) = m.

Observe that, when xπ(i+m+1) is reached and fully recharged, at time t1 = t0 + (ρ+ d), xπ(i+1)’s
battery is depleted; that is Coverage(LIC, t1) = m. More generally, when xπ(i+m+j) is reached and
fully recharged, at time tj = t0 + j(ρ+d), xπ(i+j)’s battery is depleted; that is, Coverage(LIC, tj) =
m. On the other hand, at any time tj < t′ < tj+1 xπ(i+j)’s battery might not yet be depleted; that
is, Coverage(LIC, t′) ≤ m+ 1.

Since after time t the robot keeps charging every node it encounters, it will spend n(ρ+ d) time
units to complete a tour. During that time, each node is not disconnected for ρ + ∆ time units.
Therefore, every node will have disconnection time (n− 1)(ρ+ d) + d−∆.

3.3 Properties: Rounds and Stability

Let us call round from node x any sequence of consecutive tours from x where at the beginning of
the first tour and at the end of the last x’s battery needs to be recharged, and in all others it does
not. Clearly a round from x might include several tours from x.

We will denote by rj(x) the j-th round from x, j ≥ 1; when no ambiguity arises, we will indicate
a round from x simply by r(x).

Let σj(x) denote the ordered sequence of the nodes charged during rj(x). We say that the
network is stable if ∃j ≥ 1 such that ∀x ∈ X ,∀j′ > j, σj(x) = σj′(x). That is, in a stable network,
the order in which the nodes are charged is the same in every round; hence, in a stable network, we
can omit the indication of the round and denote σj(x) simply as σ(x).

When a network is (or has become) stable, it enjoys some obvious properties. Among them:

Lemma 3. Let the network be stable. Then
(i) ∀x ∈ X , σ(x) is a permutation of the elements of X ;
(ii) ∀x, y ∈ X , σ(x) is a cyclic shift of σ(y);
(iii) every round from any node is composed of the same number of tours.

An important property of a network once it becomes stable under LIC is the following.

Theorem 3. If the network is stable under LIC and n > 2∆
ρ +1, each round is composed by a single

tour.

Proof. Let the network be stable; then, by Lemma 3 (iii), every round from any node x is composed
of the same number s of tours. We want to show that s = 1 if n > 2∆

ρ + 1.

By contradiction, let s > 1. Consider a round from node x and let f(x, s) be the number of
nodes charged in the last tour of this round. We will consider three cases depending on the value of
f(x, s).
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Case 1 : f(x, s) < n
2 . In this case, the number of nodes charged in the first s − 1 tours is

k = n− f(x, s) ≥ bn2 c+ 1.
Consider the amount of time T elapsed from the moment x has been charged at the beginning

of the round, to the beginning of the last tour of this round.
By definition, and since k ≥ bn2 c+ 1 and s > 1, we have

T = (k − 1)ρ+ (s− 1)d n ≥ bn
2
cρ+ (s− 1)d n ≥ bn

2
cρ+ d n.

Since, by definition of round, x is found by the robot not to need recharging at this time, we have
∆− τ = ∆̂ ≥ T , that is:

∆ ≥ ∆̂ ≥ T ≥ bn
2
c ρ+ d n > bn

2
c (ρ+ 1) .

But n > 2∆
ρ + 1 by hypothesis; that is, (n−1)

2 ρ > ∆; a contradiction.

Case 2 : f(x, s) > n
2 . In this case, there must exist a node y such that f(y, s) < n

2 . By considering
the round from y (instead than from x), by Case 1 the contradiction occurs.
Case 3 : f(x, s) = n

2 . If s > 2 then there must exist a node y such that f(y, s) < n
2 ; by considering

the round from y (instead than from x), by Case 1 the contradiction occurs.
Finally, let s = 2. In this case, n is even, the round r(x) is composed of two tours, and

f(x, 1) = f(x, 2) = n
2 . Note that the nodes charged in the second tour of r(x) are the complement

of the ones charged in the first tour.
Consider now the node y, next in the cycle, visited by the charger right after x. We have two

cases (see Figure 3) depending on whether or not y needs to be recharged at this time. Case (3a) :
y needs to be charged. In this case, consider the round r(y) starting after charging y (see Figure
3 (3a), bottom). Round r(y) must also be composed of two tours each containing exactly n

2 nodes
in need of charge (i.e., we must have f(y, 1) = f(y, 2) = n

2 ), otherwise a contradiction would arise
because of the previous reasoning applied to y. However, the nodes in need of charge in the first
tour of r(y) are the same as the ones in the first tour of r(x) except for y itself; thus f(y, 1) = n

2 −1,
a contradiction. Case (3b) : y does not need to be charged. In this case, consider the round r(y)
starting from y the last time it was charged before time ts(x). By definition, the nodes in need of
charge in the first tour of r(y) are the complement of the ones charged in the first tour of r(x, 1)
excluding y, thus f(y, 1) = n

2 − 1, a contradiction.

FUN 2012 

Case%(3a)% Case%(3b)%

x% y% x% y%

Figure 3: Cases (3a) and (3b) of Theorem 3 in a stable network with n = 8. Each row corresponds to a tour
starting from x; black (white) circles represent nodes charged (not charged) in that tour. A round r(x) consists of
two consecutive tours starting after a black x. Highlighted in the top (resp. bottom) is the first tour of r(x) (resp.
r(y)) in the two cases.

4 Stability, Effectiveness, and Optimality

4.1 Stability and Effectiveness

All the analytical properties we have established on LIC hold if and when the network becomes
stable. In the following, we prove that stability under LIC is inevitably achieved in almost all
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networks, establish an upper bound on the number of rounds before that happens, as well as tight
bounds on the effectiveness of LIC.

4.1.1 Stability of LIC

In the following, we prove that, in all networks with n > 2∆
ρ + 1, stability under LIC is always

achieved. To do so, we need some additional terminology and lemmas.
Given a round r(x) from x, let tour1(r(x)), tour2(r(x)), . . . , tours(r(x)) denote the tours it is

composed of, and let k(x, i) be the number of nodes charged in touri(r(x)). In particular, let
k(x) =

∑s
i=1 k(x, i) and k(x) = k(x)− k(x, s). In the following, let n > 2∆

ρ + 1.

Lemma 4. If there exists a node x starting a round r(x) at time t with s = 1, then the network is
stable from time t.

Proof. A node x starting a round r(x) at time t with s = 1 is, by definition, a weak node. From
Theorem 1, we know that from time t every node visited by the robot is found to need recharging,
that is, after this time, the order in which the nodes are charged is the same in every round and
thus the network is stable by definition.

We next show that a round from any node which is composed by more than one tour (i.e. with
s > 1) have the property that, during the first s− 1 tours of the round, less than half of the nodes
are charged.

Lemma 5. There exist no node x completing a r(x) with s > 1 tours with k(x) ≥ n
2 .

Proof. By contradiction. Consider a node x starting a round composed by s > 1 tours, such that its
first s−1 tours contain at least n

2 recharges; i.e., k(x) ≥ n
2 . Since x is found in no need of charge after

s− 1 tours, we have that ρk(x) + (s− 1)nd < ∆̂. However, by hypothesis, ρk(x) + (s− 1)nd > ρn2 ,

which implies ρn2 < ∆̂, and thus

n < 2
∆̂

ρ
< 2

∆

ρ
+ 1,

a contradiction.

In other words, a necessary condition for having only rounds composed by more than one tour
is that k(x) < n

2 for all nodes and all rounds.

Lemma 6. If there exists a node x starting round r(x) at time t with k(x, s) ≥ n
2 , then there exists

a node x′ starting round(x′) at some time t′ > t such that round(x′) is composed by a single tour
(i.e., x′ is weak).

Proof. Consider the last node x′ charged in tours−1(x) and round(x′) starting after the charge of x′.
Assume by contradiction that round(x′) is composed by more than a single tour. Since round(x′)
fully includes the k(x, s) nodes charged in tours(x) and since, by hypothesis, k(x, s) ≥ n

2 we have

that k(x′) > n
2 , which is impossible by Lemma 5.

Lemma 7. If a node is not charged in an entire round it will be charged in the first tour of the next
round.

Proof. Let y not be charged in round r(x) from x, started at time t1 and ended at time t2. Since
x needed to be recharged at time t2, then t2 − (t1 + ρ) ≥ ∆̂. But since y was charged before time
t1, this means that at time t2 also its battery life is below the threshold; hence it will be charged as
soon as it is reached by the robot in the first tour.

We can now prove the main stability result.

Theorem 4. Let n > 2∆
ρ + 1. Then, under the LIC strategy, the network becomes stable within

finite time.
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Proof. Consider the first node x that is recharged twice by the robot since the beginning. In other
words, the first round r1(x) from x is the first to be completed among all the first rounds from all
nodes. Let t1 and t2 be the time when r1(x) starts and ends, respectively. Let r1(x) be composed
of s tours.

If s = 1, then the network is stable from time t1 by Lemma 4, proving the Theorem.
Let then s > 1. In this case, by Lemma 5, the number of nodes, other than x, recharged by the

robot in the first s− 1 tours of r1(x) is k1(x) < n
2 . Consider the total number k1(x) of nodes, other

than x, recharged by the robot in r1(x).
If k1(x) > n

2 , let x′ be the last node charged in the (s− 1)-th tour of r1(x); by Lemma 6, its first
round r1(x′), started at time t′ < t2, is composed by a single tour; hence, by Lemma 4, the network
is stable from time t′, proving the Theorem.

Finally, consider the case k1(x) ≤ n
2 . Clearly, in this case, the number k̄ = n−k1(x) of nodes that

are not charged at all during r1(x) is k̄ ≥ n
2 . By Lemma 7, all of them will be charged in the first tour

of the next round r2(x) from x. This implies that, if r2(x) had more than one tour, then k2(x) > n
2

contradicting Lemma 5; hence the network is stable from time t2, proving the Theorem.

4.1.2 Effectiveness of LIC

By bringing together the result of Theorem 4 with the observations on weakness and stability made
in Sections 3.2 and 3.3, we can immediately establish tight bounds on the effectiveness of LIC.

Theorem 5. Let n > 2∆
ρ + 1. Then, under the LIC strategy, there is a time t such that, for all

t′ ≥ t, we have

m ≤ Coverage(LIC, t′) ≤ m+ 1,

where m = d ∆
(ρ+d)e; moreover, for all x ∈ X

Disconnect(LIC, t′, x) = (n− 1)(ρ+ d) + d−∆.

Proof. By Theorem 4, the network will become stable within the first two rounds. By Theorem 3, it
follows that, from time tstable, each round is composed by a single tour; hence, by definition, every
node is weak. The bounds on coverage and disconnection time then follow from Theorem 2.

4.1.3 Round Bounds for Stability

We have shown that all networks with n > 2∆
ρ + 1 become stable under LIC. In this subsection

we investigate how long it takes for stability to be reached, and establish an upper bound on the
number S of tours within which stability will always occur.

Consider the first node x that is recharged twice by the robot since the beginning. In other
words, the first round r1(x) from x is the first to be completed among all the first rounds from all
nodes. Let r1(x) be composed of s tours; let us see how large can s be. From the last case considered
in the proof of Theorem 4, it follows that the network becomes stable after at most one more round;
that is S ≤ s+ 1. Consider the number k1(x) of nodes, other than x, recharged by the robot in the
first s− 1 tours of r1(x); then obviously, s ≤ k1(x) + 1. Since by Lemma 5, k1(x) < n

2 when s > 1,
we have s ≤ n

2 . Hence, we have the first upper bound

S ≤ n

2
+ 1

This bound can be refined. In addition to x, at least one node is recharged in each tour of r1(x).
However, since by Lemma 5 k1(x) < n

2 , k1(x) − k1(x) > n
2 nodes will not be recharged in the first

s − 1 tours. Among them, let y be the one closest to x in the cyclic order. Since y has not been
recharged in the first s − 1 tours, it means that its energy level when visited by the robot in the
(s−1)-th tour was high enough. This in spite of the fact that, from time t1 when this round started,
after x is fully recharged at time t1 +ρ, at least one node is recharged in each tour of r1(x). In other

71



Effective Energy Restoration

words, ∆− ρ > (s− 1)ρ+ (s− 1)nd; that is, ∆ > s(ρ+ nd)− nd; hence ∆
(ρ+nd) + 1 > s which gives

us a better upper bound

S <
∆

(ρ+ nd)
+ 2

The experimental evidence, to be shown in Section 5, indicates that this bound is quite far from
the actual value of S.

4.2 LIC versus OPTIMAL

We are going to compare the effectiveness of LIC with that of the optimal on-line strategy OPTIMAL.
In OPTIMAL, each request message is sent by the node to the charger; the robot processes all the

current request messages, and it computes which request to satisfy next so to minimize the number
of sensing holes and their duration. We are actually going to consider an ideal cost settings for
OPTIMAL: every request from every node reaches the robot directly, regardless of its current location;
the robot can reach any node from any node in the same amount d of time, regardless of its distance;
and the robot’s processing time is negligible regardless of the complexity of the computation.

Notice that the behaviour of the robot under OPTIMAL in this setting is easy to describe: the robot
just processes and services the request messages in the order they arrive; if two or more requests
arrive at the same time, ties are broken by Ids.

The effectiveness of OPTIMAL is simple to derive for most networks:

Theorem 6. If n > (∆ + ρ)/(ρ+ d) then, under the OPTIMAL strategy, there exists a time t such
that, for all t′ > t

d ∆
(ρ+d)e ≤ Coverage(OPTIMAL, t

′) ≤ d ∆
(ρ+d)e+ 1;

moreover, for all x ∈ X

Disconnect(OPTIMAL, t′, x) = (n− 1)(ρ+ d) + d−∆.

Proof. Let x0, x1, . . . xn−1 be the nodes ordered by their initial battery level, where nodes with the
same level are ordered by their Id. Clearly this is the order in which the requests are considered
by the robot. Let ti,1 be the time when xi is fully charged for the first time; thus, ti,1 + ρ + d ≤
ti+1,1. This implies that the time ti,j when the node xi will been fully charged for the j-th time is
ti,j + ρ+ d ≤ ti+1,j . In other words, the nodes will be always serviced according to the initial order.

After fully charging node xi for the j-th time at time ti,j , the robot will have fully charged all other

nodes after at least (ρ+ d)(n− 1) time units. By hypothesis, n ≥ ∆+ρ+d
ρ+d ; thus, (ρ+ d)(n− 1) ≥ ∆̂.

In this case, by time ti,j + (ρ + d)(n − 1), the (j + 1)-th request by xi is already in the queue and
thus the robot goes to service xi next. In other words, after a full round, the robot continuously
charges the nodes in the same order without ever stopping.

The coverage size in this case is easy to compute. Let X be the total number of nodes that are
alive at any given time. This means that ρ(X − 1) + (X − 1)d < ∆, but ρX + Xd ≥ ∆ and thus

∆
(ρ+d) < X < ∆+ρ+d

(ρ+d) .

Since after time t0,2 the robot keeps charging every node it encounters, it will spend (n −
1)(ρ + d) + d time units to complete a round; hence, every node will have disconnection time
(n− 1)(ρ+ d) + d−∆.

This theorem has an immediate very strong consequence for the effectiveness of LIC.

Theorem 7. If n > 2∆
ρ + 1 then there exists a time t such that for all t′ > t

Coverage(LIC, t′) = Coverage(OPTIMAL, t′);

moreover, for all x ∈ X

Disconnect(LIC, t′, x) = Disconnect(OPTIMAL, t′, x)
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Proof. Since 2∆
ρ + 1 > ∆+ρ

ρ+d , the claim follows directly from Theorems 5 and 6.

In other words, for all networks with n > 2∆
ρ + 1, the recharging strategy LIC, with its low

communication and computations costs, performs as well as the optimal strategy.

5 Experimental Analysis

The results of the previous Section describe the behaviour of the network once it stabilizes in time.
We run extensive simulation to determine the stability of the network under LIC and to observe its
behaviour in terms of Coverage Size and Disconnection Time (already studied theoretically).

5.1 Simulation Environment

The experiments were implemented in the simulator discrete-event MAS toolkit MASON [18].

The variable parameters involved in the experiments are: the number of nodes n, the battery
life ∆, the charging time ρ, and the travel time d from a node to the next.

The following table shows the values considered for each parameter, where the temporal values
are all in the same scale:

Parameters Values
Number of nodes n 100, 200, 300, 400, 500
Battery Lifetime ∆ 2000, 3000, 4000
Threshold τ 30% of ∆
Charging Time ρ 1, 10, 20, 30, 40, 50
Travel Time d 1, 5, 10, 20, 30

Each node x has initially an amount of energy level chosen uniformly at random in the range [τ ,
∆]; the charger’s initial placement is at a node chosen uniformly at random.

For each combination of the values of the parameters, we have executed 20 executions and com-
puted the average coverage size and disconnection time. To detect stability we have also maintained
the information about the charging order of the nodes under LIC.

5.2 Stability

Starting with arbitrary initial charge levels, the experimental results show that, for all values of
the parameters, the charging order becomes periodic and the network stable; moreover stabilization
occurs within two rounds. In other words, under LIC the network becomes stable within two rounds.
See Figure 4 where stability is shown for some choices of the parameters; the results for all the other
parameters’ combinations are consistent with these. Note that, for smaller capacities, as well as for
larger networks, stabilization occurs even sooner, within one round.

Once the network stabilizes, the theoretical bounds on coverage size and disconnection time
established analytically (Theorem 5) hold; indeed, the simulation results of the next section confirm
all these bounds.

5.3 Disconnection Time

We now study the impact of varying the various network parameters on Disconnection Time. The
simulations show expected results without revealing any surprises. Generally, Disconnection Time
increases with the increase of the number of nodes, of charging time and of travel time between
successive nodes, while it decreases with the increase of capacity.
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Figure 4: stabilization n=300, d=1

5.3.1 Effects of Charging Time ρ.

In order to determine the impact of the charging time ρ on the effectiveness of the proposed algorithm,
we start by analyzing the effects of various charging time on disconnection time for different network
sizes using n = 100, 200, 300, 400, 500 nodes. In these scenarios, we fix the node capacity ∆ = 2000
and we consider unitary travel time between neighboring nodes (the case of d 6= 1 will be treated
separately). The results obtained varying ∆ are consistent with the ones displayed here and are not
shown. In all cases the results are as one would have expected.

Figure 5: Effect of Charging Time ρ on Disconnection Time; ∆=2000, d=1

The graphs in Figure 5 shows the trend in the disconnection time for the considered network
sizes. In general, we can see a similar pattern in the graph: for a given number of nodes, the
disconnection time increases as the charging time increases because the waiting time for the robot
increases.

5.3.2 Effects of Node Capacity ∆.

We now analyze the effect of node capacity ∆. In the graphs below we show the impact of ∆ by
fixing n and varying ρ, as well as by fixing ρ and varying n. Also here, the travel time between nodes
is considered unitary (the case of d 6= 1 will be treated separately). Figure 6 shows the impact on
disconnection Time (a), (b): when n = 300 nodes while ρ varies. The results reveal no surprises:
for a given network size and charging time, the disconnection time decreases as the node capacity
increases.
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(a) Effect of Node Capacity on Disconnection Time. n=
300

(b) Effect of Node Capacity on Disconnection Time.ρ=20

Figure 6: Effect of Node Capacity ∆ on Disconnection Time

5.3.3 Effects of Network Size n.

We now observe the effect of network size on disconnection time, fixing the node capacity ∆ = 2000
and travel time d = 1, and varying the value of the charging time ρ. As Figure 7 shows, disconnection

Figure 7: Effect of Network Size. ∆=2000, d=1

time increases, as expected, while the network size increases, and they do so also when varying ρ.

5.3.4 Effects of Travel Time.

We now study the impact of the time it takes the robot to go from a node to the next in the
cyclic order on disconnection time. In the experiments, we set node capacity ∆ = 2000 unit of
energy, and we vary the travel time between nodes to be uniform, but not necessarily unitary:
we consider d = 1, 5, 10 units. We consider various network sizes n = 100, 200, 300, 400, 500, and
various charging time ρ = 1, 10, 20, 30, 40, 50. Figures 8 depicts the effect of the travel time on the
disconnection time. We conclude that as the travel time between nodes increases, the disconnection
time increases too. In general, most nodes get charged before their battery becomes empty, which
means a lower disconnecting time. As the number of inactive nodes increases due to the increase in
travel time, the disconnecting time increases.
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(a) Effect of Travel time on Disconnection Time.n=300 (b) Effect of Travel time on Disconnection Time.ρ=20

Figure 8: Effect of Travel time on Disconnection Time. ∆=2000

5.4 Coverage Size

While the impact on disconnection time is as expected, the observation of coverage size has revealed
much more interesting behaviors.

5.4.1 Effects of Charging Time ρ.

Figure 9: Effect of Charging Time on Coverage Size. ∆=2000, d=1

From Figure 9 we observe that when ρ = 1 the increase in size corresponds to an increase of
coverage size up to n = 400, at which point the coverage size seems to stabilize to a constant value.
The same behavior can be observed for larger ρ, where however the stabilization occurs earlier; in
fact, for ρ ≥ 10 we observe it when n = 200. This behavior is quite interesting and will be discussed
further later. From the graph, we can also see that coverage size decreases varying ρ, when observing
a fixed value of n, which is to be expected.

5.4.2 Effects of Node Capacity ∆

Figure 10 (a) shows that, as one would expect, when node capacity increases, also the coverage size
increases (when n is fixed). On the other hand, fixing a given capacity, the increase in the network
size correspond to a decrease of coverage size. Interestingly, from Figure 10 (b) we observe again
that the coverage size does not change when fixing a given node capacity, even when n changes.
In other words, the node capacity is independent of the network size and confirms the theoretical
derived in Theorem 5, even for n smaller that 2∆

ρ + 1.

76



International Journal of Networking and Computing

(a) Effect of Node Capacity on Coverage Size. n = 300 (b) Effect of Node Capacity on Coverage Size. ρ = 20

Figure 10: Effect of Node Capacity on Coverage Size

5.4.3 Effects of Network Size n.

The observation just made can be clearly seen also in Figure 11, where we note that the coverage
size increases with the network size but eventually stabilizes. The stabilization occurs earlier for
smaller values of charging time ρ still confirming the theoretical bounds established in the previous
Section.

Figure 11: Effect of Network Size on Coverage Size. ∆=2000, d=1

5.4.4 Effects of Travel Time.

When the travel time between two nodes is not unitary, but still constant, we make observations
that are consistent with what already seen (see Figure 12), which makes us conclude that, as long
as the travel time between two nodes is the same, the actual value does not influence the general
behavior of the strategy.
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(b) Effect of Travel Time on Coverage Size. n = 300 (c) Effect of Travel Time on Coverage Size. ρ = 20

Figure 12: Effect of Travel Time on Coverage Size

5.4.5 More detailed analysis.

To better analyses the observed phenomena concerning coverage size, we now focus on some specific
scenarios to analyze how the coverage size changes in time.

Starting with arbitrary initial charge levels, the experimental results show that the first few tours
of the ring performed by the robot follow a schedule that highly depends on the initial distribution
of charges; however, we confirm our conjecture by observing that, for all choices of parameters:

• the charging pattern stabilizes becoming periodic;

• stabilization occurs within two rounds.

In other words, the networks become stable within two rounds. Figure 9, for example, shows
coverage size varying ρ confirming that whenever we have n > 2∆

ρ + 1, the average coverage size
stabilizes, that coincides with the theoretical value shown in Theorem 5. The same is observed when
varying the node capacity ∆.

Figure 13: Coverage Size for ∆=2000,d=1,ρ=20.

Figures 13 and 14 also display a clear evidence of stabilization by showing coverage in time for
different network sizes under different choices of ∆ and ρ. When executing each scenario, computing
coverage size and disconnection time, we have also recorded the charging order of the nodes. We
have seen that, after at most two rounds, regardless of the size, the network stabilizes. Stability
occurs for any value of n, we then can observe that for n > 2∆

ρ + 1 (i.e., n = 200, 300, 400, 500 in

Figure 13 and all values of n in Figure 14), coverage does not depend on n and coincides with the
theoretical value which is shown in the next section.
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Figure 14: Coverage Size for ∆=2000,d=1,ρ=10.

Finally, we observe that these phenomena hold in all experiments regardless of the initial distribu-
tion of charges; that is, the same phenomenon has been observed not only with random distributions,
but also with specific ones, such as when the charges are increasing in a clockwise order (see Figure
15) or in counterclockwise order (see Figure 16).

Figure 15: Increasing initial charges

5.5 Comparison with OPTIMAL

We now turn to the comparison between LIC and OPTIMAL. We already established that, when
n > 2∆

ρ + 1, the two strategies are equivalent both in terms of coverage size and disconnection

time (Theorem 7). Extensive experimental results, varying ∆, ρ, d, and n, confirm the theoretical
findings.
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Figure 16: Decreasing initial charges

(a) Coverage. (b) Disconnection time.

Figure 17: LIC vs OPTIMAL (∆ = 2000, ρ = 20, d = 1).

For example, Figure 17 shows coverage and disconnection time of the two strategies for different
network sizes when ∆ = 2000, ρ = 20 and d = 1. Notice that Theorem 7 does not hold when
n < 2∆

ρ + 1; in fact, as shown in Figure 17, OPTIMAL has a much better coverage than LIC for the
case n = 100.

6 Concluding Remarks

In this paper, we introduced the notion of effectiveness of energy restoration strategies. We proposed
a very simple decentralized battery recharging strategy, which, in spite of its simplicity and of the
use of very limited resources, achieves optimal effectiveness in most cases. The technique is based
on the on-demand visit of the nodes by a mobile robot in a predefined circular order only when
aware of a pending request. The optimality of the strategy is proven for sufficiently large networks
(n > 2∆

ρ + 1). It would be interesting to consider also the case of smaller n, where our strategy is
not optimal; the detailed analysis of the charging dynamics for that case will be the object of future
study.

Our studies, both analytical and experimental, have been carried out in an abstract setting, with
several simplifying assumptions. Among them, we assumed that the time necessary for the robot
to move from a node to its successor in the cyclic order is uniform. We did run experiments with
variable distances between nodes; all these experiments do not show any significant difference with
the results obtained in the paper with uniform distances; the theoretical validation is however left
for future work.
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Figure 18: Creating a virtual cycle using DFS.

Our strategy is based on the existence of a cyclic order to be used by the charging robot, where
successive nodes in the order are within direct communication range. Should such a cycle not exist
in the communication graph (because it is not Hamiltonian) or be difficult to compute, a virtual
cycle based on a simple DFS could be used (see Figure 18). The drawback would be that the
communication distance between two neighbours in the cycle might be more than one (i.e., multi-
hop communication might be required) and the physical distance between them might increase.
Alternatives to the cyclic order, to be considered and explored, are less regular ordering structures
which decentralized building techniques already exist (e.g., [4]).

Another assumption that would be interesting to lift is the one of constant charging rate ρ, the
same for all nodes. The case of variable charging rates, possibly depending on the current battery
level, as well as other physical factors (e.g., battery capacity decay) are important open research
directions.
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