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Abstract

Recent state-of-the-art deep reinforcement learning algorithms, such as A3C and UNREAL,
are designed to train on a single device with only CPU’s. Using GPU acceleration for these
algorithms results in low GPU utilization, which means the full performance of the GPU is not
reached. Motivated by the architecture changes made by the GA3C algorithm, which gave A3C
better GPU acceleration, together with the high learning efficiency of the UNREAL algorithm,
this paper extends GA3C with the auxiliary tasks from UNREAL to create a deep reinforcement
learning algorithm, GUNREAL, with higher learning efficiency and also benefiting from GPU
acceleration. We show that our GUNREAL system achieves 3.8 to 9.5 times faster training
speed compared to UNREAL and 73% more training efficiency compared to GA3C.
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1 Introduction

Deep Learning considers the training of deep neural networks (DNNs), which are computational
models capable of representing high-dimensional mathematical functions. These networks consist of
many linked layers of non-linear operation units and parameters. Training a DNN generalizes the
input-output relation of a dataset by updating the parameters (often called weights) via gradient
descent, which has led to tremendous advances in image recognition. Deep Learning benefits from
GPU acceleration, since the matrix computations of the DNN units can be easily parallelized over
the many arithmetic cores of the GPU, resulting in a higher throughput for the DNN and hence
reducing the training time.

Reinforcement learning is a Machine Learning methodology which teaches the action policies of
agents through interaction with the environment in which they should operate [25]. Humans and
other animals also need to learn how they can survive in their environment. Neuroscience provided
evidence on the exitistence of neurons which respond to the predicted rewards and punishments [15–
17, 23]. The responses of these neurons indicate that humans might also be using the strategy of
reinforcement learning.

During the last years, Deep Learning enabled reinforcement learning to be applied on more
advanced and complex environments such as robotics and HVAC (heating, ventilation, and air
conditioning) control [28] for data centers. Training neural networks to represent the decision model
in a reinforcement learning context used to be slow and unstable, but since the introduction of the
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Figure 1: Deep reinforcement learning architecture (policy-based, model-free method). dθ is policy
gradients and dθv is state-value gradients.

Deep Q-learning Network (DQN) algorithm [19], deep reinforcement learning has been advancing
the state-of-the-art results. DQN stabilized the training procedure for DNNs by introducing an
experience replay memory buffer in order to avoid divergence.

Latest state-of-the-art deep reinforcement learning algorithms focused on concurrent simulations,
allowing to use multiple agents simultaneously to train a DNN faster. Asynchronous Advantage
Actor-Critic (A3C) [18] has been proposed in 2016. The design of A3C targets single machines that
only use CPU’s. Therefore, when running the algorithm with GPU acceleration, A3C does not utilize
the full performance of the GPU. The reason behind this is the lack of an experience replay memory
buffer, resulting in small batches of data used for training the DNN. CPU-GPU communication is
therefore a bottleneck which limits the GPU acceleration capabilities for A3C.

The next year, DeepMind extended the A3C algorithm with auxiliary learning tasks, which they
named UNREAL [14]. The auxiliary task models share neural network layers with the main task
model, so training these auxiliary tasks guides a part of the main model. The algorithm achieves
higher learning efficiency, meaning that less actions have to be performed in total to learn the main
task.

In order to reduce the CPU-GPU communication bottleneck of A3C, GA3C [2] was introduced
in the same year as UNREAL, which re-designed the architecture to benefit better from GPU
acceleration. GA3C sends larger batches of data at once to the GPU and has lightweight agents,
which allows the system to increase the number of concurrent simulations on the CPU and hence
increasing the GPU utilization and learning speed.

In this paper, we propose an extension to GA3C with the auxiliary tasks from UNREAL to
achieve a learning efficient deep reinforcement learning algorithm, GUNREAL, that also benefits
from GPU acceleration. We evaluated and optimized the throughput of our system by adding a
memory constraining feature to the monitoring process and changing the data structure of our DNN
input. compared GUNREAL with GA3C and an open-source replication of UNREAL to verify the
learning performance over time and in terms of steps, the total number of performed actions by the
agents. We used Atari games in OpenAI Gym [5] as a 2D simulator and 3D games in DeepMind
Lab [4] as a 3D simulator for the experiments. The results show that GUNREAL gained higher
learning efficiency, which allows the algorithm to learn complex tasks in less steps than GA3C. Next
to this, GUNREAL also trains faster than UNREAL, hence proving that our algorithm gains both
benefits of accelerated training time and learning more efficiently. Although GUNREAL is evaluated
using games but GUNREAL is not designed for the specific application and the target applications
are not limited to a specific application. GUNREAL is applicable to other applications with some
modifications into the GUNREAL architecture. We discuss more about applicability of GUNREAL
to other applications in section 5.

Our work makes the following major contributions:

• We propose a GPU-accelerated architecture of UNREAL, a state-of-the-art deep reinforcement
learning algorithm, by extending GA3C for learning the auxiliary tasks.
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Figure 2: A3C architecture. θ′ is updated policy parameters and θ′v is updated state-value parame-
ters.

• We evaluate the necessity of a preprocessing phase and improve the throughput on the GPU
by changing the data format.

• We conduct experiments on both a 2D simulator (OpenAI Gym) and a 3D simulator (Deep-
Mind Lab), and show our proposed architecture achieves 3.8 to 9.5 times faster training speed
compared to UNREAL and 73% more training efficiency (fewer training steps) compared to
GA3C.

2 Prior Reinforcement Learning Algorithms

Reinforcement learning provides a general framework for learning decision-making tasks. An agent
has to operate in an environment and learn by trial-and-error. In each time step t, the agent
observes the state of the environment st. Based on that observation, it has to decide which action
at to perform. The decision model guiding the agent’s action selection process is the policy π, which
maps observations to a probability distribution over the set of available actions. After performing the
selected action, the agent observes the next state of the environment st+1. Next to this, a feedback
signal is received in the form of a reward r. This process is repeated until the agent ends up in a
terminal state. After that, the environment is reset and the decision-making cycle is repeated. The
agent’s learning goal is to maximize the expected future reward.

Deep reinforcement learning architecture of a policy-based, model-free method is shown in Fig-
ure 1. Policy-based, model-free reinforcement learning methods learn by updating the parameters θ
of a function approximation model to estimate the policy as a conditional probability distribution
over the action set π(at|st; θ). Updating these parameters is done by applying gradient ascent on
the expected future reward E[Rt], with Rt =

∑∞
i=0 γ

irt+i, representing the step-wise accumulated
reward, discounted by a factor γ ∈ (0, 1].

The policy gradient ∇θ log π (at|st; θ)Rt is usually estimated to update the parameters of the pol-
icy model. In order to reduce the variance, a baseline function is subtracted. A regularly used base-
line is the state-value function V π(st) = E[Rt|st], the expected future reward by starting from state
st and following the policy π. Hence, the used gradient becomes ∇θ log π (at|st; θ) (Rt − V π(st)).
The usage of a value-based function in policy methods received the name actor-critic methods.
Actor-critic methods have to estimate both the state-value function and the policy iteratively.
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Algorithm 1 Asynchronous advantage actor-critic - pseudocode for each actor-learner agent
thread [18].

1: // Assume global shared parameter vectors θ and θv and global shared counter T ← 0
2: // Assume thread-specific parameter vectors θ′ and θ′v
3: Initialize thread step counter t← 1
4: repeat
5: Reset gradients: dθ ← 0 and dθv ← 0
6: Synchronize thread-specific parameters θ′ ← θ and θ′v ← θv
7: tstart ← t
8: Get state st
9: repeat

10: Perform at according to policy π(at|st; θ′)
11: Receive reward rt and new state st+1

12: t← t+ 1
13: T ← T + 1
14: until terminal st or t− tstart == tmax

15: R←

{
0 for terminal st

V (st; θ
′
v) for non-terminal st // Bootstrap from last state

16: for i ∈ {t− 1, . . . , tstart} do
17: R← ri + γR
18: Accumulate gradients wrt θ′ : dθ ← dθ+∇θ′ [log π(ai|si; θ′)(R−V (si; θ

′
v))+βH(π(st; θ

′))]
19: Accumulate gradients wrt θ′v : dθv ← dθv +∇θ′v (R− V (si; θ

′
v))

2

20: end for
21: Perform asynchronous update of θ using dθ and of θv using dθv
22: until T > Tmax

2.1 Asynchronous Advantage Actor-Critic (A3C)

A3C [18] is an actor-critic method which uses a DNN to estimate both the state-value function
and the policy in one model. The A3C architecture is shown in Figure 2. The algorithm runs
multiple agents concurrently to train a global DNN model. Each agent contains a local copy of the
model to perform steps in its environment. Every tmax steps, or earlier when a terminal state is
observed, the agent calculates gradients for policy dθ and gradients for state-value dθv, based on the
local model and sends these gradients asynchronously to the global DNN model. The global DNN
model is updated using the received gradients. Afterwards, the agent synchronizes its local model
parameters with the updated global network parameters θ′ and θ′v.

A3C uses two cost functions to update the policy and state-value function respectively with
gradient ascent (for the policy) and gradient descent (for the value function). For the policy, we
have fπ (θ) = log π (at|st; θ) (Rt − V (st; θt)) + βH (π (st; θ)), where we notice an additional term
representing the policy’s entropy, regularized by a factor β. In this function, the return Rt is
estimated by the bounded n-step returnRt = γnV (st+n; θt)+

∑n−1
i=0 γ

irt+i, where n is upper-bounded
by tmax. For the value function, the loss is the square error of the n-step return: fv (θ) = (Rt −
V (st; θ))

2. The pseudocode for an actor-learner agent thread of A3C is described in Algorithm 1 [18].

The authors of A3C presented two DNN models. The first model, A3C-FF, is a feed-forward
DNN which consists of two convolution layers followed by a fully connected layer which all contain
a rectifier. From the latter layer, a Softmax layer approximates the policy and a linear layer (a
fully connected layer without a rectifier) estimates the state-value function. The second model,
A3C-LSTM, is similar to the first model with long short-term memory (LSTM) units of recurrent
neural network (RNN). A LSTM unit contains a cell, in which values over arbitrary time intervals
are memorized for learning tasks where time series information such as time lags and duration
between events may help. This model also has two convolution layers followed by a fully connected
layer, but afterwards an LSTM is inserted in the network. From this LSTM, a Softmax layer then
approximates the policy and a linear layer estimates the state-value function.
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Figure 3: UNREAL architecture. Red blocks are the extensions to A3C with the auxiliary tasks. pc
is pixel change, calculated every step.

2.2 UNsupervised REinforcement and Auxiliary Learning (UNREAL)

UNREAL [14] has extended A3C with three additional learning tasks, consisting of pixel control
(PC), value function replay (VR), and reward prediction (RP), to increase the learning efficiency.
The architecture of UNREAL is shown in Figure 3. The auxiliary tasks are trained by sampling
frame sequences from a re-introduced experience replay memory buffer per agent which buffers most
recent frames of observations (states), actions, and rewards for the latest 2,000 steps it performed.
The UNREAL algorithm runs multiple agents concurrently in the same way as A3C. Once the replay
buffer is generated, the algorithm runs A3C and each agent calculates gradients dθ and dθv for every
tmax steps or earlier when a terminal state is observed.

Since DQN and successors mostly learn games by observing a screen, the pixel control task was
introduced to learn the effect of actions on the environment by predicting average changes in the
screen. Pixel change pct is generated every step for input of the pixel control task, by calculating the
absolute difference per pixel for cropped 80 by 80 pixels and averaging each 4 by 4 pixels. When the
gradients of A3C are calculated, the pixel control task is executed using tmax+1 sampled experience
frame sequence. The last one frame in addition to the tmax frames is used for calculating last next
state. Gradients of pixel control dθpc are calculated using rewards Rpc from the output of pixel
control maxaQpc(stpc , a; θpc).

Value function replay updates the value function from the actor-critic model a second time to
reduce the value loss faster. As the pixel control task, the value function replay task is executed when
the gradients of A3C are calculated, using tmax + 1 sampled experience frame sequence. The value
function is calculated using the same DNN structure with A3C and gradients dθvr are calculated
using rewards Rvr from the output Vvr.

The reward prediction task learns to predict from a sequence of observations whether the next step
will result in a positive, negative or zero reward. As the other auxiliary tasks, the reward prediction
task is executed when the gradients of A3C are calculated, using tmax+ 1 sampled experience frame
sequence, but the frame sequence is selected in such a way that with 50% probability the value of
reward at the end step is zero (or non-zero). The reward prediction task predicts classification of
reward Crp in the next step and calculate gradients dθrp based on the classification error.

After the gradients of A3C and the auxiliary tasks are calculated, the agent sends the gradients
to the global DNN model and the global DNN model is updated using the received gradients.
Afterwards, the agent synchronizes its local model parameters with the updated global network
parameters. The pseudocode for an agent thread of UNREAL is described in Algorithm 2.

The pixel control and value function replay tasks require additional DNN models. These models
re-use layers from the main actor-critic model and thereby guide the learning of the main task.
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Algorithm 2 UNREAL - pseudocode for each actor-learner agent thread.

1: // Assume global shared parameter vectors θ, θv, θpc, θvr, θrp and global shared counter T ← 0
2: // Assume thread-specific parameter vectors θ′, θ′v, θ

′
pc, θ

′
vr, θ

′
rp

3: // Assume experience replay buffer RB with a user defined buffer size
4: Initialize thread step counter t← 1
5: repeat
6: if RB is not full then
7: Perform at according to policy π(at|st; θ′)
8: Receive reward rt and new state st+1

9: Calculate pixel change pct
10: Add a frame {st, rt, at, terminal or non-terminal, pct} to RB
11: continue
12: end if
13: Reset gradients: dθ ← 0, dθv ← 0, dθpc ← 0, dθvr ← 0, dθrp ← 0
14: Synchronize thread-specific parameters θ′ ← θ, θ′v ← θv, θ

′
pc ← θpc, θ

′
vr ← θvr, θ

′
rp ← θrp

15: Process A3C in Algorithm 1, line 7 - 20
16: /* Process pixel control */
17: Sample tmax + 1 frame sequence from RBtstart pc

, tstart pc is randomly selected
18: tpc ← tstart pc + tmax

19: Rpc ←

{
0 for terminal stpc−1

maxaQpc(stpc , a; θ′pc) for non-terminal stpc−1 // Bootstrap from last state

20: for i ∈ tpc − 1, . . . , tstart pc do
21: Rpc ← pci + γpcRpc
22: Accumulate gradients wrt θ′pc : dθpc ← dθpc +∇θ′pc(Rpc −maxaQpc(si, ai; θ′pc))2
23: end for
24: /* Process value function replay */
25: Sample tmax + 1 frame sequence from RBtstart vr , tstart vr is randomly selected
26: tvr ← tstart vr + tmax

27: Rvr ←

{
0 for terminal stvr−1

V (stvr
, θ′v) for non-terminal stvr−1 // Bootstrap from last state

28: for i ∈ tvr − 1, . . . , tstart vr do
29: Rvr ← ri + γRvr
30: Accumulate gradients wrt θ′vr : dθvr ← dθvr +∇θ′vr

(Rvr − V (si; θ
′
vr))

2

31: end for
32: /* Process reward prediction */
33: Sample tmax rp+1 frame sequence from RBtstart rp

, with 50% probability sample zero reward
(or non-zero reward) at the end step

34: trp ← tstart rp + tmax rp

35: Crp ←


0 if rtrp == 0

1 if rtrp > 0 // Crp is the class index label in reward prediction

−1 if rtrp < 0
36: for i ∈ trp − 1, . . . , tstart rp do
37: Accumulate gradients wrt θ′rp : dθrp ← dθrp + ∇θ′rp(E(si, Crp; θrp)) // E: classification

error
38: end for
39: Perform asynchronous update of θ using dθ, of θv using dθv, of θpc using dθpc, of θvr using

dθvr, and of θrp using dθrp
40: until T > Tmax
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UNREAL’s actor-critic model uses a slightly altered version of the A3C-LSTM model, which provides
extra input to the LSTM. The DNNs are trained as a whole by reducing the weighted sum of losses
for the main and auxiliary tasks.

Note that UNREAL is not designed for a specific task such as gaming though it is evaluated
by 2D and 3D games in the paper. Especially the VR task and RP task are applicable to any
applications which can work with the main A3C task. On the other hand, the PC task is specifically
designed for processing image data, therefore PC is applicable only to applications using image data
as input to a DNN of UNREAL.

2.3 GPU-accelerated Asynchronous Advantage Actor-Critic (GA3C)

GA3C changed the architecture of A3C to benefit better from GPU acceleration. The architecture
is visualized in Figure 4. Unlike A3C, agents do not have a local model anymore. There is only a
global DNN residing on the GPU. As actor-critic model, GA3C uses the feed-forward A3C model
(A3C-FF). In order to decide on the action to be performed in the environment, agents must now
consult the global DNN. Due to the lack of local models, agents do not calculate gradients anymore
and simply send their experience to the global network so that the GPU can calculate gradients and
update the network.

Communication with the GPU is achieved via a multi-producer-consumer architecture. Whenever
agents have to step in the environment, they put pairs of their observation and the agent id on a
queue, which is served by a set of predictor threads, managed by a server process. The predictors
bundle observations into a large batch which is then sent to the GPU to calculate the network output
for each observation. Afterwards, the predictors send the results back to the corresponding agents
based on the received agent ids who can then decide on the action to apply in their environments.
After at most tmax steps, the agent will have to send a batch of training data to update the network.
These training batches with at most tmax samples, are put on a different queue, which is served
by a set of trainer threads that is also managed by the server process. These threads bundle the
received batches into a larger batch, which is then sent to the GPU to update the DNN. By using
server threads to bundle data, the overall number of CPU-GPU round-trips is reduced while giving
the GPU more data at once to process, which increases the GPU utilization and hence improves
acceleration. The pseudocode of GA3C is described in Algorithm 3 for an actor agent thread, in
Algorithm 4 for a predictor thread, and in Algorithm 5 for a trainer thread respectively.

It must be noted that GA3C suffers from a phenomenon called policy lag, which makes the
learning procedure of GA3C noisier than A3C. This can be reduced by increasing the training batch
size sent to the GPU, but doing so might decrease the speed with which learning progresses. A
batch size of 40 was according to GA3C’s authors an optimal value [11].
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Algorithm 3 GA3C - pseudocode for each actor agent thread.

1: // Assume global shared parameter vectors θ and θv and global shared counter T ← 0
2: Initialize thread step counter t← 1
3: repeat
4: tstart ← t
5: Get state st
6: repeat
7: Put {agent id, st} to prediction queue
8: Wait {π(at|st; θ), V (st; θv)} from predictor thread for the prediction to come back
9: Perform at according to policy π(at|st; θ)

10: Receive reward rt and new state st+1

11: t← t+ 1
12: T ← T + 1
13: until terminal st or t− tstart == tmax

14: R←

{
0 for terminal st

V (st; θv) for non-terminal st // Bootstrap from last state

15: for i ∈ {t− 1, . . . , tstart} do
16: R← ri + γR
17: end for
18: Put frames {s, a,R} to training queue
19: until T > Tmax

Algorithm 4 GA3C - pseudocode for each predictor thread.

1: // Assume global shared parameter vectors θ and θv and global shared counter T ← 0
2: // Assume thread-specific constant prediction batch size
3: repeat
4: batch size← 0
5: repeat
6: Get frames {agent id, stagent id

} from prediction queue
7: batch size← batch size+ the number of frames
8: until batch size ≥ prediction batch size or prediction queue is empty
9: Calculate π(at|st; θ) and V (st; θv) // on GPU

10: for i in 0, . . . , batch size− 1 do
11: Send {π(ai|si; θ), V (si; θv)} to agent threadagent idi
12: end for
13: until T > Tmax

Algorithm 5 GA3C - pseudocode for each trainer thread.

1: // Assume global shared parameter vectors θ and θv and global shared counter T ← 0
2: // Assume thread-specific constant training min batch size
3: repeat
4: Reset gradients: dθ ← 0 and dθv ← 0
5: batch size← 0
6: repeat
7: Get frames {s, a,R} from training queue
8: batch size← batch size+ the number of frames
9: until batch size > training min batch size

10: Calculate gradients wrt θ : dθ ← ∇θ[log π(a|s; θ)(R− V (s; θv)) + βH(π(s; θ))] // on GPU
11: Calculate gradients wrt θv : dθv ← ∇θv (R− V (s; θv))

2 // on GPU
12: Perform update of θ using dθ and of θv using dθv // on GPU
13: until T > Tmax
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3 GUNREAL architecture

In an attempt to achieve higher learning efficiency for GA3C, we propose GUNREAL (GPU-
accelerated UNREAL) [8], an extension to GA3C with the auxiliary tasks from UNREAL. We
implemented the auxiliary tasks from UNREAL into the GA3C architecture. The resulting exten-
sion is shown in Figure 5. Agents have a replay memory buffer to perform experience replay to
train the auxiliary tasks. While stepping through the environment, the agent will save the observed
state together with the performed action and the received reward in the buffer. When the agent
has performed at most tmax = 20 steps, the GA3C training batch will be generated. After that, the
training batches for the auxiliary tasks will also be sampled from the replay memory buffer.

The entire training batch for the reward prediction task can be generated based on the infor-
mation available in the memory buffer, since the training output for this task is simply the sign of
received rewards. However, pixel control task and the value function replay require a n-step return
to be estimated for the training output. To do so, the output of the DNN model linked to the
respective task has to be consulted. For the PC task, we need the output of the PC DNN model
and for the VR task, we need the state-value outputted by the main actor-critic model. To enable
consulting these respective network outputs at the requested time, two extra predictions lines are
inserted into the communication architecture. For each of the two tasks, a queue is added to the
system together with their respective set of server threads, which we call PC and VR predictors.
These threads serve the requests put on the queues by several agents and bundle them into batches
that will be sent to the GPU to calculate the respective network outputs. Afterwards, the threads
will send the results back to the corresponding agent. When all the training batches are generated,
the agent puts them all on the training queue in order to update GUNREAL’s DNN as a whole.
The pseudocode of GUNREAL training is described in Algorithm 6 for an actor agent thread, in
Algorithm 7 for a PC predictor thread, in Algorithm 8 for a VR predictor thread, and in Algorithm 9
for a trainer thread respectively. The pseudocode for a base A3C predictor thread is described in
Algorithm 4, the same as the pseudocode for a predictor thread in GA3C. A PC predictor thread
and a VR predictor thread perform in the same way as the base A3C predictor thread, except pa-
rameters θpc and θvr are used instead of θ, and functions maxaQpc(stpc , a; θpc) and V (stvr

; θv) are
used instead of π(at|st; θ) and V (st; θv).

GUNREAL extends GA3C’s DNN model with auxiliary layers in a similar fashion as was done
in UNREAL. The DNN structure of GUNREAL is summarized in Figure 6. The main actor-critic
model is the same as in GA3C, namely the A3C-FF model. For the pixel control task, we re-use
the two convolution layers and the first fully connected (FC) layer of this main model. Another FC
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layer follows with a split to two deconvolution layers, which are afterwards recombined according to
the principle of the dueling network architecture for DQN [27]. The pixel control task is trained via
n-step Q-learning [18]. The output of this network represents a 20 by 20 grid for each action. The
cells represent changes in density of that particular region of the input state, which would be caused
when the action would be performed. Because of this, the generation of training data requires the
agent to save the changes caused by its performed actions in the replay memory buffer while stepping
through the environment. The reward prediction network only re-uses the convolution layers of the
main model and adds two fully connected layers and a Softmax operation to output a classification
of 3 sequential states from the replay memory buffer that predicts whether the state following this
sequence will provide the agent positive, negative or zero reward. Since value function replay simply
re-uses the state-value from the main actor-critic model, no extra additions to the DNN are needed
to perform this auxiliary task.
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Figure 6: GUNREAL DNN structure

3.1 Preprocessing the environment observations

Originally, (G)A3C has a preprocessing phase, collecting four sequential 84 by 84 gray-scale frames.
The result is then used as a single environment observation for the learning process, so that the
observations contain extra information such as motion, which makes learning faster. On the other
hand, preprocessing the environment observations was omitted in UNREAL and single RGB frames
were used instead. A clear reason for this omission was not mentioned in the UNREAL paper,
but is likely due to the usage of an LSTM in the DNN. GUNREAL’s DNN does not contain an
LSTM, since it is an extension of GA3C. We tested GUNREAL with and without preprocessing
the environment observations. Figure 7 shows a comparison of learning curves of GUNREAL on
the DeepMind Lab game, nav maze static 01, when single RGB frames or preprocessed observations
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Algorithm 6 GUNREAL - pseudocode for each actor agent thread.

1: // Assume global shared parameter vectors θ, θv, θpc, θvr, θrp and global shared counter T ← 0
2: // Assume experience replay buffer RB with a user defined buffer size
3: Initialize thread step counter t← 1
4: repeat
5: /* Process base A3C */
6: tstart ← t
7: Get state st
8: repeat
9: Put {agent id, st} to prediction queue

10: Wait {π(at|st; θ), V (st; θv)} from predictor thread for the prediction to come back
11: Perform at according to policy π(at|st; θ)
12: Receive reward rt and new state st+1

13: Calculate pixel change pct
14: Add a frame {st, rt, at, terminal or non-terminal, pct} to RB
15: t← t+ 1
16: T ← T + 1
17: until terminal st or t− tstart == tmax

18: R←

{
0 for terminal st

V (st; θv) for non-terminal st // Bootstrap from last state

19: for i ∈ {t− 1, . . . , tstart} do
20: R← ri + γR
21: end for
22: if RB is full then
23: /* Process pixel control */
24: Sample tmax + 1 frame sequence from RBtstart pc

, tstart pc is randomly selected
25: tpc ← tstart pc + tmax
26: Put {agent id, st} to pc prediction queue
27: Wait maxaQpc(stpc , a; θpc) from pc predictor thread for the prediction to come back
28: Rpc ← maxaQpc(stpc , a; θpc)
29: for i ∈ tpc − 1, . . . , tstart pc do
30: Rpc ← pci + γpcRpc
31: end for
32: /* Process value function replay */
33: Sample tmax + 1 frame sequence from RBtstart vr , tstart vr is randomly selected
34: tvr ← tstart vr + tmax
35: Put {agent id, st} to vr prediction queue
36: Wait V (stvr

, θv) from vr predictor thread for the prediction to come back
37: Rvr ← V (stvr

, θv)
38: for i ∈ tvr − 1, . . . , tstart vr do
39: Rvr ← ri + γRvr
40: end for
41: /* Process reward prediction */
42: Sample tmax rp + 1 frame sequence from RBtstart rp

, with 50% probability sample zero
reward (or non-zero reward) at the end step

43: trp ← tstart rp + tmax rp

44: Crp ←


0 if rtrp == 0

1 if rtrp > 0 // Crp is the class index label in reward prediction

−1 if rtrp < 0
45: end if
46: Put frames {s, a,R} of base A3C, and if exist {s, a,Rpc} of pixel control, {s,Rvr} of value

function replay, and {s, Crp} of reward prediction, to training queue
47: until T > Tmax
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Algorithm 7 GUNREAL - pseudocode for each pixel control predictor thread.

1: // Assume global shared parameter vectors θpc and global shared counter T ← 0
2: // Assume thread-specific constant prediction batch size
3: repeat
4: batch size← 0
5: repeat
6: Get frames {agent id, stagent id

} from prediction queue
7: batch size← batch size+ the number of frames
8: until batch size ≥ prediction batch size or pc prediction queue is empty
9: Calculate maxaQpc(stpc , a; θpc) // on GPU

10: for i in 0, . . . , batch size− 1 do
11: Send maxaQpc(stpc , a; θpc) to agent threadagent idi
12: end for
13: until T > Tmax

Algorithm 8 GUNREAL - pseudocode for each value function replay predictor thread.

1: // Assume global shared parameter vectors θvr and global shared counter T ← 0
2: // Assume thread-specific constant prediction batch size
3: repeat
4: batch size← 0
5: repeat
6: Get frames {agent id, stagent id

} from prediction queue
7: batch size← batch size+ the number of frames
8: until batch size ≥ prediction batch size or vr prediction queue is empty
9: Calculate V (stvr ; θv) // on GPU

10: for i in 0, . . . , batch size− 1 do
11: Send V (stvr

; θv) to agent threadagent idi
12: end for
13: until T > Tmax

Algorithm 9 GUNREAL - pseudocode for each trainer thread.

1: // Assume global shared parameter vectors θ, θv, θpc, θvr, θrp and global shared counter T ← 0
2: // Assume thread-specific constant training batch size
3: repeat
4: Reset gradients: dθ ← 0, dθv ← 0, dθpc ← 0, dθvr ← 0, dθrp ← 0
5: batch size← 0
6: repeat
7: Get frames{s, a,R} of base A3C, and if exist {s, a,Rpc} of pixel control, {s,Rvr} of value

function replay, and {s, Crp} of reward prediction, from training queue
8: batch size← batch size+ the number of frames
9: until batch size ≥ training batch size

10: Calculate gradients wrt θ : dθ ← ∇θ[log π(a|s; θ)(R− V (s; θv)) + βH(π(s; θ))] // on GPU
11: Calculate gradients wrt θv : dθv ← ∇θv (R− V (s; θv))

2 // on GPU
12: if frames of auxiliary tasks exist then
13: Calculate gradients wrt θpc : dθpc ← ∇θpc(Rpc −maxaQpc(s, a; θpc))

2 // on GPU
14: Calculate gradients wrt θvr : dθvr ← ∇θvr

(Rvr − V (s; θvr))
2 // on GPU

15: Calculate gradients wrt θrp : dθrp ← ∇θrp(E(s, Crp; θrp)) // on GPU, E: classification
error

16: end if
17: Perform update of θ using dθ, of θv using dθv, of θpc using dθpc, of θvr using dθvr, and of θrp

using dθrp // on GPU
18: until T > Tmax
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were used as network input. It is clear that the preprocessed observations result in quicker learning
for GUNREAL, as the state observation from single RGB frames did not give the desired learning
abilities for GUNREAL. Therefore, we decided to keep the original preprocessing phase from GA3C
in GUNREAL.
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Figure 7: Training results of GUNREAL using different network input
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Figure 8: Pixel control training output calculation process for GUNREAL

Preprocessing the environment’s observations affects the calculation process needed to save pixel
changes for the pixel control task. In UNREAL, where the agent observes RGB frames, this was
done by taking the absolute difference from the 80 by 80 center crop of two 84 by 84 RGB frames, for
which the average is then calculated over the channel axis, resulting in a gray frame containing the
differences in density per pixel. Then, a partition of the frame was made into groups of 4 by 4 adjacent
pixels. From this partition, the average density per group is then outputted, resulting in a 20 by
20 grid. Since the agent’s observations in GUNREAL consist of four gray-scale frames, calculating
the pixel changes between two observations is determined by taking the absolute difference per pixel
from the final frame in both states. After this, a partition is made by grouping 4 by 4 adjacent
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pixels and the average value per group is outputted, resulting in a 20 by 20 grid summarizing the
visual changes between the two states. This process is illustrated in Figure 8.

3.2 Dynamics

Similar to GA3C, GUNREAL possesses the ability to alter the number of running agents and server
threads dynamically at runtime. The system monitors the achieved predictions per second by the
GPU and alters the number of the components in regular time intervals in order to reach a maximal
throughput. Since the agents of GUNREAL use a replay memory buffer, we decided to put an upper
limit to the number of components that can be created by monitoring the overall memory usage
of the system. Whenever the device reaches a RAM consumption higher than 95%, the number of
agents and server threads currently present are set as an upper limit.

4 Experiments

We evaluate the performance of our GUNREAL algorithm. Similar to GA3C, GUNREAL has been
developed using the Deep Learning framework TensorFlow [1]. In order to achieve better throughput
on the GPU, we investigated the tensor structure in the DNN. GUNREAL has been tested on games
from the Atari environment of OpenAI Gym [6] and the more complex 3D simulator, DeepMind
Lab [3]. To assess the learning performance, we provide learning curves, showing the achieved game
scores by the algorithm in a step scale, in order to present the learning efficiency, and a runtime scale
to demonstrate the real-time learning speed. We compare GUNREAL’s performance with GA3C,
which the authors have made publicly available2, and also compare with an open-source replication
of the UNREAL algorithm3. For the experiments, UNREAL has been enabled with GPU usage for
DNN computations using TensorFlow.

The system environment configuration is shown in Table 1. For the OpenAI Gym experiments, we
used Python 3.6.1 as interpreter, while the DeepMind Lab experiments have been run with Python
2.7, due to compatibility issues with Python 3. The parameter configuration of the algorithms is
shown in Table 2. We opted to use similar values for the parameters present in multiple algorithms
so that we focus on the main differences in architectural designs between the algorithms.

For GA3C and GUNREAL, we start with 15 agents and 5 sever threads of each kind. Both
algorithms use dynamic monitoring to converge to an optimal throughput. UNREAL uses the total
number of CPU threads as number of agents. For both UNREAL and GUNREAL, the pixel control
auxiliary task uses a separate discount factor of 0.9.

Table 1: System environment configuration

Environment OpenAI Gym 0.8.0 DeepMind Lab

Processor
Intel Xeon E5-1650v3

(12 threads, 3.50 GHz)
Intel Xeon E3-1245v5
(8 threads, 3.50 GHz)

GPU (NVIDIA) GeForce GTX Titan X Quadro M4000

Python Interpreter CPython 3.6.1 CPython 2.7.13

CUDA Version CUDA 8 + cuDNN 6 CUDA 8 + cuDNN 5.1

Framework TensorFlow 1.2

4.1 Tensor structure

In general, two data formats are used to process image batches, NHWC and NCHW. The first
dimension (N) represents the number of images in the batch. C represents the channel values of

2https://github.com/NVlabs/GA3C
3https://github.com/miyosuda/unreal
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Table 2: Parameter configuration of the learning algorithms

Parameter UNREAL GA3C GUNREAL

Learning rate (α) 0.0003

Entropy rate (β) 0.01

Discount factor (γ) 0.99

tmax 20

Training batch size N.A. 40

Replay buffer size 2000 steps N.A. 2000 steps

Pixel control discount 0.9 N.A. 0.9

the images and the other two remaining dimensions respectively represent the size of the images in
terms of their height (H) and width (W). By default, TensorFlow processes image data structured
as NHWC tensors to optimize for CPU computations. However, it is known that NCHW tensor
structures are more suitable for GPU acceleration because of the usage of the cuDNN libraries. We
compared the default NHWC tensors with the NCHW tensors by running GUNREAL on GPU to
train the Atari game Pong. Comparing the two runs, we find that using NCHW tensors increases
the number of predictions and trainings per second that could be processed by the GPU. As the
dynamics of GUNREAL converge to the optimal throughput, it can be seen on Figure 9a that we
reach about 1550 predictions per second (PPS) when using NCHW tensors, whilst only reaching
1477 PPS when NHWC tensors were used. This change in tensor format resulted in an increase
of 5% in PPS. Correlated, the number of trainings per seconds (TPS) that could be reached by
GUNREAL increased from 36 to 38 when using NCHW tensors, which is shown in Figure 9b.

Based on the increase in speed using NCHW tensors, we decided to standardly use NCHW
tensors in GUNREAL. GA3C’s DNN is originally configured to process the default NHWC tensor
format and we did not alter this format for GA3C in the results of the following sections.

4.2 OpenAI Gym training results

We ran GUNREAL on three games from the Atari environment of OpenAI Gym and used the
Deterministic-v3 configuration of each game. The results are shown in Figure 10 for Breakout, in
Figure 11 for Pong, and in Figure 12 for Space Invaders. In terms of steps, GUNREAL reached
higher scores in fewer steps compared to GA3C: for Breakout, a score of 150 was reached in 6.7%
fewer steps, and for Space Invaders, a score of 550 was reached in 26.0% fewer steps. In terms of
runtime, GUNREAL performed similar to GA3C, and finished training faster than UNREAL in all
cases: 3.8 times faster for Breakout, 9.5 times faster for Pong, and 4.0 times faster for Space Invaders.

Discussing the runtime of the algorithm, GA3C lacks auxiliary tasks, giving it less computation
per step and less data communication over its training queue than GUNREAL does. On the other
hand, the learning efficiency introduced by the auxiliary tasks in GUNREAL needs less steps and
correlated less time to reach higher scores than GA3C. As a result, GA3C and GUNREAL show
similar runtime performance on simple applications such as Pong and Breakout.

4.3 DeepMind Lab training results

We also verified GUNREAL’s performance on DeepMind Lab, for which is known that UNREAL
performed better than A3C. Two games of DeepMind Lab were tested, namely nav maze static 01,
where the agent has to navigate through a maze with a static layout towards a goal, and seekavoid arena 01,
where the task is to collect melons while avoiding collecting lemons. We defined 6 discrete actions
for each game, being the four walking directions (forward, backward, left and right) and two pivoting
actions to turn the agent around (left and right). We again show learning curves of GUNREAL,
GA3C and UNREAL in terms of steps and runtime in Figure 13 for nav maze static 01, and in
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Figure 9: Throughput comparison of GUNREAL using different tensor structures
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Figure 10: Training results on OpenAI Gym (Breakout)
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Figure 11: Training results on OpenAI Gym (Pong)

425



GUNREAL: GPU-accelerated UNsupervised REinforcement and Auxiliary Learning

0 1 2 3 4 5
Steps 1e7

200

300

400

500

600

Sc
or

e
SpaceInvaders

UNREAL
GA3C
GUNREAL

(a) Learning over steps

0 5 10 15 20 25 30 35
Wall time (h)

200

300

400

500

600

Sc
or

e

SpaceInvaders
UNREAL
GA3C
GUNREAL

(b) Learning over time

Figure 12: Training results on OpenAI Gym (SpeceInvaders)
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Figure 14 for seekavoid arena 01.
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Figure 13: Training results on DeepMind Lab (nav maze static 01 )

For nav maze static 01, GUNREAL performs clearly better than both UNREAL and GA3C, in
terms of steps (Figure 13a), and time (Figure 13b). GUNREAL was able to reach scores of 15,
which is 5.0 times more than UNREAL, and also finished training 1.6 times faster. Training results
for seekavoid arena 01 are shown in Figure 14a and Figure 14b. In the end, GUNREAL reached a
score of 27, while UNREAL achieved a higher score of 31 and GA3C approached a score of 25. To
reach the score of 25, GUNREAL had to perform 73% fewer steps than GA3C. GUNREAL finished
training 1.5 times faster than UNREAL.

Because of the learning efficiency introduced from the auxiliary tasks, GUNREAL achieved
higher scores than GA3C in more complex environments such as DeepMind Lab. Especially, for
nav maze static 01, GUNREAL outperforms both UNREAL and GA3C in terms of speed and learn-
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Figure 14: Training results on DeepMind Lab (seekavoid arena 01 )
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ing efficiency.

4.4 Discussion

Firstly we discuss the reason of large difference that appeared in scores with nav maze static 01.
There are two events that give reward in the nav maze static 01 environment. First, there is an
intermediate (short-term) reward of +1 whenever you catch an apple while exploring the maze.
Second, there is the goal state reward, which gives you a reward of +10, whenever you reach the
goal (i.e. end destination) in the maze. The latter reward is further away from the agent, and can
therefore be interpreted as a long-term reward. From the learning curves in Figure 13, we can thus
say that GUNREAL was able to learn to reach the goal state (i.e. reaching the highly rewarding
long-term reward), along with getting some intermediate rewards, while UNREAL and GA3C did
not learn to reach the highly rewarding goal state and only achieved collecting short-term rewards.

The main reasons of the different scores with nav maze static 01 are considered to be the pres-
ence of the auxiliary tasks and preprocessed observation input in Figure 7. We can say that the
combination of preprocessed observation input, which was kept from GA3C, together with the added
auxiliary tasks from UNREAL, resulted in GUNREAL achieving the long-term reward. GA3C had
the same preprocessing for the observation input and could not learn to reach the long-term reward
due to the lack of training auxiliary tasks. UNREAL has the auxiliary tasks, but does not have a
preprocessing for the DNN input, instead it uses single RGB frames as input. Originally, UNREAL
compensated the lack of input preprocessing with the usage of an LSTM in the DNN architecture,
but the usage of LSTM was omitted for our experiments. Hence, it is the combination of both the
preprocessing and the auxiliary tasks that allowed GUNREAL to learn reaching the goal state for
this environment in the limited number of steps.

Secondly we discuss the reason of the large differences in aspect of wall time per step among
benchmarks in Figure 10b, 11b, 12b, 13b, 14b. In general we can say that GA3C and GUNREAL
execute faster than UNREAL because GA3C and GUNREAL consume less GPU memory than
UNREAL as they only require one global DNN, therefore GA3C and GUNREAL do not lose time
on synchronizing weights between the master model and the local copies for each respective agent.
However, it is clear that the speed-up is less effective in DeepMind Lab than in OpenAI Gym:
GUNREAL achieves 3.8 to 9.5 times shorter wall time per step in the Atari environment of OpenAI
Gym in Figure 10b, 11b, 12b, while the difference in DeepMind Lab is 1.5 to 1.6 times in Figure 13b,
14b.

The main reason of the difference between the environments is due to the simulators themselves:
the complexity of the task to learn, plus the required resources for simulation. Firstly, Breakout
is a 2D Atari game from OpenAI Gym. The Atari games from OpenAI Gym runs on CPU and
does not perform 3D rendering to generate state observations for the agent, hence the GPU is
completely available for the learning agents. Secondly, nav maze static 01 and seekavoid arena 01
are DeepMind Lab environments, which are more complex than the Atari games, as these consist
of 3D games. DeepMind Lab must therefore perform 3D rendering to generate state input for the
agents and thus also requires GPU usage, which results in the GPU being less available for the
learning algorithms to compute DNN output. Hence, the GPU acceleration has less effect in terms
of wall time, as more of the wall time is spent on the simulator side.

5 Applicability to other applications

GUNREAL can be applied to other applications which use 2D or 3D images, where image frames of
time series such as a movie are used as input to a DNN. Although we evaluated GUNREAL on 2D
games with Atari of OpenAI Gym and 3D games with DeepMind Lab in section 4, in which RGB
images are used as input to a DNN in GUNREAL, GUNREAL is independent of the environments.
This is because in GUNREAL a DNN just receives images from an environment and sends selected
action from output of the DNN to the environment. Also, a DNN in GUNREAL is generic, except
the input image size to the DNN. GUNREAL is particularly more effective for complex tasks where
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auxiliary tasks help agents learning more efficient, such as robotics and autonomous driving which
uses 3D images, and mechanical design and air conditioning in data centers.

Parameter tuning for the DNN and learning is required to optimize to a specific application, such
as DNN modification according to image size, batch sizes for prediction and training, experience
replay buffer size, the size of tmax, learning rate, update function, and loss functions for each task.
PC receives images as input and processes to smaller images in which each pixel contains the average
value of adjacent pixels on the original image. Although we assume input images to be 84 by 84
RGB in section 3.1 and Figure 8, PC can be used to smaller or larger input images by modifying
the DNN. However in order to optimize the effectiveness of Pixel Control to a specific application,
parameter tuning is required such as crop size of input image and output pixel size. Since VR
simply reuses the same DNN with for the main A3C task, VR can be applied to other applications
which can be applied to A3C without modification. RP can be also applied to other applications
without modification because RP just calculates and categorizes rewards by sign of the rewards to
be positive, negative, or zero.

6 Related work

There have been efforts to parallelize and accelerate deep reinforcement learning algorithms. DQN [19]
applied DNN to train an agent in reinforcement learning and used GPU acceleration to train a DNN
with a single agent on Atari games. Successors of DQN improved several aspects of the algorithm,
such as the sampling method for experience replay [22], the update formula [26] and the neural
network architecture [27]. The usage of an experience replay memory buffer made DQN and its
successors benefit better from GPU acceleration. DistBelief [9] has been used to train a deep net-
work with billions of parameters using tens of thousands of CPU cores. Its successor, the general
reinforcement learning architecture, Gorila [20], distributed DQN across a cluster using CPU cores
on each machine. Gorila outperformed the standard DQN in a variety of Atari games. A3C is an on-
policy (policy-based) deep reinforcement learning algorithm (also called a policy gradient method)
rather than off-policy algorithms such as DQN. A3C takes 4 days of training to solve Atari games
using multiple CPU cores on a single machine without the usage of a GPU. GA3C [2] improved
the GPU acceleration for A3C, allowing to solve Atari games on a single machine within a day. A
novel algorithm agnostic framework for efficient parallelization of deep reinforcement learning called
PAAC has been proposed [7], and has been demonstrated with a synchronous version of Advantage
Actor-Critic (A2C) implementation on a GPU.

Stooke et al. [24] proposed parallelization methods for accelerating deep reinforcement learning
on multi-GPU environments for both policy gradient methods such as A3C and Proximal Policy
Optimization (PPO), and Q-value learning methods such as DQN. They extended the existing
algorithms to multiple GPUs using a single machine such as NVIDIA DGX-1 (8 GPUs). They
improved batched inference to increase GPU utilization, by making batch sizes considerably larger
than are standard, without harming sample complexity or final game score. They use multiple
simulator instances per process, and also avoid idleness (simulation on CPU and inference on GPU),
by forming two alternative groups of simulator processes. They implemented both synchronous and
asynchronous versions of the deep reinforcement learning algorithms using multiple GPUs. As a
distributed deep reinforcement learning algorithm with a centralized learner with a single GPU,
Ape-X [13] focuses on generating more data and selecting from it in distributed environment by
introducing distributed version of prioritized experience replay. Unlike the A3C-based agents, in
which agents send gradients to the master DNN, the actors focus on generating and accumulating
experiences by selecting actions according to a shared neural network, and the learners replays
samples of experience and updates the neural network. Ape-X accelerated training and also achieved
higher scores than Gorila and prioritized DQN on Atari games. Ape-X DQN using 376 cores and one
GPU achieved higher scores on Atari games than A3C, Gorila DQN, and UNREAL. IMPALA [10]
extended policy gradient methods to distributed multi-GPU training. They mitigated policy lag
that occurs in asynchronous update such as in GA3C, by combining decoupled acting and learning
with a novel off-policy correction method called V-trace. Like Ape-X, actors send experiences rather
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than gradients to a centralized learner and they use a GPU to perform updates on mini-batches of
experiences. IMPALA can be used with a learner that is distributed across multiple GPUs to train
large networks efficiently, where the parameters are distributed across the learner machines and each
actor retrieves the parameters from all the learners in parallel.

Some approaches to improve learning efficiency of deep reinforcement learning have been also
proposed. Evolutionary strategies (ES) or gradient evolution, as an alternative to popular Markov
Decision Process-based reinforcement learning techniques have been proposed [21]. They apply
heuristic search procedures inspired by natural evolution rather than MDP. The algorithm scales
with the number of CPUs, by using a novel communication strategy based on common random
numbers, where each agent only needs to communicate scalars, making it possible to scale to over a
thousand parallel agents. ES solved 3D humanoid walking and achieved competitive results on most
Atari games. Harmer et al applied supervised Imitation Learning (IL), learning via guidance from
an expert teacher, as initial training of reinforcement learning [12]. Imitation learning provides the
agent with prior knowledge about effective strategies for behaving in the world, and is used to speed
up training by teaching with examples to resemble how we teach. The algorithm allows multiple
actions to be selected at every time-step, to allow complex behaviors to be learnt with higher quality
expert data and multi-action policies. They showed training using a 3D first person shooter (FPS)
style video game.

Our work focuses on fast and highly efficient deep reinforcement learning, using a single DNN
on a machine with multiple CPU cores and a single GPU. We accelerated a state-of-the-art multi-
task learning with A3C and auxiliary tasks by extending the GA3C architecture to improve GPU
utilization. We also improved learning efficiency by reintroducing preprocessing phase from (G)A3C.
Applying the existing techniques for multi-GPU and distributed environments to GUNREAL for
further acceleration and investigating to apply other approaches such as ES and IL to GUNREAL
for better learning efficiency, are possible directions to future improvement.

7 Conclusion

We presented GUNREAL which extends GA3C with the auxiliary tasks from UNREAL to achieve
higher learning efficiency and benefiting from GPU acceleration. GUNREAL adds a memory buffer
to each agent for experience replay and two additional prediction lines for the value function replay
and pixel control tasks. The DNN model has been extended with additional output layers for the
pixel control and reward prediction tasks. In addition, we evaluated the necessity of a preprocessing
phase and improved the throughput on the GPU by changing the data format from NHWC to NCHW
batches. GUNREAL especially performs better in more complex applications, such as DeepMind
Lab, when compared to GA3C. The benefits we gain from using an architecture that is better suited
for GPU acceleration allows GUNREAL to learn faster in real-time than UNREAL.

Since the A3C algorithm seemed to perform better with an LSTM in the DNN model, a future
improvement could be the integration of an LSTM into GUNREAL’s model. Another possibility
for future research could be to assess the applicability of GUNREAL in real-world applications.
Scalability of GUNREAL to HPC clusters in order to increase the learning speed is also an interesting
possibility.
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