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Abstract

To reduce power consumption, approximate computing is an efficient approach for error-
tolerant applications such as image processing. Approximate arithmetic adders can be used
for the approximate computing, and can trade off accuracy for power. CMA, a dynamically
accuracy-configurable approximate adder, had been proposed. CMA can sharply reduce power
consumption compared with other accuracy-configurable approximate adders, while allowing it
to change accuracy-setting at run-time. In this paper, we evaluate CMA with error corrector
that needs only two gates for each digit in actual image processing circuit. By increasing slight
extra power, the proposed value corrector can improve PSNR quality of output images by up
to 73.71%.

Keywords: Approximate Computing, Arithmetic Adder, Error Corrector, Low-Power

1 Introduction

There are cases in which computational resources that can control significance of miscalculation
are used to computer design. The computer design can be applied for error-tolerant applications
such as image processing. The reason is that because it is difficult to perceive the small arithmetic
error in each pixel data by human eyes. The inaccurate data computing is called as approximate
computing. Approximate circuits such as adders, multipliers and other logical circuits are one
of important components constructing approximate computing since the approximate circuits can
reduce hardware size, delay and power consumption compared with accurate circuits.

This paper focuses on arithmetic adder circuits especially in approximate circuits. There are
several previous works for approximate adder circuits [8][5][3]. In the previous works, accuracy that
is assumed by the approximation cannot be changed after the circuit design since they are required for
error acceptable systems or applications with a configuration for desired accuracy. Carry Maskable
Adder (CMA) that can be dynamically switched accuracy of approximation had been proposed|9].
CMAs can dynamically select optimal balance point between energy consumption and accuracy at
run-time based on accuracy requirements on each error-tolerant application.
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The CMA has two factors of approximate calculations. One is that CMAs avoid generating and
calculating carries. Therefore, value related to carries is lost from the result of result. The other is
that CMAs calculate approximate result of addition regardless of the carries by using logical ORs
instead of logical XORs. The truth tables that are given by two inputs ORs and XORs are deferent
in only one row where signal value 1 is assigned to both inputs. The similarity can be exploited to
approximate addition. The OR Adder is already used in the previous work[8].

Ignoring carries means that the approximate result of addition leads to under estimation. On the
other hand, logical ORs produce over estimated result compared with logical XORs. For example,
when considering the calculation of 1+ 1, if only ignoring the carry to the higher digit of (10)2 that
is obtained as correct calculation result, the approximate calculation result will be (00)2, and the
approximation error is 2 in the negative direction. CMA has a characteristic that can reduce the
approximation error to 1 in the negative direction by not only preventing the carry but also setting
the approximation result of 1 + 1 to (01)2 by using logical OR.  The two conflicting direction for
the estimation might act to compensate with each other, and have preferable influence upon error
distance for result of addition.

The each factor of approximate calculations contributes reducing energy consumption. Since
the circuits related to the carries are inactivated, and XOR gates related to result of addition are
partially inactivated by that the XOR gates behave OR gates in CMAs. Details of the low power
techniques by CMA will be explained in the Section 2.

This paper propose an error corrector for CMA. The error corrector can be implemented by
minor modification for conventional CMA. Approximate error from CMA is corrected by biasing
output result. The bias is defined based on statistical analysis for error distances of pre-designed
approximate adder. Proposed error corrector requires only two gates for implementation for each
digit. The additional circuits will no consume much power. Therefore, performance of low-power
consumption for CMA cannot be degraded by proposed mechanism.

2 CMA:Carry Maskable Adder

2.1 Overview of CMA

Figure 1(a) shows block diagrams for n bit conventional adders. X, Y and Cin are inputted as
augend, addend and carry-in respectively. The result of addition and carry-out are outputted to S
and Cout respectively. We assume that Cout for each full adder (FA) is Cin of the succeeding next
significant FA. The adder is called as the ripple carry adder (RCA) generally. In addition, in Figure
1(a), half adder (HA) is used for the least significant bit of the adder instead of FA since the carry-in
from lower digit assumes zero. Figure 1(b) shows block diagram of inside CMAs. CMAs wire the
carries as with RCAs. There are differences compared conventional adders with CMAs. FAs and
HAs are replaced with carry maskable full adders (CMFA) and carry maskable half adders (CMHA)
respectively. The details of internal logic for CMFA and CMHA are described in next subsection.

CMFA and CMHA have additional input that is represented as M SK with in the figure. MSK
is used to control accuracy of approximation, inputted from storages such as a flip flop (FF) that
can be updated by system users at run-time. If M SK is negated, corresponding CMFA or CMHA is
immediately switched to approximate calculation. Otherwise, CMFA and CMHA calculate accurate
result of addition same as FA and HA. The storages are only used for not calculation but controlling
accuracy. Therefore the storages are ignored by evaluation in this paper.

Stepwise accuracy can be defined by considering a bit pattern for MSKs. A value included
all digits is less most affected by incorrect value for the lowest one digit of them. Oppositely, a
value included all digits is the most affected by uncertain value for the highest one digit of them.
Therefore, for example, if a four bits CMA is designed, we can define the stepwise accuracy in five
steps by extracting effective bit patterns from the complete accuracy to the lowest accuracy. The bit
patterns are {1,1,1,1}, {1,1,1,0}, {1,1,0,0}, {1,0,0,0} and {0,0,0,0}, stepwisely degrade the accuracy
in the listed order.
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Figure 2: Gate Leve Diagram of Carry Maskable Full Adder (CMFA) and Carry Maskable Half
Adder (CMHA)
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Figure 3: Equivalent circuit where MSK = 0 in CMFA.

Figure 4: Equivalent circuit where M SK = 0,C;n = 0 in CMFA.
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2.2 CMFA and CMHA

Figure 2 shows gate level diagrams for conventional full adder, CMFA, and CMHA. Figure 2(a)
shows conventional full adders. In general, full adders have two half adders and an OR gate, and the
half adder have a XOR gate and an AND gate. Consequently, a full adder has two XOR gates, two
AND gates and an OR gate. The two XOR gates are required to generate result of addition. The
two AND gates and an OR gate are required to generate carry-out. In Figure 2(a), conventional full
adders have two XOR gates and three NAND gates. The three NAND gates are numbered form (1)
to (3). The three NAND gates behave as the same function by two AND gates and an OR gates
described above.

Figure 2(b) shows CMFA. XOR gates can be assembled as composite gates using the other logic
gates such as AND, OR and NOT gate. The left side XOR gate in Figure 2(a) is represented as
an AND gate, an OR gate and a NAND gate in Figure 2(b). In addition, the NAND gate that is
numbered by (2) can be eliminated in Figure 2(b) since the NAND gate (2) can be unified as the
NAND gate (27).

Figure 3 shows the equivalent circuit where signal value 0 is assigned to M SK in CMFA. The
NAND gate (2’) outputs signal value 1 where at least one or more signal value 0 is inputted to it.
By fixing the other side input of the next AND gate to signal value 1, the output of the OR gate
connected in parallel with the NAND gate (2) passes through the next AND gate to the input of
the next XOR gate with no change. Therefore, if M SK is assigned by signal value 0, the left side
composite XOR gates will behave as an OR gate.

Figure 4 shows the equivalent circuit where signal value 0 is assigned to M SK and Cin in CMFA.
If the signal value 0 is assigned to Cin in Figure 3, the output of the OR gate passes through the
right side XOR gate to the S with no change by fixing the other side input of the XOR gate to signal
value 0. In addition, Cout is fixed to signal value 0 since one or more signal value 0 is inputted to
the AND gate.

They assume the behavior that is shown by Figure 4 where approximation is validated in CMFA
at run-time. If the Cin from least significant bit of the adders is reliably determined to signal value
0, the Cout of CMFA that are assigned to second or later bit of the adder are fixed to signal value 0.

Figure 2(c) shows CMHA that can be assigned to least significant bit of CMA. The conventional
half adder is constructed with a XOR gate and an AND gate. CMHA have composite XOR gates
with M SK same as CMFAs in Figure 2(b). If signal value 0 is assigned to M SK, CMHA produce
approximate result of addition by logical OR. CMHA has a NOT gate instead of an AND gate since
the inverted carry-out signal is already produced by the NAND gate represented as (2”) inside the
composite XOR gates. Furthermore, the Cout will be fixed to signal value 0, if MSK is assigned
to signal value 0, since the NAND gate (2”) outputs signal value 1 regardless of X and Y. Finally,
where M SK is assigned to signal value 0, CMHA works exactly like equivalent circuit of CMFAs
shown by Figure 4.

2.3 Reducing Power and Delay by CMA

The most important contribution of CMA is shown by Figure 4. If signal value 0 is assigned to
MSK and Cin in CMFA or CMHA, only an OR gate is validated. Therefore, CMFA or CMHA can
reduce dynamic energy for carry propagation by changing input values of X and Y. In other words,
during approximate calculation, t transistors that are mapped to the carry-chain cannot be switched
since all input parameters of the gates are fixed.

In addition, CMA can reduce delay beyond critical path delay. If signal value 0 is assigned to
MSK and Cin in CMFA or CMHA, the switching delay is accumulated only on the unmasked carry
chain path. Therefore, the delay of CMA can be determined by the number of adjacent CMFA or
CMHA that are configured as accurate.
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3 Proposed Error Correction

3.1 Statistical Analysys for Error by CMA

Figure 6: Results of Approximation for Lower 4 bits masked 8 bit CMA with Proposed Error
Corrector(EC).

In this section, we statistically analyze output value of CMA, show the aim of our proposed error
corrector and how to correct error for CMAs. Figure 5 shows results of approximation for lower 4 bits
masked 8 bit CMA. X (from 0 to 255) and depth Z (from 0 to 255) axis means addend and augend,
Y axis (from 0 to -16) means error. CMAs calculate 14+ 1 = 1 as approximate addition using logical
OR. Moreover, carry propagation is prevented in the range of a masked bit field. Therefore, the
error direction of CMAs is always negative. In the figure, the maximum error distance is represented
as -16, because the carry-out signal of fourth CMFA which means the value of 2% is discarded by its
mask input. When the addend or augend is repeatedly incremented by one, the error will increase
in order until the carry-out to fifth digit is required. After that, the error is rapidly decreased. From
this reason, Figure 5 shapes like a flower flog pin that turns upside down.

We can obtain two important results from the analysis. One is that the direction of error for
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CMA is always negative. Therefore, value that is used for correction must be positive value. If
the positive value is added to output of CMA, the error distances might be decreased. Two is that
spikes, the maximum error, can be found regularly in the figure. This means that discarding carry-
out signal in boundary between masked bits and unmasked bits is dominant for maximum error
distance. Therefore, we can detect the maximum error distance only focusing on the boundary of
mask bit field.

3.2 Methodology of Proposed Error Correction in CMA
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Figure 7: MED of proposed error corrector compared with conventional 8 bit CMA.
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Figure 8: MRED of proposed error corrector compared with conventional 8 bit CMA.

Figure 6 shows results of approximation for lower 4 bits masked 8 bit CMA with proposed error
corrector. In this paper, the error corrector is called as EC in convenience. X, Y and Z axis in
Figure 6 is the same as Figure 5. The proposed EC corrects error using positive value. Therefore,
maximum error distance can be decreased. In the figure, maximum error distance is changed from
16 to 8. Our proposed EC shifts error range. In the figure 6, error range is from 0 to -16. In the
figure 8, error range is from 8 to -8. Using the error range of positive direction, proposed EC can
improve accuracy of CMA.

For example, the CMA with EC of 8-bit mask and CMA of 7-bit mask have similar accuracy
since the maximum error distance is the same. However, in CMA with 7-bit mask, carry propagation
from 7th bit to 8th bit occur. On the other hand, CMA with EC ignores the carry propagation.
Therefore, CMA consume more power in the 8th bit position than CMA with EC.

In our EC, the carry-out signal is used for the correction. Where the error exceeds the half of
maximum error distance (23), if the carry-out signal across the mask boundary of CMA forcedly be
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1, corrected maximum error distance will be decreased to less than half since the correcting value
of 2% is added to result of original approximate addition. To simplify the EC circuit, our EC only
detect a partial condition that both addend and augend that is pointed by the highest bit of mask
bits are 1. That is because if the large circuit is required for the detection, the most important
advantage of CMA, low-power, will spoil.

In this section, statistical accuracy of CMA with EC is evaluated to validate our proposal. MED
and MRED [2] are widely used for evaluation for approximate arithmetic circuits.

Error distance (ED) is defined as the difference between an accurate sum (M) and its approximate
sum (M), i.e., ED = |M' — M|. MED is the average of EDs. Relative ED (RED) is defined as
the ED divided by M, i.e., RED = ED/M = |M' — M|/M. Mean RED (MRED) is the average of
REDs.

Figure 7 and 8 show MED and MRED respectively. MED and MRED is calculated by assuming
all patterns for inputs are assigned to addend and augend. Therefore, the number of tests is 2% x
28 The black bar means conventional CMA. The gray bar means CMA with proposed EC. X axis
means mask bits. For example, 4 of X axis mean that the lower 4 bits in CMA is masked. In all
mask setting, accuracy is improved for both criteria. These result shows that our EC can contribute
improving accuracy for CMA regardless of accuracy configuration for conventional CMA. In our
experimental result 16 bit CMA with EC is evaluated. The bit-scalability of our proposal will show
in Section 6.

4 Circuit Desgin for Proposed Error Corrector
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Figure 9: CMFA with proposed error corrector (CMFA with EC).
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Figure 10: 4 bit sub-adder with proposed error corrector (4 bit CMA with EC).

This section shows circuit design for proposed error corrector. Figure 9 shows CMFA with EC
that proposed error correction in Section 3 is embedded into CMFA. Two gates, a detector and a
corrector, are added to conventional CMFA logic. The input signal bnd is used to inform where is the
boundary position. If the bnd is input as 1 the CMFA is configured as the highest bit of mask bits.
The corrector outputs forced carry-out signal when the bnd and X, Y are input as 1. The two gates
consume extra dynamic energy by increasing the total amount of switching activities. Moreover,
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Figure 11: 16 bit CMA with EC.

unmasked CMFA might consume extra dynamic energy due to the forced carry signal. This paper
will evaluate power consumption for proposed EC, and carefully discuss trade-off between accuracy
and power reduction in section 6 since the main contributions of CMA is power reduction.

Figure 10 shows 4 bit CMA with EC. The CMFA with EC is only located in the highest bit of
the 4bit CMA. In our evaluations, 16 bit CMA with EC is designed. Therefore, the 4 bit CMA with
EC is treated as a sub-adder, placed into the adder design as four instances.

Figure 11 shows 16 bit CMA with EC. The four 4 bit CMA with ECs are placed and connected
each other like a ripple carry adder. In 16 bit CMA with EC, granuarity of accuracy configuration
is 4 bitwise. In other words, four level accuracy can be can be configured. Therefore, M SK bits in
a 4 bit CMA with EC must be {0,0,0,0} or {1,1,1,1}. In addition, the bnd input that is connected
with the highest level of masked 4 bit CMA with ECs must be 1.

5 Experimental Setup

5.1 Experimental Setup for adder units

To evaluate power consumption, conventional 16 bit CMA and proposed CMA with EC are designed
by using Verilog HDL. Synopsys Design Compiler and NanGate 45nm Open Cell Library [1] are
used for logic synthesis. The default compiler option is used. Area and delay required to ASIC
implementation can be obtained from the report of Design Compiler. The designed RTL and test
bench are used to generate the value change dump (VCD) files. The RTL and test bench is run on
Synopsys VCS simulator. The switching activity interchange format (SAIF) file that is converted
from the VCD file is used as input to Synopsys Power Compiler. Dynamic power consumption
for designed circuits can be obtained from the report of Synopsys Power Compiler. In the VCS
simulation, input signals for target circuits are changed by 0.5 GHz frequency. Using one million set
of input signal that is generated by random function in VCS, switching activity for target circuits
are simulated. Static (leakage) power consumption for designed circuits is also obtained the report
of Synopsys Power Compiler.

MED and MRED are calculated same as calculation method for Figure 7 and 8. Therefore, in
this case, the number of tests is 216 x 216, Accuracy evaluation is evaluated by using C++ program.

5.2 Experimental Setup for actual image processing circuits

1 4 7 4 1
4 16 26 16 4
G=|7 26 41 26 7 (1)
4 16 26 16 4
1 4 7 4 1
1 K o= o
R(x,y) = 573 i;gj;f(l +3,7 +3)(z +i,y +1) (2)
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Figure 12: An Example of image sharpening circuit for monochrome images.
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Figure 13: Colorization for image sharpening circuits.
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S(x,y) = (z,y) — R(z,y)[ + I(z,y) ®3)

To evaluate proposed EC in image processing, Image sharpening algorithm [4] is used. Cal-
culations of the algorithm represented as in formulas (1), (2) and (3). G is Gaussian kernel that
is approximately represented as discrete values of two dimensional Gaussian distribution. In our
evaluation, 5 x 5 Gaussian kernel is used. I is pixel value of original image, and R is pixel value of
smoothed image. Coordinates of the I and R in images are specified by x and y in the formulas. R
is calculated as discrete convolution of Gaussian kernel and pixel value for original images, and then
is divided by a total sum of elements of Gaussian kernel (273). S is pixel value of sharpened image.
S is generated by adding absolute value of the deference between original and smoothed image to
original image.

The image sharpening algorithm is implemented as hard-wired logic in our evaluation. Figure
12 shows an example of our implementation of image sharpening algorithm for monochrome images.
All calculations of (2) and (3) can be implemented as addition since the multiplier and divider is
given as constant value from the formulas. For example, 5 X a can be transformed to 4 X a + a.
Any power of two multiplications can be implemented as constant left shift which is not required
any transistors. That is, only one adder are required to implement calculation of 5 x a. In this way,
any constant multiplication can be implemented as combination of constant left shift and addition.
Therefore, the sharpening algorithm only requires adder unit, whole circuit would be adder unit
array. In our implementation, conventional 16 bit CMA or 16 bit CMA with EC is applied to all
additions of (2) and (3) as adder unit, a monochrome image sharpening circuit requires 34 adder
units.

In our evaluation, we assume that color images are provided to our circuit. However, the sharp-
ening algorithm can process only monochrome images. Figure 13 shows how to colorize the image
sharpening circuits. Color images are constructed by information of three primary colors which are
red, green, and blue. In the true color representation, 24 bit that are 8 bit for red, 8 bit for green, and
8 bit for blue is required to represent for each pixel. To colorize the image sharpening algorithm, we
must process each 8 bit of pixel data as monochrome pixel data. Therefore, in our implementation,
three image sharpening circuit are configured in parallel. Naturally, 102 adder units are required to
implement color image sharpening circuit.

The color image sharpening circuit for one pixel is designed by Verilog HDL and synthesized by
Synopsys Design Compiler same as evaluation for adder units. Test bench that run on Synopsys
VCS read a color image file, separate each pixel data to three primary colors, and repeatedly provide
the separated pixel data to each monochrome image sharpening circuit. If the 256 x 256 pixel image
is given, data input is repeated at 65536 times. We assumed that the input frequency is 100MHz in
VCS. Switching activity file (SWIF) is also obtained through the VCS simulation. At the end of VCS
simulation, buffered outputs from the three sharpening circuits are joined. Finally, sharpened color
image file is generated by test bench. The generated image files can be used to evaluate accuracy
for approximation by CMA and CMA with EC.

Peak signal noise ratio (PSNR) is widely used as criteria for quality of images [6]. PSNR can
be used for relative comparison between generated images from the color image sharpening circuit.
The input images for the circuit are obtained from SIDBA web site [7]. In this evaluation, 256 x 256
pixels “ Lenna” and “ Mandrill” are used from the images.

In this paper, to evaluate accuracy, five step accuracy configuration names are defined for con-
ventional 16 bit CMA and proposed CMA with EC. ACCURATE means that the all sub-adders are
not masked. MSK1 means that only the least significant sub-adder unit is masked. MSK2 means
that the least significant sub-adder unit and its next higher level sub-adder are masked. MSK3 and
MSK4 are masked the same manner of these. In CMA with EC, notice that appropriate bnd signal
is provided at the same time of configuration. For example, when MSK2 is configured, only one bnd
signal of the second level sub-adder is asserted.
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6 Experimental Results

6.1 Area, Delay and Power for An Adder Unit

Table 1: Area and Delay Results for An Adder Unit

Area(um) Delay(ns)
CMA 90.972 1.06

CMA with EC | 96.292(5.8%up) | 1.24(16.9%up)

Table 2: Leakage Power Results for An Adder Unit

Leakage Power(uW)
CMA 2.4668

CMA with EC 2.6043(5.5%up)

Table 3: Accuracy Results of MED for An Adder Unit

CMA | CMA with EC | Improvement(%)
MSK1 3.7 2.8 23.3
MSK2 63.7 47.8 24.9
MSK3 | 1023.75 767.8 24.9
MSK4 | 16385.6 12287.8 24.9

Table 1 shows area and delay results for an adder unit. The CMA with EC increases by 5.8% of
implementation area, and by 16.9% of critical path delay. Those overhead is due to additional two
gates represented by Figure 9. Especially, in delay results, EC negatively affect circuit performance
since the additional OR gate is located in the path that calculates ripple carry-chain. However, CMA
does not aim to reduce critical path delay because of ripple carry connection. Moreover, conventional
CMA has area overhead against ripple carry adder (RCA). CMA can achieve low power consumption
instead of delay and area overhead. Therefore, delay and area overhead by our proposal might be
accepted as the same uses for CMAs.

Table 2 shows static power consumption results for an adder unit. The CMA with EC increases
by 5.5% of leakage power because of the area overhead. However, it is nescessary to pay attention
to that the increase of leakage power is reratively small compared with dynamic power consunption.
Figure 14 shows dynamic power consumption. In all configurations, on average, 0.3% of power
consumption is decreased by proposed CMA with EC. However, this reduction ratio is in error range
of Synopsys VCS simulation and Power Compiler. In principle, extra power must be required in
additional two gates. In fact, 1.4% extra power is consumed from MSK1 to MSK3 on average. From
the result, we can conclude that the EC only consume ignorable power. About 4.5uW can be saved
for each mask bit. On the other hand, EC consume extra power by about 1uW on average. This
conclusion is important because the EC can provide non-negligible improvement for accuracy.

6.2 Evaluation of Accuracy for An Adder Unit

Table 3 and 4 show MED and MRED respectively. In all configurations, on average, EC can improve
accuracy for MED by 24.5%, for MRED by 29.3%. As same as figure 7 and 8, in all mask setting,
accuracy is improved for both criteria. Especially, MSK4 achieves maximum improvement by 39.1%.
The most important characteristic from the table is that over 20% of minimum improvement is
observed for both MED and MRED. Therefore, we can conclude that proposed EC can achieve
stable error correction capability regardless of accuracy configurations.
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Table 4: Accuracy Results of MRED for An Adder Unit

CMA(xe=?) | CMA with EC(xe=?) | Improvement(%)
MSK1 7.9 6.0 23.4
MSK2 131.1 100.7 25.5
MSK3 2198.0 1551.3 294
MSK4 33332.9 20306.7 39.1
(uw)
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Figure 14: Dynamic Power Consumption for An Adder Unit.

6.3 Discussion of Trade-off between Accuracy and Power Reduction

Proposed EC can improve accuracy while increasing power consumption. In general, accuracy and
power reduction are in the relationship of trade-off. Figure 15 and 16 show Power vs. MED and
Power vs. MRED respectively. In the figures, X axis means MED or MRED, Y axis means Power.
In both figure, a polygonal line of CMA with EC is always located under CMA.

6.4 Evaluations in Actual Image Processing Circuts

Table 5: Area and Delay Results for Actual Implementation of Image Sharpening Circuit

Area(um) Delay(ns)
CMA 11614.091 9.13

CMA with EC | 12156.732(4.6%up) | 9.22(9.22%up)

Table 5 shows area and delay results for a color image sharpening circuit that is illustrated as
Figure 12. By using CMA with EC, implementation area increases by 5.8%, and critical path delay
increases by 0.9%. The percentage of area overhead is almost same as results for an adder unit since
the circuit is constructed as adder unit array. On the other hand, delay is relatively small compared
with results for an adder unit. It is because the delay of connection between adder units might be
dominant.

Table 6 shows static power consumption results for an adder unit. The leakage power increases by
4.7% by adding the error corrector to conventional circuit. The leakage power overhead is reasonable
for increase of area overhead.

Figure 17 shows dynamic power consumption while each image processing. Y axis means dynamic
power consumption, X axis means mask configurations. Results of “ Lenna’ image represents as
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Figure 15: Power vs. MED for An Adder Unit.
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Figure 16: Power vs. MRED for An Adder Unit.

Table 6: Leakage Power Results for Actual Implementation of Image Sharpening Circuit
Leakage Power(uW)
CMA 306.9021
CMA with EC | 321.6187(4.7%up)
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red lines. Results of “ Mandrill” image represents as blue lines. Solid lines mean results of CMA
with EC. Dashed lines mean results of conventional CMA. Results of Conventional CMA are always
located under CMA with EC. However, the distance between CMA and CMA with EC is quite
close, and following each other without leaving. This result means that the power overhead from
error corrector is almost constant regardless of mask and bnd configuration. Therefore, we can
conclude that the proposed EC can be used to any circuits without hesitation since estimation of
power consumption would be predictable.

Figure 18 shows PSNR results for the color image sharpening circuit. 256 x 256 pixels “Lenna”
and “ Mandrill” color image are processed by the circuit. Y axis means PSNR, X axis means mask
configurations. Red or blue and solid or dashed lines mean the same manner of Figure 17. Higher
value for PSNR means that the output image keeps higher quality. In each image, results of CMA
and CMA with EC are almost overlapped respectively. This result means that the quality of output
images is not related to contents of images. On the other hand, CMA with ED is always located
upper CMA. That is, CMA with ED can always produce even or higher quality images than CMA.
Especially in configuration of MSK2, the distance between CMA and CMA with EC is long. PSNR
is improved by 73.71%. This result means that the proposed EC works better than the other mask
configurations since the each pixel data is provided as 8 bit data.

Figure 19 shows images of “Lenna” and “ Mandrill” that have been processed by CMA and
CMA with EC on each mask configurations. The far left image is original image. Images in the
second column are sharpened images by using accurate adder. Images in from third to sixth column
are sharpened images by using CMA or CMA with EC. The first row represents conventional CMA.
The second row represents CMA with EC. In color image processing, error in each pixel data reflect
as color fading. From human eyes, in “ Lenna” image, obvious deference between CMA and CMA
with EC can be recognized in MSK2. In “ Mandrill” image, obvious deference between CMA and
CMA with EC can be recognized in MSK3. From these images, we can intuitively confirm validity
of proposed error correctionmechanism.

7 Conclusion

This paper proposed error correction mechanism for approximate adder, CMA that accuracy can be
dynamically configured. Proposed error corrector focuses on negative error direction that is produced
by CMA, and corrects toward positive direction. Proposed error corrector only requires additional
two gates for each digit. In our evaluations, we represented that proposed error corrector does not
consume much power. In addition, this paper discussed the relationship of trade-off between accuracy
and power reduction, showed the higher power efficiency for accuracy compared with conventional
CMA. To confirm the validity of our proposal in actual image processing applications, example
algorithm, image sharpening, was designed as a dedicated circuit, was evaluated in performance
index of area, delay, and power consumption. From the view point of the index, we showed that the
proposed error corrector caused around 5% of overhead on each performance index, and conclude
that the overhead is reasonable for contribution that the error corrector increases accuracy. In
addition, from the view point of PSNR, quality and eyesight, this paper also showed that proposed
error corrector can produce high quality images in the both criteria.
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