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Abstract

Order preserving encryption techniques are treated as some of the most efficient encryption
schemes for securing numeric data in a database. Such schemes are popular because they
resolve performance degradation issues, which are significant problems in database encryption.
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However, in some applications, the order itself is sensitive information, and should be hidden.
Conventional order preserving encryption techniques published so far, did not consider this issue.
Therefore, in this study, we consider three techniques that protect the order information and also
show good performance. The three methods hide the data order such that comparison operators
can be handled efficiently and performance degradation can be prevented. Our methods work on
the top of an order preserving encryption scheme and enhance the security of data. Experimental
results demonstrate the efficiency and effectiveness of the proposed three methods.

Keywords: Order preserving encryption scheme (OPES), Semi-order, Privacy preserving, Nu-
meric database.

1 Introduction

With the increasing demand of big-data processing and cloud computing, various organizations
and database engineers currently emphasize on the security and privacy of sensitive data such as
employee salary, age, and expenditure. Such sensitive data are often stored in a database. Sev-
eral encryption techniques have been proposed for preserving the privacy of sensitive data [12, 4].
However, such techniques degrade the performance of query execution performed on the encrypted
database; significant amount of time is spent for decrypting each tuple before computing condi-
tional operations provided as query a parameter. To address this problem, different variants of the
order preserving encryption scheme (OPES) and some of its variants have been proposed in few
articles [1, 2, 3, 4, 10, 6, 9].

We can also improve the performance of database queries by preserving the index information of
the original numeric values. However, in some database applications, the ordered index of numerical
data itself is considered as sensitive information. For example, some institutions may consider the
merit position of an individual as sensitive information that should not be disclosed to public. In
this regard, we considered semi-order preserving techniques, which perturb the original order index
of sensitive data to enhance data privacy without degrading the efficiency of comparison operations
over encrypted data.

In summary, the contributions of this study are as follows:

• We introduced three techniques for semi-order preserving encryption (SOPE) for numeric data,
which work on top of the OPES.

• We also introduced techniques for retrieving the original order of numerical plaintext data from
encrypted semi-ordered values.

• We empirically proved the efficiency of the proposed techniques through several experiments.

The rest of this paper is organized as follows. Section 2 reviews related works and previous findings.
Section 3 presents the notions and properties of the proposed techniques. Section 4 provides detailed
examples and analysis of the proposed techniques. In section 5 we experimentally evaluate and
compare the algorithms in the three techniques with the baseline method. Finally, section 6 concludes
the paper.

2 Related Work

A number of OPESs have been proposed in the literature [1, 2, 3, 4, 5, 10, 6, 9].
Agrawal et al. [1] proposed their OPES as follows: first, they model the input and target dis-

tributions as linear splines. Next, they flatten the plaintext database into a uniformly distributed
database. Furthermore, they transform the uniformly distributed database into a cipher database.

The work by Bebek [2] generates a sequence of random numbers. Moreover, the jth value of the
random number is added to the jth integer so that the original order is preserved. The problem of
this method is its inefficiency in encrypting values. Moreover, the process does not consider insertion
of new data into the database.

112



International Journal of Networking and Computing

Boldyreva et al. [3] proposed an order-preserving symmetric encryption. In their construction,
they used a natural relation between a random order-preserving function and the hypergeometric
probability distribution.

Different from the above schemes, Boldyreva et al. [4] considered cryptography based OPES. It
first defines the ideal OPES whose encryption function is selected uniformly at random from a set
of all strictly increasing functions. Although the ideal OPES is not feasible; it can be used as a
security goal for a realistic OPES. They proposed a method to map a plaintext x to its ciphertext
using a binary-search process in the ciphertext space and then map back the searched points using
hypergeometric distribution to the space.

In the method proposed by Ozsoyoglu et al. [10], a sequence of strictly increasing polynomial
function is used to construct the OPES. Encrypted value of an integer x is derived from iterative
operations of encryption functions on x. The OPES security algorithm is difficult to analyze because
it is not constructed using basic formal cryptographic algorithms.

Hacigümüş et al. [6] proposed a method that divides the domain of plaintext into multiple
partitions and then assigns an identification, which can be order preserved, for each partition.
They used a mapping function between the plaintext and encrypted value. A disadvantage of this
encryption algorithm is that it cannot compare all the plaintexts (e.g. the plaintexts in the same
partition).

Zheli Liu et al. [9] proposed a method that uses message space expansion and nonlinear space
split to hide data distribution and frequency.

Xiao et al. [13] developed protocols called ”DOPE” and ”OE-DOPE”, which can realize OPES
in multi-user systems. To ensure that no entity in the system knows the OPES encryption key, they
introduced a group of key agents into the system and proposed the DOPE protocol.

Ce Yang et al. [14] proposed an SOPE, although with the sacrifice of precision. In our proposed
work we maintain the precision of values in the database. Values do not change when we decrypt
the order information.

Each of the abovementioned algorithms considers storing the order value to the disk, which is
in fact risky. Therefore, we propose a new approach to enhance security, which works on top of the
OPES algorithm [1, 3, 4, 9].

Besides OPES, some of the secure multiparty computations use similar techniques, which are
shown in Sections 4.1 and 4.2. Among them, Hamada et al. proposed a secure multiparty compu-
tation of radix sort in [7]. The idea used in their secure computation is the same as in Section 4.2,
where we consider the union of other parties’ data as an encrypted database. In addition to this
idea, we consider general database queries on the encrypted database in this study.

3 Preliminaries

3.1 Types of Attack Considered

• Ciphertext-only attack
In cryptography, a ciphertext-only attack (COA) or known-ciphertext attack is an attack model
for cryptanalysis, where the attacker is assumed to have access only to a set of ciphertexts.

• Chosen-ciphertext attack
A chosen-ciphertext attack (CCA) is an attack model for cryptanalysis, where the cryptan-
alyst can gather information by obtaining decryptions of the chosen ciphertexts. From this
information, an adversary can attempt to recover the hidden secret key used for decryption.

• Known-plaintext attack
Known-plaintext attack (KPA) is an attack model for cryptanalysis, where the attacker has
access to both the plaintext (called a crib), and its encrypted version (ciphertext). These can
be used to further reveal secret information such as secret keys and code books.
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3.2 Threat Model

We adopt the threat model as given below.

• Storage system used by the database software is vulnerable to compromise.
Current database systems usually implement their own storage management. However, the
storage system remains as a part of the operating system. An adversary can compromise the
storage system by accessing the database files using a path other than through the database
software, or by physically acquiring the storage media in the extreme case. Attackers may
obtain access to the database file. Since values in the file are encrypted by our proposed
method, such an access may initiate a COA.

• The database software is trusted.
We assume that the database software is trusted to perform encryption of query constants and
decrypt query results. We also assume that some values in the database software’s memory
may be accessible to adversaries. An adversary can initiate a KPA from these values.

• All disk-resident data is encrypted.
We assume that the database software encrypts schema information such as table and field
names; metadata such as column statistics; recovery logs; and data values. Therefore, an
adversary is unable to guess the data distribution.

• The attacker may manage few plaintext values of some chosen ciphertext.
With help from the database operator, an attacker can manage the plaintext values of some
chosen cipher texts, which are not a part of the original values stored in the database. From
such information, the attacker can initiate a CCA.

3.3 Order Preserving Encryption

Encryption is the most effective way to achieve data security. Unencrypted data is termed as plain-
text, and encrypted data as ciphertext. In cryptography, a key specifies the particular transformation
of plaintext into ciphertext, or vice versa during decryption.

Let plaintext and ciphertext be p and c, respectively. Let k1 and k2 be the encryption and
decryption keys. We denote encryption and decryption by the following functions:

c = encryption(p, k1)

p = decryption(c, k2)

If k1 = k2, then the scheme is known as symmetric-key cryptography else asymmetric-key cryp-
tography.

Order preserving encryption is somewhat different from ordinary encryption. If we assume that
a database P consists of |P | plaintext numeric values, which are represented as P = p1, p2, ..., p|P |,
where pi < pi+1, then, when we encrypt the plaintext values into ciphertext values, which are
represented as C̃ = c̃1, c̃2, ..., c̃|P |, it must be ensured that c̃i < c̃i+1 (i = 1, ...|P | − 1). This means
that the order of encrypted values must be the same as the plaintext values. In our opinion, the
order itself is sensitive information. Therefore, we think that data privacy is not ensured enough in
the conventional OPES scheme.

3.4 Semi-Order Preserving Encryption

SOPE is an enhancement of the OPES. It is not a standalone scheme; it works on top of the OPES.
To enhance the privacy of the order preserved encrypted values in C̃, we map these values to semi-
order preserving values. On mapping, C̃ = c̃1, c̃2, ..., c̃|P | becomes C = c1, c2, ..., c|P |. In sequence C,
its ordered sequence is perturbed to a new ciphertext, in which the order is no longer preserved.
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4 Semi-Order Preserving Encryption Techniques

We propose three different techniques in this study that can be integrated on top of the OPES
[1, 3, 4, 9] algorithm. Perturbation of plaintext is used in the first technique and B-Tree structure
for semi-ordering the original order index, in the other two.

Figure 1 illustrates the basic system for integrating our proposed techniques with an encrypted
private database and the OPES algorithm. This figure also presents the scopes and the frameworks
of proposed techniques.
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Figure 1: Basic idea of the proposed method

As described in Figure 1, the OPES module encrypts the original numerical plaintext values
into order preserving encrypted data. However, the order indexes of the original data are sensi-
tive information; therefore, storing the order indexes directly to the disk is also a type of security
violation.

In this regard, the techniques proposed in this study take the original order index provided by
the OPES module as input and produce semi-order preserving perturbed index as output, which
can be stored on physical disk.
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4.1 Semi-Order Preserving Technique using OPES and Two-way Pertur-
bation

In the first proposed algorithm, we consider the perturbation of the order information in such a
manner that we can easily sort the perturbed values and execute queries efficiently.

For simplicity, we assume that the database with sensitive data consists of a single table with a
single column. Let us assume that we have a column of plaintext values: [43, 253, 629, 69, 521], and
we obtain [2089, 3458, 7501, 2923, 6303] by applying the OPES to the plaintext values.

We use the conventional OPES method for encryption; furthermore, we perturb the values that
we obtain from the OPES. To enhance privacy of the encrypted order preserved values in C̃, we map
the m-digit ciphertext values for each digit and generate perturbed m-digit ciphertext values. After
the mapping procedure, C̃ = c̃1, c̃2, ..., c̃|P |, in which, c̃i < c̃i+1 becomes C = c1, c2, ..., c|P |, in which
the order is no longer preserved, and we call the sequence: “perturbed ciphertext values”. The order
in C̃ is perturbed in C. Figure 2 shows an example of the perturbation step.
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Figure 2: Two-way Perturbation Example

Let c̃i be an m-digit ciphertext and c̃i[j] (0 ≤ j ≤ m − 1) be the jth digit value of c̃i. We
randomly choose one of the two mappings in each digit: “ascending order map” denoted “a” and
“descending order map”, denoted “d”. We map c̃i[j] to ci[j] so that the order becomes ci1 [j] < ci2 [j]
(ci1 [j] > ci2 [j]) in the ascending (descending) order map if c̃i1 [j] < c̃i2 [j] (i1 6= i2)

Figure 2 (b) shows an example of the mapping. In the example, “3” is mapped to “D” in
ascending order map and to “G” in descending order map. Note that in each digit, the original
order in the ciphertext is preserved in the ascending order whereas, reversed in the descending.

Figure 2 (a) shows the perturbed ciphertext when we randomly chose “daad”; this means that
the digits from 3-0 are mapped to “d”, “a”, “a”, and “d” in that order. For example, “2089” is
mapped into the perturbed ciphertext value “HAIA”, in which the 1st value “2” is mapped to the
descending order value “H” and the 2nd value “0” is mapped to the ascending order value “A”.
Similarly, “8” and “9” are mapped to “I” and “A”, respectively.

Next, we randomly choose a reposition map and apply repositioning of each digit in a number
according to the map. Figure 2 (c) shows the reposition of “HAIA” when we randomly choose
“2013” as a reposition map. In the reposition, “H”(the 3rd digit) moves to the 2nd position, the
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2nd digit “A” to the 0th position, the 1st digit “I” to the 1st position, and the least significant digit
“A”(the 0th digit) to the 3rd position. Finally, after the repositioning, “HAIA” becomes “AHIA”.

The map information such as “daad” and “2013” is stored in the database system; hidden from
users. It should be noted that, an adversary cannot infer sensitive data such as map information,
number of partitions (digits) each value is partitioned into, number of bits in each partition (digit)
, and whether ascending or descending map is used for each partition (digit).

In practice, ciphertext values stored in the database are neither decimal nor character values
such as the ones in the previous example; they are binary values similar to the example in Figure 3.
It should be noted that, in the figure, an OPES output “20171119” (in decimal) is divided into eight
digits (each digits has four bits). Each digit is mapped based on the secret mapping “aaddddaa”
into mapped value with padded random noise and repositioned with the secret reposition map
“03571264.”
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Figure 3: Detailed Binary Example of Two-way Perturbation

Therefore, an adversary cannot infer the original order of the ciphertext correctly without know-
ing the map information.

However, the database system, which has the map information, can compare the perturbed
ciphertext values. For example, the database system can know that “AHIA” is smaller than “BGFE”
because the 2nd digit (reposition of the original most significant digit or 3rd digit) in each number
are “H or “G”, where “H” is larger than “G” in descending order.

4.2 Sorting on Perturbed Values

Radix sort can be performed without decrypting data and has complexity of O(mn) where m is
the number of digits. Generally, m is suitably small compared with n. Sorting ability of perturbed
values includes all the queries in our proposed method that can be executed efficiently in OPES.
In perturbed values, order in each digit is preserved and the database system can compare the
order in each digit with the help of order and reposition maps. The database system can sort the
database by using “radix sort” [11]. We consider the order map “daad” and reposition map “2013.”
First, the sort algorithm ordered the values using the 3rd digit (a reposition of original 0th digit) in
descending order, which can be done in O(n) where n is the number of data. Preserving the order

117



Semi-Order Preserving Encryption Technique for Numeric Database

of the 3rd digit (a reposition of original 0th digit), it ordered the values using the next digit, i.e., the
1st digit (a reposition of original 1st digit) in ascending order. It continues this procedure until the
most significant digit is handled. Figure 4 shows the procedure of radix sort for the example under
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Figure 4: Radix Sort on Perturbed ciphertext

consideration. By using the 3rd digit (a reposition of the original 0th digit), the database system sorts
the database in descending order; the original sequence {[1],[3],[5],[2],[4]} becomes {[5],[2],[4],[3],[1]}.
Next, keeping the order of the 3rd digit, the database is sorted in ascending order of the 1st digit,
which is a reposition of the original 1st digit. Both [5] and [4] have the same value in the 1st digit.
In this case, order of the previous result is maintained, which produces {[5],[4],[2],[3],[1]}. This
procedure is continued to complete the radix sort.

4.3 Query on Perturbed Values

4.3.1 Comparison Operator

SQL uses operators such as = (equal to), <> (not equal to), > (greater than), < (less than), ≥
(greater than or equal to) and ≤ (less than or equal to) for comparing numerical values. In this
section, as shown in Figure 5, we explain how to execute the queries using the abovementioned
operators. Here we assume that a user has submitted the following query:

SELECT ... WHERE value > 70

Conventional OPES detects the probable order of the value, i.e., 70 using its Lookup Table. It should
be noted that the Lookup Table does not include the complete order index but stores the order index
of certain sample data and applies the mapping function to compute the order position. Details of
this technique can be found in [1]. For the example in our experiment, we consider that the position
of 70 in the Lookup Table is 2.1, which is between 2 and 3.

Therefore, the Query Modifier rewrites the query as follows:

SELECT ... WHERE order > 2.1

When such a modified query is submitted to a DBMS engine, which has the ordered data, it
returns all the tuples that satisfy the order condition. In this manner, the tuples with the order
index below 2.1 i.e. {[1], [2]} are eliminated. Thereby, the tuples whose original values are below
70, i.e., {43, 69} are excluded from final the result.

Similarly, queries with other operators can be modified using the query modifier using similar
procedures on our proposed techniques.

118



International Journal of Networking and Computing

������� � ���������	
���� � ��

Query Modifier

Mapping Info

������� ��

�������	�
��� � ����

DBMS Engine

4 3
2 5 3
6 2 9

6 9
5 2 1

Plain text 
numeric data

[1] 
[3]
[5]
[2] 
[4]

Order of 
plain text 

data

���������	����
�����
���
���

Figure 5: Example of Comparison Operator

4.3.2 Aggregation Function

We now consider Figure 6, and assume that a user has submitted the following query:

SELECT MAX(value) ...

The query modifier in OPES query processing engine modifies the query as:

SELECT MAX(order)...

When the modified query is submitted to the DBMS engine, it returns the tuple with the highest
value of the order index. Therefore, all tuples except {[5]} are rejected. The value can be retrieved
from plaintext data (i.e., the tuple with value 629).
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Figure 6: Use of Aggregate Function

However, similar to other conventional order preserving techniques, two aggregation functions:
“SUM” and “AVG” cannot be handled without decrypting the original value in the mentioned
approach.

4.3.3 Insertion and Deletion Operations

Assume that a user has submitted the following query:

INSERT INTO ... VALUES (289)

Whenever such an operator is submitted to order preserving techniques, the Query Modifier
determines the probable order of new data value. Considering the example in Figure 7, and the
sample data of our running example in Figure 2,
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Figure 7: Insertion Operation

it is obvious that the probable order of the new data value 289 is in between the 3rd and 4th

position. Therefore, the order preserved m-digit ciphertext value would lie between 3458 and 6303.
Let us assume that the m-digit order preserved ciphertext value of 289 is 5320. The process of such
mapping is discussed in detail in [1]. After obtaining value 5320, we use our semi-order preserved
scheme to determine the encrypted value. The perturbation process described in Section 4.1, maps
the m-digit order preserved ciphertext to a perturbed semi-order preserved ciphertext. For example,
5320 will be perturbed to EDCJ as per descending mapping table. Let “E” and “J” be the corre-
sponding values for 5 and 0, respectively. Furthermore, let “D” and “C” correspond to values 3 and
2, respectively, in the ascending mapping table. Thus, the operation will be modified to:

INSERT INTO ... VALUES(EDCJ)

and submitted to a database engine. Deletion operation is usually performed using comparison
operators. Suppose that a user submits an operation:

DELETE ... FROM ... WHERE (VALUE > 70)

The process is almost identical to that expressed in Figure 5. The Query Modifier has to determine
the probable order of 70 and modify the operation accordingly. The operation is transformed to the
following after the modification:

DELETE ... FROM ... WHERE (ORDER > 2.1)

If there is no where clause, the delete... operation can be submitted to the database engine directly.

4.4 Semi-Order Preserving Technique using Block-wise OPES using Tree

In this method, we first construct plaintext intervals using Algorithm 1, and further using the
intervals, construct a B-tree in plaintext domain as shown in (1) in Figure 8. Let N be the number
of leaves of the B-tree. Next, we split the ciphertext domain into N disjoint intervals as shown in
(2) in the figure. Furthermore, we assign one of the disjoint intervals at random for each leaf of the
B-tree as shown in (3) in the figure. Based on the B-tree, we apply the conventional OPES for each
leaf as shown in (4) in the figure. For example, plaintext values [12, 25) are encrypted to values in
[100, 199] so that the original order is preserved. Figure 9 shows examples that are encrypted by the
tree in Figure 8. Plaintext value 14 reaches to leaf [12, 25) and is encrypted to a value in [100, 199].
Similarly, plaintext value 20 is also encrypted to a value in [100, 199]. In the example, 14 and 20 are
encrypted to 121 and 171, respectively. Note that the order in plaintext domain is preserved in the
ciphertext domain. On the contrary, for two plaintext values belonging to different leaves, the order
is not preserved, which means that the order privacy is preserved.
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4.4.1 Interval Choosing Algorithm

Our goal is to hide the sensitive order information from the adversary. Therefore, choosing an
interval is critical in plaintext domain. From the above example in Figure 8, it is obvious that the
orders in the same block pair of (plaintext and ciphertext) are identical. Therefore, the goal of this
algorithm is to avoid two or more order sensitive values that reside in the same block. The algorithm
is given below

Result: Intervals for plaintext domain
Take all the plaintext values in the plaintext domain;
ListA=First value in plaintext domain;
while all plaintext values are not processed do

if Is the current value order sensitive to values in ListA then
Assign new plaintext interval for ListA values and store the interval;
empty ListA;
ListA=Current Value;

else
ListA=ListA + Current Value;

end

end
Algorithm 1: Interval Choosing Algorithm
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Figure 8: Block-wise Semi-Order Preserving Encryption using Tree
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Figure 9: Example of Block-wise OPES using Tree

4.5 Semi-Order Preserving Technique using Dynamic Block-wise OPES
using Tree

This is a variation of the technique described in Section 4.4. It can handle two things. Firstly, when
we insert an order sensitive value in an interval, it dynamically splits the interval and inserts the
value into the non-sensitive split. For example, values in interval 50-62 go to the interval 300-399
and maintain the same order. If 56 is order sensitive to some values in the interval 50-55, the interval
50-62[300-399] will split into 50-55[300-399] and 56-62[1500-1600] as shown in Figure 10. Value 56
is converted to ciphertext using [1500, K5, 1600] and inserted into the database.

Secondly, it is known that in some databases, operation hours may have peak and off-peak hours.
During peak hours, the database is considerably busy; however, during off-peak hours, it is relatively
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Figure 10: Dynamic Split of Interval

less busy. So, during off-peak hours, we can apply the dynamic change of intervals and avoid the
adversary’s continuous effort to disclose interval pairs (plaintext, ciphertext). Figure 11 shows that
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Figure 11: Dynamic Interval Update in “off-peak” Operation Hours

during the off-peak hours, the interval 800-899 changes to 1001-2360 and all values in the database
in the interval 800-899 are converted into interval 1001-2360. When there are static interval pairs, an
adversary can collect the intervals from internal sources. However, in the case of dynamic intervals,
one-time disclosure of interval pairs does not affect the security.
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4.6 Query on Block-wise OPES Values by Tree

4.6.1 Comparison Operator

We can efficiently execute a query using comparison operators: =, <>,<,>,>=, <=. Suppose that
we have to execute a query:

SELECT ... FROM TABLE A WHERE VALUE > 70

We assume that 70 is a plaintext value, and Table A contains encrypted values. We aim to execute
this query in encrypted values directly and obtain the query results in encrypted form. When we
observe the encryption tree from the left to right leaves, the ciphertext intervals are unordered;
however, their corresponding plaintext intervals are ordered. When we traverse the tree from left to
right in ciphertext interval, it means that we are traversing it in ascending order for corresponding
plaintext intervals. For the query execution, we searched the tree with value 70, and reached the
leaf [0,K5, 100]. We use key K5 and interval [0, 99] to encrypt the value 70. After encryption,
plaintext 70 becomes ciphertext 55. Values greater than 55 in the [0,100] and all values in the
intervals [400,499] and [600,699], which are on the right side of [0,99] in the tree, are actually the
result of the query in encrypted form.

4.6.2 Aggregation Function

We know that the leaves of the encryption tree are in ascending order in plaintext intervals from
left to right; therefore, the leftmost interval contains MIN value and rightmost contains MAX value.
This is also true in ciphertext intervals. MIN is the minimum value in the leftmost ciphertext interval
and MAX is the maximum value in the rightmost ciphertext interval in the tree.

Therefore, this method can efficiently handle the aggregation function of MIN and MAX. It is
obvious from Figure 8 that MIN is the minimum of values within the leftmost node interval (minimum
of values within [200, 299]) and MAX is the maximum of values within the rightmost node interval
(maximum of values within [600, 699]).

4.6.3 Insertion and Deletion Operations:

Suppose, an insertion operation

INSERT INTO ... VALUES(16)

is submitted. For executing the above query, our proposed method searches the tree using value 16
and finds the leaf-node [100,K2, 199]. Furthermore, by using K2 and the interval [100, 199], 16 is
encrypted into 150 and inserted into the database.

Consider that a delete operation:

DELETE ... FROM ... WHERE (VALUE>70)

is submitted. We know that the intervals in the leaves of the encryption tree are in ascending order
in plaintext domain. Therefore, deleting values greater than 70 means deleting values higher than
70 in the intervals that contain 70 and all values in the intervals to its right. This is also true in
ciphertext intervals.

Our proposed method finds the leaf for value 70 in the tree, which comes out to be [0,K6, 99].
Therefore, 70 is encrypted as 50 by using K6 in the interval [0, 99]. The above query deletes all
encrypted values greater than 50 in the interval [0, 99] as well as in the intervals [400, 499] and
[600, 699], which are on the right side of [0, 99] in the tree.

4.7 Evaluating SOPE Against Threat Model

We build our system on top of the OPES. We use the results of [1, 3, 4, 9] for the provable security.
So, the system has all the security aspects of [1, 3, 4, 9] and additionally hides the order.
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4.7.1 Semi-Order Preserving Technique using OPES and Two-way Perturbation

The adversary does not have access to the OPES encryption key, perturbed mapping, repositioning,
and noise bits. If an adversary wants to know the order information by brute force attack, he has
to determine the partitions, positions of noise bits, ascending-descending maps, and the reposition
map. For n digit binary numbers, the partitions can be done in 2n−1 ways. If we consider k noise
bits, they can occur in nPk ways in the number, and repositioning of the digits can be done in !n
ways. Among 2n−1 ∗ nPk ∗ !n ways, the adversary can guess the correct way only once. Therefore,
probability of guessing the correct order through brute force attack is 1/(2n−1 ∗ nPk ∗ !n).

4.7.2 Semi-Order Preserving Technique using Block-wise OPES using Tree

To guess the exact order, the adversary needs to divide the encrypted values into correct intervals
and keys for each of the intervals. If there are N possible values in the database domain, there
are 2N−1 possible intervals. The probability of guessing the correct interval in brute force attack is
1/(2N−1). Therefore, it is very difficult to guess the exact intervals. Each interval is encrypted with a
different key. An adversary needs both, the OPES key and exact intervals. To ensure extra security,
the interval generation algorithm ensures that no two sensitive values fall in the same interval.

4.7.3 Semi-Order Preserving Technique using Dynamic Block-wise OPES using Tree

The recognition of exact interval is very difficult as described in the previous section; however, the
adversary may manage intervals from internal sources. In this method, the intervals are dynamically
changed over time. Therefore, onetime gathering of the intervals and keys does not help the adversary
to break the order information.

4.8 Comparison of the Three Proposed Methods with Respect to Differ-
ent Types of Attack

4.8.1 Ciphertext-only attack

In this mode of attack, the adversary knows only a portion of the ciphertext but no other statistical
information from the database. The OPES (whose security is already proved in [1, 3, 4, 9]) system
can withstand this type of attack. As our system runs on the top of the OPES, it can offer protection
from COA.

4.8.2 Chosen-ciphertext attack

The adversary can gather information by obtaining the decryption of chosen cipher-texts. From
this information, the adversary can attempt to recover the hidden secret key used for decryption.
In case of OPE, it is possible to guess the correct key. Our method runs on top of the OPES.
Therefore, in this case, plaintext is the original value and we obtain ciphertext by encrypting plaintext
firstly by OPES and then by our method(plaintext → OPES → OPES(cipher) → SOPE →
ciphertext). Our method hides the OPES(cipher), which is ciphertext for OPES and plain-text for
SOPE. Therefore, OPES security described in [1, 3, 4, 9]) can be applied to this situation. In this
situation, the adversary can only perform brute force attack, whereas in the tree-based method, they
need to find the intervals and then the key. From the earlier section, we know that the probability
to guess the correct intervals is 1/(2N−1), where N is the number of possible values in the database
domain. If we have 1,000,000 possible values in a database domain, the probability of detecting
correct intervals is 1/(21000000). In practical scenarios, the number of possible values in the database
domain is much higher.

4.8.3 Known-plaintext attack

In our method, WHICH runs on top of the OPES, plaintext is the original value and we obtain
ciphertext by encrypting plaintext firstly by OPES and then by our method(plaintext→ OPES →
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OPES(cipher) → SOPE → ciphertext). Here, the attacker has access to both the plaintext and
its encrypted version (ciphertext). However, OPES(cipher) that is plaintext for SOPE is hidden.
Therefore, our method breaks the connection between ciphertext and plaintext. The security in
[1, 3, 4, 9]) can be applied to this situation.

Our system can run on top of any OPES system. Whenever a researcher finds a new OPES
system that is more secure and efficient than previous ones, our system can run on top of the new
system and hide the order information.

5 Experiments

We conducted a series of experiments to evaluate the effectiveness and efficiency of the proposed
methods. The proposed algorithm was implemented using Matlab R2016b. We conducted experi-
ments on a PC with fourth-generation Intel R© CoreTMi7 processor, 3.4 GHz CPU, and 8 GB main
memory, running on 64-bit Microsoft Windows 10 Enterprise edition operating system. Each exper-
iment was repeated five times, and averaged. In our experiments, we used five datasets: 10k, 100k,
500k, 1m, and 10m, each of which consists of one field of the randomly generated integer. Datasets
10k, 100k, 500k, 1m, and 10m contain 10,000, 100,000, 500,000, 1,000,000, and 10,000,000 records
respectively.

Hiding of order can be done by encrypting the output of OPES values. AES [8] is a well-known
encryption technique. We can hide the order information by applying AES to the output of OPES.
We consider this as a baseline technique to compare the three proposed methods.
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5.1 Comparison Operator

In this section we consider query of the type: “select * from Table A where A.x > value1”. Here,
table A consists of 10M records. Time is calculated for the number of records returned by the select
query. Figure 12 shows that the three proposed methods can efficiently handle the comparison
operator in the execution of select query over encrypted values, compared to the AES based baseline
method. The tree-based method is more efficient and secure than the others. From the figure, it
can be seen that the perturbation based method is also efficient in comparison to the AES based
method.
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Figure 12: Time required for different operations

5.2 Order Hiding

Figure 13 shows execution times required for order hiding using the baseline AES, perturbation,
tree-based, and dynamic tree-based methods. We varied the data size from 10,000 to 1,000,000
and saw that execution time was within acceptable range. The complexity of order hiding in the
perturbation method is 2O(n), whereas, it is O(n) + log(n)(searching the tree log(n) + linked leaves
traversal O(n) )for the tree-based method. The figure shows that the execution time increases
linearly with data volume. The figure also clearly shows that the three proposed methods are very
efficient compared to the AES based method. Dynamic tree-based method required slightly more
time than the tree based method; however, it made the encryption more secure.
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Figure 13: Total Time for Order Hiding

5.3 Retrieving of the Original Order

Figure 14 displays the total time required for retrieving the original order. We varied the length of
OPES output data volume from 10,000 to 1,000,000.

Figure 14 shows the time required for retrieving the original order with respect to different
data volumes. From the figure, we observe that tree-based and dynamic tree-based methods are
faster than others. The running time of perturbation based method is acceptable compared to the
baseline AES based method. In case of perturbation based method radix sort is required, therefore
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Figure 14: Time required for retrieving the original order.

its complexity becomes O(mn), where n is the number of data and m is the number of digits in a
number. The tree-based method needs binary search and linked list traversal, having complexity
of O(n) + log(n). In case of ordering the unordered data, AES has considerable time overhead.
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The figure shows that performances of our three proposed methods are acceptable regarding time
complexity.

6 Conclusion

As discussed in the Introduction section, there are many situations in which we do not want to
reveal order information. In such cases, our proposed encryption technique successfully hides the
order information. It also provides an extra protection layer to the OPES method. Execution time
for the proposed methods is acceptable as shown by experiments. We can execute the queries using
different comparison operators without decrypting the original value. Therefore, our technique is
suitable for practical use.

So far, we have confirmed the feasibility of the proposed schemes. We are also considering
distributed computation of the comparison operators of the proposed schemes in the MapReduce
framework.
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