
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 9, Number 1, pages 97–110, January 2019

A Population Protocol for Uniform k-partition under Global Fairness

Hiroto Yasumi

Nara Institute of Science and Technology, yasumi.hiroto.yf9@is.naist.jp
Takayama 8916-5, Ikoma 630-0192, JAPAN

Naoki Kitamura

Nagoya Institute of Technology
Gokiso-cho, Showa-ku, Nagoya 466-8555, JAPAN

Fukuhito Ooshita

Nara Institute of Science and Technology, f-oosita@is.naist.jp
Takayama 8916-5, Ikoma 630-0192, JAPAN

Taisuke Izumi

Nagoya Institute of Technology, t-izumi@nitech.ac.jp
Gokiso-cho, Showa-ku, Nagoya 466-8555, JAPAN

Michiko Inoue

Nara Institute of Science and Technology, kounoe@is.naist.jp
Takayama 8916-5, Ikoma 630-0192, JAPAN

Received: July 25, 2018
Accepted: September 14, 2018

Communicated by Akihiro Fujiwara

Abstract

In this paper, we consider a uniform k-partition problem in a population protocol model.
The uniform k-partition problem divides a population into k groups of the same size. For this
problem, we give a symmetric protocol with designated initial states under global fairness. The
proposed protocol requires 3k − 2 states for each agent. Since any protocol for the uniform k-
partition problem requires Ω(k) states to indicate a group, the space complexity of the proposed
protocol is asymptotically optimal.

Keywords: population protocol, uniform k-partition, distributed protocol

1 Introduction

1.1 Background and Our Contribution

A population protocol model [5] abstracts computation carried out by many mobile devices. Such
devices are called agents and a set of agents is called a population. In the population protocol model,

97

A Population Protocol for Uniform k-partition under Global Fairness

computation is proceeded by repeating the pairwise interactions of agents. If an interaction occurs
between two agents, the states of the agents are updated. The population protocol model can be
used for modeling many kinds of mobile networks. For example, a network of the sensors attached
to wild birds is useful to observe the ecosystem. In this system, a pairwise interaction occurs when
two sensors (i.e. birds) approach to each other. Sensors collect and process data based on their
interactions. Another promising application is a network of molecular robots [20], which can be
deployed to a human body for the diagnosis of its physical condition. To realize these systems,
many protocols have been studied as building blocks in the population protocol model [10]. For
example, leader election protocols [4, 13, 17, 21, 22, 23], counting protocols [9, 11, 12], majority
protocols [6, 16], and so on.

In this paper, we focus on the uniform k-partition problem, which divides a population into k
groups of the same size. The uniform k-partition problem has many applications. It can be used for
reducing the energy consumption of the whole system by switching on some groups and switching
off the others. In another example, we can assign different tasks to different groups and make agents
execute multiple tasks at the same time. It is also possible to use uniform k-partition protocols for
attaining fault-tolerance [14].

As prior work, Yasumi et al. [25] focused on the uniform k-partition problem for k = 2 (called
uniform bipartition) and proposed several space-optimal protocols in various settings. In particular,
it is proved that four states are necessary and sufficient to solve the uniform bipartition problem
by a symmetric protocol under global fairness. Symmetric protocol is the restricted subclass of the
protocols where any interaction among the two agents with the same state must result in the (other)
same state. Global fairness is an assumption on schedules of interactions (the formal definition
is given in Section 2). By repeating the uniform bipartition protocol h times, we can construct
a uniform k-partition protocol for k = 2h. However, it is difficult to extend the protocol to the
case of k 6= 2h. This is because the protocol strongly depends on nature of pairwise interactions.
That is, in the protocol, when one agent becomes a member of one group by an interaction, the
partner becomes a member of another group at the same time. This simple mechanism guarantees
that each group contains the same number of agents. However, it is obviously impossible to divide
k agents (k > 2) into k different groups only by a single interaction, and thus the strategy of the
bipartition protocol is not easily extended to the general k-partition case. In the case of allowing less
uniformity, Delporte-Gallet et al. [14] proposes a protocol solving the uniform k-partition problem
approximately. This protocol guarantees that each group contains at least n/(2k) agents, where n
is the number of agents. This protocol requires k(k + 3)/2 states under global fairness.

Our Contribution In this paper, we propose a protocol that solves the uniform k-partition
problem for any k (k ≥ 2). This protocol is symmetric and works under global fairness. Recall
that, in symmetric protocols, when two agents in the same state interact, they transit to the same
state. Such protocols do not require a mechanism to break symmetry among agents and hence can be
applied to various systems. This protocol requires 3k−2 states for each agent. This space complexity
is asymptotically optimal because clearly any uniform k-partition protocol requires Ω(k) states to
indicate a group of an agent. We evaluate the time complexity of the protocol by simulations. From
the simulation results, we can observe that the time complexity increases exponentially with k but
not exponentially with n.

1.2 Related Works

The population protocol model was introduced in [5, 7]. The class of computable predicates in this
model was clarified by the researches.

In addition to such computability researches, many algorithmic problems have been considered in
the population protocol model: leader election [1, 2, 8, 13, 15, 17, 21, 22, 23], counting [9, 11, 12, 18],
and majority [1, 3, 6, 16]. The leader election problem has been studied for both designated and
arbitrary initial states. For designated initial states, the main research topic is to minimize the
time and space complexity of leader election protocols [1, 2, 15]. For arbitrary initial states, many
researches have developed self-stabilizing and loosely-stabilizing protocols [8, 13, 17, 21, 22, 23]. The

98

International Journal of Networking and Computing

counting problem aims to count the number of agents in the population. After the first protocol
was proposed in [12], the space complexity was gradually minimized [11, 18]. In [9], a time and
space optimal protocol was proposed. The majority problem is also a fundamental problem in the
population protocol model. In this problem, each agent initially has a color x or y, and the goal
is to decide which color gets a majority. For the majority problem, many protocols have been
proposed [1, 3, 6, 16]. Recently an asymptotically space-optimal protocol for c colors (c > 2) has
been proposed in [16].

As a similar problem to the uniform k-partition problem, Lamani et al. [19] studied a group com-
position problem that divides a population into groups of designated sizes. Although the proposed
protocols assume arbitrary initial states, they also assume that n/2 pairs of agents make interactions
simultaneously and that all agents know n. Therefore the protocol does not work in our setting.

After publishing the conference version of this paper, some of the authors extended the result to
the R-generalized partition problem, where the protocol divides all agents into k groups whose sizes
follow a given ratio R [24].

2 Definitions

2.1 Population Protocol Model

A population A consists of a collection of pairwise interacting agents. A protocol is defined as
P = (Q, δ), where Q is a set of possible states of agents and δ is a set of transitions on Q. Each
transition in δ is denoted by (p, q)→ (p′, q′), which means that, when an agent in state p and an agent
in state q interact, they update their states to p′ and q′, respectively. Transition (p, q) → (p′, q′)
is asymmetric if both p = q and p′ 6= q′ hold; otherwise, the transition is symmetric. Protocol
P = (Q, δ) is symmetric if every transition in δ is symmetric. Protocol P = (Q, δ) is deterministic if,
for any pair of states (p, q) ∈ Q×Q, at most one transition (p, q)→ (p′, q′) exists in δ. We consider
only deterministic symmetric protocols in this paper.

A global state of a population is called a configuration. A configuration is defined as a vector of
(local) states of all agents. We describe C → C ′ if configuration C ′ is obtained from C by a single
transition of a pair of agents. For configurations C and C ′, if there exists a sequence of configurations
C = C0, C1, . . . , Cm = C ′ that satisfies Ci → Ci+1 for any i (0 ≤ i < m), we say C ′ is reachable

from C, denoted by C
∗−→ C ′. An infinite sequence of configurations E = C0, C1, C2, . . . is called

an execution of a protocol if Ci → Ci+1 holds for any i (i ≥ 0). An execution E is globally fair
if, for every pair of configurations C and C ′ such that C → C ′, C ′ occurs infinitely often when C
occurs infinitely often. This implies that, under global fairness, if C occurs infinitely often, every
configuration C∗ reachable from C also occurs infinitely often.

In this paper, we assume that a protocol has designated initial states, that is, the state of every
agent is a designated initial state s0 ∈ Q in the initial configuration. We denote by n the number
of agents in a population. No agent knows n in the initial configuration. If n = 2 holds, two
agents cannot transit to different states in symmetric protocols and thus cannot solve the uniform
k-partition problem. Hence, we assume n ≥ 3.

2.2 Uniform k-Partition Problem

Let f : Q→ {1, 2, . . . , k} be a function that maps a state of an agent to an integer i(1 ≤ i ≤ k). Let
s(a) be a state of agent a. We say agent a ∈ A belongs to the i-th group if f(s(a)) = i holds.

Configuration C is stable if there is a partition {G1, G2, . . . , Gk} of A that satisfies the following
condition:

1. ||Gi| − |Gj || ≤ 1 for any i and j, and

2. For all C∗ such that C
∗−→ C∗, each agent in Gi belongs to the i-th group at C∗.

An execution E = C0, C1, C2, . . . solves the uniform k-partition problem if there is a stable
configuration Ct in E. If each execution E of protocol P solves the uniform k-partition problem,

99

A Population Protocol for Uniform k-partition under Global Fairness

Algorithm 1 Uniform k-partition protocol

A state set
Q = I ∪G ∪M ∪D where
I = {initial, initial′},
G = {g1, g2, . . . , gk},
M = {m2,m3, . . . ,mk−1}, and
D = {d1, d2, . . . , dk−2}.

A mapping function to groups
f(ini) = 1 holds for any ini ∈ I.
f(gi) = i holds for any gi ∈ G.
f(mi) = i holds for any mi ∈M .
f(di) = 1 holds for any di ∈ D.

Transition rules
1. (initial, initial)→ (initial′, initial′)

2. (initial′, initial′)→ (initial, initial)

3. (di, ini)→ (di, ini) (di ∈ D and ini ∈ I)

4. (gi, ini)→ (gi, ini) (gi ∈ G and ini ∈ I)

5. (initial, initial′)→ (g1,m2)

6. (ini,mi)→ (gi,mi+1) (ini ∈ I and 2 ≤ i ≤ k − 2)

7. (ini,mk−1)→ (gk−1, gk) (ini ∈ I)

8. (mi,mj)→ (di−1, dj−1)(2 ≤ i, j ≤ k − 1)

9. (di, gi)→ (di−1, initial)(2 ≤ i ≤ k − 2)

10. (d1, g1)→ (initial, initial)

we say protocol P solves the uniform k-partition problem. The main objective of this paper is to
minimize the number of states. When protocol P requires x states, we say P is a protocol with x
states.

3 Uniform k-partition protocol

In this section, we propose a symmetric uniform k-partition protocol with designated initial states
under global fairness. The summary of the protocol is given in Algorithm 1.

In this protocol, a set of agent states is divided into four subsets, i.e., Q = I ∪G∪M ∪D, where
I = {initial, initial′}, G = {g1, g2, . . . , gk}, M = {m2,m3, . . . ,mk−1}, and D = {d1, d2, . . . , dk−2}.
The designated initial state of agents is initial, that is, the state of every agent is initial in the initial
configuration. State gi in G indicates that the agent belongs to the i-th group, that is, f(gi) = i
holds for any gi ∈ G. For other state s, we define f(s) as follows:

• f(ini) = 1 holds for any ini ∈ I.

• f(di) = 1 holds for any di ∈ D.

• f(mi) = i holds for any mi ∈M .

We say an agent is free if its state is in I. We define initial = initial′ and initial′ = initial.

We will describe the details of the protocol in Sections 3.1 and 3.2. In the basic strategy (Section
3.1), the protocol makes k agents enter states g1, g2, . . . , gk by using states in M as intermediate
states. However, this strategy may increase the number of agents in some groups beyond n/k. In
Section 3.2, we overcome such a situation by using states in D.

100

International Journal of Networking and Computing

Fig. 1: An example of k-partition

3.1 Basic strategy

The basic strategy of the protocol is as follows: First two free agents transit to states g1 and m2.
After that, for each i (2 ≤ i ≤ k − 2), when an agent in state mi and a free agent interact, they
transit to states mi+1 and gi, respectively. Lastly, when an agent in state mk−1 and a free agent
interact, they transit to states gk and gk−1. By this behavior, k free agents can change their states
to g1, g2, . . . , gk. That is, the size of each group is increased by one. To realize this, the protocol
includes the following transitions.

1. (initial, initial)→ (initial′, initial′)

2. (initial′, initial′)→ (initial, initial)

3. (di, ini)→ (di, ini) (di ∈ D and ini ∈ I)

4. (gi, ini)→ (gi, ini) (gi ∈ G and ini ∈ I)

5. (initial, initial′)→ (g1,m2)

6. (ini,mi)→ (gi,mi+1) (ini ∈ I and 2 ≤ i ≤ k − 2)

7. (ini,mk−1)→ (gk−1, gk) (ini ∈ I)

First we explain transitions 1 to 5, which make two free agents transit to states g1 and m2. Recall
that all agents are in state initial in the initial configuration. Since we consider symmetric protocols,
two agents in state initial cannot transit to states g1 and m2 at one interaction. This is the reason
why we introduce state initial′. Each agent in state initial (resp., initial′) transits to initial′ (resp.,
initial) when it interacts with an agent in a state in I ∪D ∪G (except for interaction between one
in state initial and one in state initial′). Transition 5 implies that, when agents in states initial
and initial′ interact, they become g1 and m2, respectively. From global fairness, if at least two
free agents and no agents in a state in M exist, two free agents eventually enter states initial and
initial′, respectively, and then enter states g1 and m2 by an interaction. Transition 6 implies that,
when a free agent and an agent in state mi interact, they become gi and mi+1, respectively. By
these transitions, free agents transit to states g1, . . . , gk−2 one by one. After that, from transition
7, when a free agent and an agent in state mk−1 interact, they become gk−1 and gk, respectively.
From this behavior, the size of each group is increased by one.

Figure 1 is an example execution of the protocol for a population of six agents. Initially all
agents are in state initial (Fig. 1 (a)). After interactions (a1, a2), (a3, a4), and (a5, a6), all agents
enter state initial′ (Fig. 1 (b)). After interactions (a1, a6), (a2, a3), and (a4, a5), all agents enter
state initial (Fig. 1 (c)). If such interactions happen infinitely, the protocol never solves the uniform
k-partition problem. However, under the global fairness, such interactions do not occur infinitely.
This is because, if some configuration C occurs infinitely often, every configuration reachable from
C should occur. That is, eventually interactions (a5, a6) and (a1, a6) happen in this order from such
a configuration (Fig. 1 (d) and (e)). Then, a1 and a6 enter states g1 and m2, respectively (Fig. 1

101

A Population Protocol for Uniform k-partition under Global Fairness

Fig. 2: Another example of k-partition

(e)). After that, if interactions (a6, a2), (a6, a3), (a6, a4), and (a6, a5) occur in this order, agent a6
changes its state from m2 to m3, m4, m5, and g6, and agents a2, a3, a4, and a5 enter g2, g3, g4, and
g5, respectively (Fig. 1 (f)).

3.2 A problem of the basic strategy and its solution

However, in the protocol of the basic strategy, dn/ke or more agents in state m1 can appear. In this
case, the above transitions do not achieve a uniform k-partition. For example, in the case of n = 12
and k = 4, if four agents enter state m1, agents can transit to states g1, g2, m3, g1, g2, m3, g1 ,g2,
m3, g1, g2, m3. To solve this problem, we introduce states in D and add the following transitions.

8. (mi,mj)→ (di−1, dj−1)(2 ≤ i, j ≤ k − 1)

9. (di, gi)→ (di−1, initial)(2 ≤ i ≤ k − 2)

10. (d1, g1)→ (initial, initial)

By transition 8, when two agents in states in mi and mj interact, they transit to states in di−1
and dj−1, respectively. Intuitively, an agent in state di makes agents in g1, g2, . . . , gi go back to state
initial. Recall that an agent in state mi+1 can enter state di and an agent in state mi+1 has made
agents in states g1, g2, . . . , gi. This means an agent in state di initializes agents that it makes enter
states g1, g2, . . . , gi. More concretely, an agent in a state in D works as follows:

• For 2 ≤ i ≤ k − 2, when agents in states di and gi interact, they become di−1 and initial by
transition 9, respectively.

• After that, from transition 10, when agents in states d1 and g1 interact, they become initial.

Figure 2 is an example that shows the impact of states in D. Similarly to Fig. 1, agents can
transit to a configuration in Fig. 2 (a). If interactions (a2, a5), (a3, a5), and (a4, a5) occur in this
order from Fig. 2 (a), agents transit to a configuration in Fig. 2 (c). In this configuration, transitions
of the basic strategy (transitions 1 to 7) are not applied. However, transition 8 can be applied,
that is, interaction (a5, a6) eventually occurs. By the interaction, a5 and a6 enter states d3 and d1,
respectively (Fig. 2 (d)). After that, interactions (a1, a6), (a4, a5), (a3, a5) and (a2, a5) happen, and
then all agents enter state initial (Fig. 2 (e)).

Clearly, agents can repeatedly enter state gi and go back to initial many times. However, after
an agent enters state gk, one set of agents in states g1, . . . , gk never goes back to initial. Thus, if
there are h agents in state gk, the number of agents in state gi is at least h for each i. In addition,
when there are h agents in state gk and n − kh ≥ k holds, there is an execution that makes some
agent enter state gk. This implies that, from the global fairness, some agent eventually enters state
gk. When n − kh = r < k holds, there is an execution that makes the remaining agents transit
to g1, g2, . . . ,mr. From the global fairness, the remaining agents eventually enter these states. In
this configuration, agents achieve a uniform k-partition and after that all agents never change their
states.

102

International Journal of Networking and Computing

4 Correctness

In this section, we prove the correctness of the proposed protocol. If k = 2, the protocol is exactly
the same as a uniform bipartition protocol in [25]. Thus, the protocol solves the uniform k-partition
problem for k = 2. In the rest of this section, we assume that k ≥ 3 holds.

First, we define the notations to consider the number of states at a configuration. We denote by
#ini the number of free agents (i.e., agents in states initial or initial′). We denote by #gx, #mp,
and #dq the numbers of agents in state gx, mp, and dq, respectively (1 ≤ x ≤ k, 2 ≤ p ≤ k − 1,
1 ≤ q ≤ k − 2).

The first lemma gives invariants that hold for any configuration reachable from the initial con-
figuration C0. In the following, when configuration C is reachable from C0, we simply say C is
reachable.

Lemma 1. For any reachable configuration C, #gx =
∑k−1

p=x+1 #mp +
∑k−2

q=x #dq + #gk holds for
any x (1 ≤ x ≤ k) at C.

Proof. First we intuitively explain the invariants. Let us fix x. An agent in state mp (2 ≤ p ≤ k−1)
has made p − 1 agents enter g1, g2, . . . , gp−1. Hence, for each agent in state mp with p > x, there

exists an agent in state gx that corresponds to the agent. Consequently, there exist
∑k−1

p=x+1 #mp

agents in state gx that correspond to agents in states in M . Since an agent in state dq has changed
its state from mq+1 to dq, it has made q agents enter g1, g2, . . . , gq. Hence, for each agent in state
dq with q ≥ x, there exists an agent in state gx that corresponds to the agent. Consequently, there

exist
∑k−2

q=x #dq agents in state gx that correspond to agents in states in D. An agent in state gk has
made k − 1 agents enter g1, g2, . . . , gk−1. Hence, there exist #gk agents in state gx that correspond
to agents in state gk. Therefore, we have the above invariants.

We prove the lemma formally by induction. First let us consider the initial configuration. Since
#gx = 0, #mp = 0, and #dq = 0 hold for any x, p, and q (1 ≤ x ≤ k, 2 ≤ p ≤ k− 1, 1 ≤ q ≤ k− 2),
the lemma holds.

Next, assume that the lemma holds at some configuration C. We show that, for any C ′ satisfying
C → C ′, the lemma holds at C ′. Clearly, if transition 1, 2, 3, or 4 occurs in C → C ′, the lemma
holds at C ′ because #gx, #mp, and #dq do not change for any x, p, and q (1 ≤ x ≤ k, 2 ≤ p ≤ k−1,
1 ≤ q ≤ k − 2). Hence, we consider the remaining six transitions.

First, consider the case of transition 5. This transition increases #g1 and #m2 by one, and
consequently it affects the formula of x = 1. Since the left and right sides of the formula increase
by one, the lemma holds in this case.

Consider the case of transition 6. This transition increases #gi and #mi+1 by one, and decreases

#mi by one. Consequently, it affects the formula of x ≤ i. For x < i, since
∑k−1

p=x+1 #mp and #gx
do not change, the left and right sides of the formula do not change. For x = i, both #gi and∑k−1

p=i+1 #mp increase by one, the left and right sides of the formula increase by one. Hence, the
lemma holds in this case.

Consider the case of transition 7. This transition increases #gk−1 and #gk by one, and decreases

#mk−1 by one. Consequently, it affects the formula of x ≤ k. For x < k − 1, since
∑k−1

p=x+1 #mp

decreases and #gk increases by one, the left and right sides of the formula do not change. For
x = k − 1, both #gk and #gk−1 increase by one and #mk−1 is not included in

∑k−1
p=x+1 #mp, the

left and right sides of the formula increase by one. For x = k, the formula always holds. Hence, the
lemma holds in this case.

Consider the case of transition 8. This transition increases #di−1 and #dj−1 by one, and
decreases #mi and #mj by one. Consequently, it affects the formula of x ≤ max{i, j} − 1. Since

this transition increases
∑k−2

q=x #dq and decreases
∑k−1

p=x+1 #mp by the same number for any x ≤
max{i, j} − 1, the lemma holds in this case.

Consider the case of transition 9. This transition increases #di−1 by one, and decreases #di
and #gi by one. Consequently, it affects the formula of x ≤ i. For x < i − 1, since

∑k−2
q=x #dq and

#gx do not change, the left and right sides of the formula do not change. For x = i, both #gi
and

∑k−2
q=x #dq decrease by one, the left and right sides of the formula decrease by one. Hence, the

lemma holds in this case.

103

A Population Protocol for Uniform k-partition under Global Fairness

Finally, consider the case of transition 10. Since this transition decreases #d1 and #g1 by one,
it affects only formula of x = 1. Clearly, the left and right sides of the formula decrease by one.
Hence, the lemma holds in this case.

The invariants in Lemma 1 explain some properties of the proposed protocol. For example,
#gx ≥ #gk holds for any x (1 ≤ x ≤ k). This means the number of agents in each group is at least
#gk. Since #gk is never decreased from the protocol, the number of agents in each group is never
decreased below #gk after that. By Lemmas 2 to 4, we prove that #gk eventually becomes bn/kc.
That is, the number of agents in each group eventually becomes bn/kc.

Lemma 2. Let C1 be a set of all reachable configurations such that #ini ≥ k holds. For any
configuration C in C1, there exists C ′ such that C

∗−→ C ′ holds and #gk at C ′ is increased by one
from C.

Proof. If there exist no agents in state initial at C, there exist at least three agents in state initial′

exist (because of k ≥ 3). Consequently two of them enter state initial by interacting each other
(transition 2). Similarly, if there exist no agents in state initial′ at C, some agents can enter state
initial′ (transition 1). Hence, there exists a reachable configuration from C where at least one agent
in state initial′ and at least one agent in state initial. Let a1 and a2 be agents in state initial′ and
initial, respectively. After a1 and a2 interact, they become m2 and g1, respectively (transition 5).
At this moment, there exist at least k − 2 agents in state initial or initial′. After that, these k − 2
agents can interact with a2 one by one. As a result, these k − 2 agents enter g2, g3, . . ., gk−1, and
a2 enters gk (transitions 6 and 7). Therefore, #gk is increased by one from C.

Lemma 3. Let C2 be a set of all reachable configurations such that #ini < k and n − k ·#gk ≥ k
hold. For any configuration C in C2, there exists C ′ such that C

∗−→ C ′ holds and #gk at C ′ is
increased by one from C.

Proof. We prove that, from C, there exists a transition such that 1) #gk is increased by one or 2)
#ini is increased. In the former case, the lemma directly holds. In the latter case, since #gk is
not increased, n − k · #gk ≥ k still holds. Consequently, we can repeatedly apply this claim, and
eventually #ini exceeds k or #gk is increased by one. If #ini exceeds k, #gk is eventually increased
from Lemma 2. Therefore, the lemma holds.

To prove the above claim, we divide C2 into the following four sets of configurations Cd, Cm2,
Cm1, and Cm0.

• Cd is a set of configurations (in C2) such that #dq > 0 holds for some q (1 ≤ q ≤ k − 2).

• Cm2 is a set of configurations (in C2) such that dq = 0 holds for any q (1 ≤ q ≤ k − 2) and∑k−1
p=2 #mp ≥ 2 holds.

• Cm1 is a set of configurations (in C2) such that dq = 0 holds for any q (1 ≤ q ≤ k − 2) and∑k−1
p=2 #mp = 1 holds.

• Cm0 is a set of configurations (in C2) such that dq = 0 holds for any q (1 ≤ q ≤ k − 2) and∑k−1
p=2 #mp = 0 holds.

First consider a configuration C ∈ Cd. Let q be an integer such that dq > 0 holds in C. From
Lemma 1, #gq > 0 holds. Consequently, when agents in states dq and gq interact, at least one of
them enters initial by transition 9 or 10. Thus, #ini is increased.

Next consider a configuration C ∈ Cm2. From the definition of Cm2, there exist two distinct
agents ai and aj whose states are mi and mj , respectively. When ai and aj interact, they enter
states di−1 and dj−1 by transition 8, respectively. This configuration belongs to Cd, and thus #ini
is eventually increased.

Consider a configuration C ∈ Cm1. Let i be an integer such that #mi = 1 holds. From Lemma
1, #gx = 1 + #gk holds for x ≤ i − 1 and #gx = #gk holds for x ≥ i. Since a population
consists of one agent in state mi and agents in states gx(1 ≤ x ≤ k), initial, and initial′, we have

104

International Journal of Networking and Computing

#ini = n − 1 −
∑k

x=1 #gx = n − k ·#gk − i ≥ k − i. Let a be the agent in state mi and ai, ai+1,
. . ., ak−1 be agents in state initial or initial′. If a interacts with ai, ai+1, . . ., ak−1 in this order, ai,
ai+1, . . ., ak−1 transit to gi, gi+1, . . ., gk−1, respectively and a transits to gk. Thus, #gk is increased
by one.

Finally, consider a configuration C ∈ Cm0. In this case,
∑k

q=1 #gq + #ini = n holds. From

Lemma 1, #gx = #gk holds for any x (1 ≤ x ≤ k). That is,
∑k

x=1 #gx + #ini = k ·#gk + #ini
= n holds. Hence, #ini = n− k ·#gk ≥ k holds. This means no configuration is in Cm0.

Therefore, the lemma holds.

Lemma 4. For any execution E = C0, C1, . . ., there exists Ct such that n− k ·#gk < k holds.

Proof. First, we show that, when n − k ·#gk ≥ k holds at a configuration Ci, #gk is increased by
one at Cj for some j (j > i). For contradiction, assume that such Cj does not exist. Since #gk is
never decreased from the protocol, #gk is never changed and n − k · #gk ≥ k continuously holds
after Ci. Since the number of such configurations is finite, some configuration C ′i occurs infinitely

often after Ci in E. From Lemmas 2 and 3, there exists C ′j such that C ′i
∗−→ C ′j and #gk in C ′j is

increased by one from C ′i. That is, there exists a sequence of configurations C ′1, C
′
2, . . . , C

′
l such that

C ′i = C ′1 → C ′2 → · · · → C ′l = C ′j holds. From global fairness, since C ′i = C ′1 occurs infinitely often,
C ′2 occurs infinitely often. Similarly, C ′3, . . . , C

′
l = C ′j occur infinitely often. That is, #gk at C ′j is

increased by one from Ci. This is a contradiction. Thus, if n− k ·#gk ≥ k holds, #gk is eventually
increased by one. Therefore, the lemma holds.

Note that, since n ≥
∑k

x=1 #gx ≥ k · #gk holds from Lemma 1, n − k · #gk < k derives
#gk = bn/kc. Hence, Lemma 4 implies that #gk = bn/kc eventually holds. This implies that
the number of agents in each group eventually becomes bn/kc or bn/kc + 1 from Lemma 1. Let
r = n− k · bn/kc. If r = 0 holds, the uniform k-partition has been solved. If r ≥ 1 holds, there exist
r remaining agents. Lemma 5 shows resultant states of the remaining agents. If r = 1 holds, the one
remaining agent is in state initial or initial′. If r ≥ 2 holds, r agents enter states g1, g2, . . . , gr−1
and mr.

Lemma 5. Assume that r = n−k · bn/kc > 0 holds. Let C3 be a set of reachable configurations such
that n− k ·#gk < k holds (i.e., #gk = bn/kc). For any configuration C ∈ C3, there exists C ′ such

that 1) C
∗−→ C ′ holds, 2) #gx = bn/kc+ 1 holds for any x (1 ≤ x ≤ r − 1), 3) #gx = bn/kc holds

for any x (r ≤ x ≤ k), and 4) #ini = 1 holds if r = 1 and #mr = 1 holds if r ≥ 2.

Proof. From Lemma 1, #gx ≥ #gk = bn/kc holds for any x (1 ≤ x ≤ k) at C. Let A′ ⊂ A be a set
of agents that include bn/kc agents in state gx at C for any x (1 ≤ x ≤ k), and let Ar = A−A′.

Let us consider the case of r = 1. In this case Ar does not contain an agent in state mp for any p
because otherwise Ar also contains agents in state gr (r ≤ p− 1) from Lemma 1. Similarly, Ar does
not contain an agent in state dq for any q. Hence, Ar contains one agent in state initial or initial′.
Thus, if r = 1, the lemma holds.

In the following, we assume r ≥ 2. Similarly to Lemma 3, we can prove that r agents in Ar

transit to g1, g2, . . . , gr−1 and mr. That is, we can easily observe the following facts. If all agents in
Ar are in initial or initial′, they can transit to g1, g2, . . . , gr−1 and mr by interacting one by one. If
an agent in state dq exists in Ar for some q, it eventually transits to initial. If two agents in states
mi and mj exist in Ar for some i and j, they can transit to di−1 and dj−1. If Ar contains exactly
one agent in state mp for some p, Ar contains p− 1 agents in states g1, g2, . . . , gp−1 and r− p agents
in states initial and initial′. In this case, agents in state mp, initial, and initial′ can transit to
gp, gp+1, . . . , gr−1 and mr.

Since A′ contains bn/kc agents in state gx for every x and Ar contains r agents in states
g1, g2, . . . , gr−1 and mr, the lemma holds.

Lemma 5 proved that a configuration specified in the lemma is reachable from a configuration
specified in Lemma 4. Thus, similarly to Lemma 4, we can obtain the following lemma.

105

A Population Protocol for Uniform k-partition under Global Fairness

Lemma 6. Assume that r = n− k · bn/kc > 0 holds. For any execution E = C0, C1, . . ., there exists
Ct such that 1) #gx = bn/kc+ 1 holds for any x (1 ≤ x ≤ r − 1), 2) #gx = bn/kc holds for any x
(r ≤ x ≤ k), and 3) #ini = 1 holds if r = 1 and #mr = 1 holds if r ≥ 2.

Let r = n − k · bn/kc. From Lemmas 4 and 6, a population eventually reaches a configuration
C∗ such that 1) #gx = bn/kc + 1 holds for any x (1 ≤ x ≤ r − 1), 2) #gx = bn/kc holds for any
x ≥ r, and 3) #ini = 1 holds if r = 1 and #mr = 1 holds if r ≥ 2. Since f(gx) = x holds for x
(1 ≤ x ≤ k), f(mp) = p holds for p (2 ≤ p ≤ k−1), and f(ini) = 1 holds for ini ∈ {initial, initial′},
the number of agents in each group is bn/kc or bn/kc+ 1. In addition, no transition can happen at
C∗. This implies that C∗ is stable. Therefore, we have the following theorem.

Theorem 1. The proposed protocol solves the uniform k-partition problem. That is, there exists a
symmetric protocol with 3k−2 states and designated initial states that solves the uniform k-partition
problem under global fairness.

5 Simulation Results

In this section, we discuss the time complexity of the proposed protocol by simulations. We evaluate
the time complexity by the total number of interactions until a population reaches a stable configu-
ration. In the simulations, we construct an execution by selecting two agents uniformly at random
in each configuration and making them interact. Note that, if we construct an infinite execution by
this way, the execution satisfies global fairness with probability 1. For all simulation settings, we
conduct a simulation 100 times and show the average values as the results.

5.1 Varying the population size n

Figure 3 shows the number of interactions for k ∈ {4, 6, 8} with changing the population size (i.e.,
the number of agents) n. As n increases, the number of interactions tends to increase. However,
the number of interactions sometimes decreases when n increases. We can observe that such a
phenomenon is repeated with a period of a length of k. That is, n mod k influences the number of
interactions.

To observe the details of executions, we focus on the number of interactions required to construct
one set of agents in states g1, g2, . . . , gk. We refer to this construction by grouping. Recall that,
once an agent enters state gk, the set of agents never goes back to initial. Let NIi be the number of
interactions required to construct the i-th set of agents in states g1, g2, . . . , gk. We define NI0 = 0.
We count NI ′i = NIi − NIi−1, i.e., the number of interactions to achieve the i-th grouping. We
show the results in Figure 4. In this figure, we show NI ′1 at the bottom of the figure (denoted
by 1st-grouping), NI ′2 at the second to the bottom (denoted by 2nd-grouping), and so on. Figure
4 shows that NI ′1 < NI ′2 < · · · holds except for the last part (i.e., transitions of the remaining
n mod k agents). This is because, as the execution proceeds, the number of agents not in a group
decreases and consequently agents require more interactions to achieve the grouping. In addition,
we can observe that, for any positive integer c, when n = c ·k+2, c ·k+3, . . . , c ·k+(k+1) holds, the
number of interactions to achieve the (c+ 1)-th grouping (shown in the top of each graph) increases
steeply with n. In addition, the number of interactions for the (c+1)-th grouping accounts for more
than half of the total number of interactions for n = c · k + k and n = c · k + (k + 1). These facts
influence juggy forms of graphs in Figure 3.

Hereafter, to prevent the effect of n mod k, we execute simulations for the case that n mod k = 0
holds.

Figure 5 shows the number of interactions for k ∈ {3, 4, 5, 6} with changing the population size
n. We consider n = 120 ·n′ for n′ ∈ {1, 2, . . . , 8} so that n mod k = 0 holds. Figure 5 shows that, as
n increases, the number of interactions also increases. The number of interactions seems to increase
more than linearly but less than exponentially with n.

106

International Journal of Networking and Computing

(a) k = 4 (b) k = 6

(c) k = 8

Fig. 3: The number of interactions for k ∈ {4, 6, 8} with changing the population size n

(a) k = 4 (b) k = 6

(c) k = 8

Fig. 4: The number of interactions to achieve the i-th grouping

5.2 Varying the number of groups k

The logarithmic graph in Figure 6 shows the number of interactions for n = 960 with changing k.
To avoid the effect of n mod k, we show the results only for the case that n mod k = 0 holds. Figure

107

A Population Protocol for Uniform k-partition under Global Fairness

Fig. 5: The number of interactions for k ∈ {3, 4, 5, 6} with changing the population size n

Fig. 6: The number of interactions for n = 960 with changing k

6 shows that the number of interactions seems to increase exponentially with k. This is because, to
create a set of groups including agents with states g1 to gk, a m2-state agent interacts k − 2 free
agents (i.e., agents with state initial or initial′) without interacting other m-state agents. Since
interaction of initial and initial′ agents creates a m-state agent, a non-negligible number of m-state
agents exist. Hence, the possibility that an agent interacts k − 2 free agents without interacting
m-state agents becomes exponentially small when k becomes large. This increases the number of
interactions exponentially with k.

108

International Journal of Networking and Computing

6 Conclusion

In this paper, we proposed a symmetric population protocol with 3k − 2 states and designated
initial states that solves the uniform k-partition problem under global fairness. Since Ω(k) states
are necessary for any uniform k-partition protocol, the proposed protocol is asymptotically space-
optimal. We evaluated the time complexity of the protocol by simulations. From the simulation
results, we can observe that the time complexity increases exponentially with k but not exponentially
with n. Some open questions are the following:

• What is the tight lower bound for space of the uniform k-partition protocol? Although our
protocol is asymptotically space-optimal, it is important to develop a (non-asymptotically)
space-optimal protocol for low-performance devices.

• What is the relation between the uniform k-partition problem and other problems such as
counting, leader election, and majority?

• What is the time complexity of the uniform k-partition problem under probabilistic fairness?
Is there a protocol such that the time complexity is polynomial of n and k?

Acknowledgements

This research was supported by Japan Science and Technology Agency (JST) SICORP and JSPS
KAKENHI Grant Number 18K11167.

References

[1] Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L Rivest. Time-
space trade-offs in population protocols. In Proc. of the 28th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 2560–2579, 2017.

[2] Dan Alistarh and Rati Gelashvili. Polylogarithmic-time leader election in population protocols.
In Proc. of the 42nd International Colloquium on Automata, Languages, and Programming,
pages 479–491, 2015.

[3] Dan Alistarh, Rati Gelashvili, and Milan Vojnović. Fast and exact majority in population
protocols. In Proc. of the 2015 ACM Symposium on Principles of Distributed Computing, pages
47–56, 2015.

[4] Dana Angluin, James Aspnes, Melody Chan, Michael J Fischer, Hong Jiang, and René Per-
alta. Stably computable properties of network graphs. In Proc. of International Conference on
Distributed Computing in Sensor Systems, pages 63–74, 2005.

[5] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed computing, 18(4):235–253, 2006.

[6] Dana Angluin, James Aspnes, and David Eisenstat. A simple population protocol for fast robust
approximate majority. Distributed Computing, 21(2):87–102, 2008.

[7] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational power
of population protocols. Distributed Computing, 20(4):279–304, 2007.

[8] Dana Angluin, James Aspnes, Michael J Fischer, and Hong Jiang. Self-stabilizing population
protocols. In International Conference On Principles Of Distributed Systems, pages 103–117.
Springer, 2005.

[9] James Aspnes, Joffroy Beauquier, Janna Burman, and Devan Sohier. Time and space opti-
mal counting in population protocols. In Proc. of International Conference on Principles of
Distributed Systems, pages 13:1–13:17, 2016.

109

A Population Protocol for Uniform k-partition under Global Fairness

[10] James Aspnes and Eric Ruppert. An introduction to population protocols. In Middleware for
Network Eccentric and Mobile Applications, pages 97–120, 2009.

[11] Joffroy Beauquier, Janna Burman, Simon Claviere, and Devan Sohier. Space-optimal counting
in population protocols. In Proc. of International Symposium on Distributed Computing, pages
631–646, 2015.

[12] Joffroy Beauquier, Julien Clement, Stephane Messika, Laurent Rosaz, and Brigitte Rozoy. Self-
stabilizing counting in mobile sensor networks with a base station. In Proc. of International
Symposium on Distributed Computing, pages 63–76, 2007.

[13] Shukai Cai, Taisuke Izumi, and Koichi Wada. How to prove impossibility under global fairness:
On space complexity of self-stabilizing leader election on a population protocol model. Theory
of Computing Systems, 50(3):433–445, 2012.

[14] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Eric Ruppert. When birds
die: Making population protocols fault-tolerant. Distributed Computing in Sensor Systems,
pages 51–66, 2006.

[15] David Doty and David Soloveichik. Stable leader election in population protocols requires linear
time. In Proc. of International Symposium on Distributed Computing, pages 602–616, 2015.

[16] Leszek Gasieniec, David Hamilton, Russell Martin, Paul G Spirakis, and Grzegorz Stachowiak.
Deterministic population protocols for exact majority and plurality. In Proc. of International
Conference on Principles of Distributed Systems, pages 14:1–14:14, 2016.

[17] Taisuke Izumi. On space and time complexity of loosely-stabilizing leader election. In Proc.
of International Colloquium on Structural Information and Communication Complexity, pages
299–312, 2015.

[18] Tomoko Izumi, Keigo Kinpara, Taisuke Izumi, and Koichi Wada. Space-efficient self-stabilizing
counting population protocols on mobile sensor networks. Theoretical Computer Science,
552:99–108, 2014.

[19] Anissa Lamani and Masafumi Yamashita. Realization of periodic functions by self-stabilizing
population protocols with synchronous handshakes. In Proc. of International Conference on
Theory and Practice of Natural Computing, pages 21–33, 2016.

[20] Satoshi Murata, Akihiko Konagaya, Satoshi Kobayashi, Hirohide Saito, and Masami Hagiya.
Molecular robotics: A new paradigm for artifacts. New Generation Computing, 31(1):27–45,
2013.

[21] Yuichi Sudo, Toshimitsu Masuzawa, Ajoy K Datta, and Lawrence L Larmore. The same speed
timer in population protocols. In Proc. of International Conference on Distributed Computing
Systems, pages 252–261, 2016.

[22] Yuichi Sudo, Junya Nakamura, Yukiko Yamauchi, Fukuhito Ooshita, Hirotsugu Kakugawa,
and Toshimitsu Masuzawa. Loosely-stabilizing leader election in a population protocol model.
Theoretical Computer Science, 444:100–112, 2012.

[23] Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Loosely-
stabilizing leader election on arbitrary graphs in population protocols without identifiers nor
random numbers. In Proc. of International Conference on Principles of Distributed Systems,
pages 14:1–14:16, 2015.

[24] Tomoki Umino, Naoki Kitamura, and Taisuke Izumi. Differentiation in population protocols.
6th workshop on biological distributed algorithms(BDA), 2018.

[25] Hiroto Yasumi, Fukuhito Ooshita, Ken’ichi Yamaguchi, and Michiko Inoue. Constant-space
population protocols for uniform bipartition. the 21st International Conference on Principles
of Distributed Systems, 2017.

110

