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Abstract

Performance optimization in the petascale era and beyond in the exascale era has and will re-
quire modifications of legacy codes to take advantage of new architectures with large core counts
and SIMD units. The Numerical Weather Prediction (NWP) physics codes considered here are
optimized using thread-local structures of arrays (SOA). High-level and low-level optimization
strategies are applied to the WRF Single-Moment 6-Class Microphysics Scheme (WSM6) and
Global Forecast System (GFS) physics codes used in the NEPTUNE forecast code. By build-
ing on previous work optimizing WSM6 on the Intel Knights Landing (KNL), it is shown how
to further optimize WMS6 and GFS physics, and GFS radiation on Intel KNL, Haswell, and
potentially on future micro-architectures with many cores and SIMD vector units. The opti-
mization techniques used herein employ thread-local structures of arrays (SOA), an OpenMP
directive, OMP SIMD, and minor code transformations to enable better utilization of SIMD
units, increase parallelism, improve locality, and reduce memory traffic. The optimized versions
of WSM6, GFS physics, GFS radiation run 70, 27, and 23 faster (respectively) on KNL and 26,
18 and 30 faster (respectively) on Haswell than their respective original serial versions. Although
this work targets WRF physics schemes, the findings are transferable to other performance op-
timization contexts and provide insight into the optimization of codes with complex physical
models for present and near-future architectures with many core and vector units.

Keywords: Parallel, Optimization, Physics Schemes, Numerical Weather Prediction, Structure
of Arrays
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1 Introduction

The Weather Research and Forecasting (WRF) [3] model is a widely adopted numerical weather
prediction (NWP) software suite used by atmospheric researchers and weather forecasters at op-
erational centers worldwide. WRF was developed to help scientists study and better understand
weather phenomena. Optimizing the performance of NWP codes, such as WRF, is important for
improving the accuracy and the time requirements for forecasts. In order to reach desirable resolu-
tion and accuracy new mathematical and computational approaches must be developed [1] Therefore
there has been significant significant time and efforts invested to modernize NWP codes for current
and future computer architectures.

In the last decade, various computational architectures have increased the core counts per node,
decreased the clock frequency and adopted wide SIMD vector units. For instance, the Intel Xeon Phi
Knights Landing (KNL) [13] has dual 8-lane double precision (DP) floating point units on each of
its 64 cores with a clock frequency of 1.3 Ghz. This growing complexity of computing architectures
makes it difficult to develop and maintain performance-portable codes. For this reason, codes such
as WRF must be restructured to leverage thread and SIMD parallelism on modern architectures
while maintaining data and temporal locality.

One example of a modern code written with future architectures in mind is the Navy Environ-
mental Prediction sysTem Utilizing the Nonhydrostatic Unified Model of the Atmosphere (NUMA)
corE [7] (NEPTUNE). The NEPTUNE code couples the scalable dynamical core NUMA, of Giraldo
et al. [9], with physics schemes such as the WSM6 and GFS schemes considered here. These physics
schemes represent physical parametrization of processes that are unresolved at the grid resolution.
For instance, WSM6 uses a physical parameterization that simulates processes in the atmosphere
that cause precipitation in the form of rain, snow, graupel, water vapor, cloud water and cloud
ice. While the dynamics part of NEPTUNE is both fast and scalable [22], a remaining challenge is
the performance of the physics routines. For this reason, this work focuses on optimizing GFS and
WSM6 using approaches that have application to other numerical methods. The new optimization
efforts described here target the Intel KNL [13] and potential future computer architectures that
may employ similar multicore architectures that achieve performance through vector units. This
work employs OpenMP 4 as a vehicle for portability across various platforms, as OpenMP 4 is a
well-established and widely adopted interface for shared memory parallelism.

This paper introduces high-level and low-level approaches for shared memory parallelism using
thread-local structures of arrays (SOA). The high-level approach employed here consists of paral-
lelizing large blocks of code at the parent level in the call stack, whereas the low-level approach
targets individual instructions. Thread-local SOA and OMP SIMD are employed to accelerate com-
putation in GFS and WSM6 modules by improving data locality and taking advantage of thread
and vector parallelism. In addition, a static memory allocation process is used instead of dynamic
memory allocation process to help improve memory performance of the GFS code. As result of these
optimizations there has been a significant speed-up over serial versions of the code and a previously
optimized version [24]. For instance, the use of SOA coupled with OMP SIMD for vectorization led
to significant speed-up improvements. The optimized versions of WSM6, GFS physics, and GFS
radiation run 70, 27, 23 and 26, 18, 30 faster on KNL and Haswell respectively. In addition, these
optimizations enabled a speed-up of 23.3 over a prior optimized version of WSM6 [24].

This paper is an extended version of the conference paper [25]. Sections 2 to 5.2 are revised
versions of material in [25] as are the results in Tables 1–6 and Figures 1–5 with minor additions.
Section 2 describes related work, and Section 3 gives an overview of the NEPTUNE code. The
experimental methodology used is described in Section 4. In particular, the new approaches applied
to the GFS code are described in Section 4.1. Section 5 describes the experiments that were con-
ducted to help improve the performance of the WSM6 and GFS physics routines. Section 5.3 and
5.4 show how ideas described earlier in the paper are applied and extended to the GFS physics and
GFS radiation routines. Sections 6 and 7 provide a discussion of the results, draw conclusions and
consider the future work that is needed.
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2 Related Work

There has been significant activity recently on porting and optimizing NWP codes on various new
computer architectures. For example, Mielikaimen et al. [19] optimized the Goddard microphysics
scheme on an Intel Xeon phi 7120P Knights Corner (KNC) [4] by removing temporary variables
to reduce the code memory footprint and by refactoring loops for vectorization, leading to a 4.7
speed-up. Furthermore Mielikainen et al. [20], also optimized the Perdu-Lin microphysics scheme
by using the same approaches. Again this resulted in a 4.7 speed-up by using vector alignment
and SIMD directives. Similarly, Ouermi et al. [24] used a low-level optimization approach based
upon OpenMP 4 [5] directives to improve the performance of WSM6 on the KNL. When combined
with minor code restructuring to enable and improve locality and vectorization, this resulted in a
speed-up of three on the whole of WSM6. This speed-up include unoptimized (serial bottleneck)
code sections.

In optimizing the Weather Model Radiative Transfer Physics on Intel KNL, Michalakes et al.
[18] focused on increasing concurrency, vectorization and locality. Improving concurrency involved
increasing the number of subdomains to be computed by threads. Vectorization and locality were
improved by restructuring the loops to compute over smaller tiles and exposing vectorizable loops.
This effort led to a 3 speed-up over the original 1.3 speed-up over Xeon Sandybridge.

Data layout plays a key role in performance optimization. The optimal data layout minimizes
the memory footprint, reduces cache misses and allows better usage of vector units. This study uses
thread-local structures of arrays (SOA) data layout to improve memory access [12, 28] . The SOA
approach and similar approaches have been used to accelerate many scientific applications on various
architectures. Henretty et al. [10] used data layout transformation to improve the performance of
stencil computations. These optimizations removed alignment conflicts, reduced cache misses and
improved vectorization. Woodward et al. [15, 27] used briquette data structures to accelerate
a Piecewise Parabolic Method (PPM) code by reducing memory traffic. A briquette is a small
sub-block of a uniform grid. The size of the briquette is chosen in relation to the cache size and
vector unit. These data transformations enabled high performance because they reduce the memory
footprint and traffic. In addition, such transformations improve vectorization.

The work presented in this paper relies on the OpenMP runtime system for task scheduling and
OpenMP “pragma” directives for parallelization. Other approaches could be employed. Mencagli
et al. [16] used a runtime support to reduce the effective latency of inter-thread cooperation. This
latency reduction is done with a “home-fowarding” mechanism that uses a cache-coherent protocol
to reduce cache-to-cache interaction. Buono et al. [2] proposed a light-weight runtime system as
an approach to optimize linear algebra routines on Intel KNC [4]. This run time system focuses
on efficient scheduling of tasks from a directed acyclic graph (DAG) that is generated on the fly
during execution. Danelutto et al. [6] suggested a pattern-based framework for parallelization. This
parallelization approach targets known patterns that can be represented with well-known operations
such as map, reduce, scan, etc.

Although this work focuses on the Intel KNL and Haswell architectures, it is important to point
out that efforts have been made to port and optimize WRF physics schemes for GPUs [21, 17, 26, 8].
GPU-based optimizations show better performance than Intel KNC and KNL-based optimizations.
For instance, Mielikainen et al. [21], using CUDA [23], were able to achieve a speed-up of two orders
of magnitude. However, porting to GPUs often requires significant code rewrites. The present work
is part of larger effort to develop and optimize a potential US Navy next generation weather code,
NEPTUNE. The optimization strategies introduced in this paper target Intel KNL and Haswell
because the operational version of NEPTUNE is intended to run on Intel micro-architecture instead
of GPUs.

3 Overview of NEPTUNE, WSM6 and GFS

The code optimization work described here is related to an activity to improve the performance of
the Navy Environmental Prediction sysTem Utilizing the Nonhydrostatic Unified Model of the At-
mosphere (NUMA) corE [7] (NEPTUNE). The NEPTUNE code couples the dynamical core NUMA,
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of Giraldo et al. [9], with physics schemes such as the WSM6 and GFS, schemes considered here.
NUMA is novel in that it makes use of a three-dimensional hexahedral spectral element technique
with a sphere-centered Cartesian coordinate system. The NUMA spectral element method is po-
tentially a good choice for modern computer architectures as it has a relatively large floating point
operations count for a relatively small communication footprint, which helps large scalability. How-
ever to make use of this potential for good performance, it is important to ensure that the appropriate
physics schemes, such as WSM6 and GFS perform well. WSM6 is a physical parameterization that
simulates processes in the atmosphere that cause precipitation in the form of rain, snow, graupel,
water vapor, cloud water and cloud ice. WSM6 improves on WSM5 by introducing graupel particles
and other variables to better model the precipitation of hydrometeors. The computation in the
scheme is organized along both the horizontal and vertical directions. There is no interaction among
the horizontal grid points, which allows straightforward parallelism cases.

GFS is a weather forecast model developed by the National Center for Environmental Prediction
(NCEP). GFS is a coupled model composed of an atmosphere model, an ocean model, land/soil
model, and sea-ice model. The optimization efforts targets GFS physics and GFS radiation the two
most expensive calls within the module driver. Similarly to WSM6, GFS has no dependencies along
the horizontal direction. Thus, making amendable to performance improvement without the concern
of communication.

4 Experimental Setup and Methodology

4.1 Strategies for OpenMP Parallelism

4.1.1 Motivation

Ouermi et al.[25, 24] used OpenMP directives to optimize individual loops in WSM6 at a low-level.
This was appropriate given the small (3K lines) size of the code and the numerous serial sections
obstructing parallelism. While this approach was successful, it is too time-consuming to apply to
the large number of loops in the GFS physics module http://www.dtcenter.org/GMTB/gfs_phys_

doc/. Moreover, GFS is not only a much larger code, but it has fewer serial bottlenecks and is
thus potentially a candidate for high-level parallelism as will be discussed below. For this reason,
this work investigates both high-level and low-level optimization approaches. While minor code
transformations are used to improve performance of GFS and WSM6 physics schemes, there is an
emphasis on high-level parallelism. The following two sections provide a brief overview of these
concepts.

4.1.2 Task Granularity (High-Level Versus Low-Level OpenMP)

High-level parallelism refers to parallelizing large blocks of code at the parent level in the function
call stack, whereas low-level refers to parallelizing smalls blocks of codes at the instruction level (i.e.,
loops and arithmetic operations). The high-level approach has the advantage of using few individual
parallel section, and few modifications within these sections. However, the high-level approach also
requires the code blocks to be thread safe and free of serial bottlenecks.

In contrast, the low-level approach has the advantage of permitting parallelism in selectively
parallelizable code punctuated by serial sections. If these serial bottlenecks are not easily removed,
or if their relative cost is low, this may be a valid approach. Low-level approaches may also be
appropriate for codes that require multiple different parallelization approaches (i.e., static versus
dynamic scheduling, tasking, etc.) within different logical blocks or subroutines. Whether high-level
or low-level parallelism is best depends on the individual code in question. High-level OpenMP is
typically more elegant, but requires code that is sufficiently independent to be parallelizable at the
parent level in the call stack. A low-level approach requires adding more parallel directives, but
allows the original code structure to be used more or less as is. High-level and low-level approaches
relate to task granularity, i.e., at which level logic is parallelized within a call stack. The length and
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the complexity of the logic within each task may have an impact on scheduling and load balancing,
as well as on inter-task dependency.

4.1.3 Data Granularity, Chunks and SOA

In the physics schemes within NEPTUNE, data granularity refers to the size of arrays or sub-arrays
that are processed by each thread. Coarse-grain data parallelism corresponds to dividing up the
input data into the number of worker threads and fine-grain data parallelism corresponds to further
subdividing input data into smaller chunks. The chunk size determine the size of the subdivided
data as shown in as in Figure 1. For instance, an 2D input array (im× jm) is dived up into multiple
2D sub-arrays of sizes chunksize × jm Typically input and output data are organized in arrays of
structures (AOS) and regular arrays. WSM6, GFS physics, and GFS radiation uses large regular
arrays and SOA. These input and output data are transformed into thread-local SOA. A thread-local
SOA is a SOA that is private to a particular thread. The beneficial chunk size of the thread-local
SOA is determined by the SIMD unit length (8 or 16 in the case of KNL and Haswell), or by the
number of cores per block (SM) in a GPU. A more in depth study of SOA and other data structures
can be found in [12, 28, 11]

In choosing the appropriate chunk size for an optimum data granularity, the goal is to keep the
data as local as possible to each thread. Ideally, within the L1, and L2 caches, it is advantageous
to use thread-local data structures and copy to and from global shared-memory arrays as necessary.
The thread-local data are most effective when aligned to SIMD/chunk size and organized in SOA
fashion. This data transformation allows the data for each thread to be packed closely in memory,
thus reducing cache misses, and requests from L3/MCDRAM (on KNL), and or main memory.

The input and output data structures in WSM6 and GFS codes are not suitable for performance
optimization because both SOA and regular arrays are large and do not fit into cache. In addition,
the SOA are dynamically allocated which requires expensive memory operations. Using thread-local
SOA instead of large regular arrays and statically instead of dynamically allocated arrays enable
better memory usage and vectorization. Figure 1 shows examples of the data transformation. Arrays
A and B represent original input and output data. The top half of A and B are copied into a thread-
local SOA that is private to the thread to which it will be assigned. The same transformation is
done for the bottom half of A and B. In the cases where the original input is a large SOA composed
of A and B, the transformation would similar, from large shared memory SOA to thread-local SOA.
This thread-local SOA ensures that data required for a calculation is close by other in memory hence
fit into cache together. Overall, this modification enable memory locality.

j →j →

A B

Thread-local SOA 1

Thread-local SOA 2

chunk size

Figure 1: Transformation from AOS to SOA. The 2D arrays A and B are transformed into two
thread-local SOA. The top and bottom parts are put next to each other as shown on the right. The
chunk size shown in blue determined how to split and A and B. If the chunk size was chosen to be
two, A and B would have been split into four parts which would give four thread-local SOA.
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4.1.4 GFS physics Code Modifications

Though GFS physics and GFS radiation have similarities with WSM6, additional code transforma-
tions were applied to GSF code to achieve reasonable speed-ups. Thread-local SOA, transformation
from dynamic to static allocation, and low-level transformation/vectorization, described below, are
the key changes implemented in GFS physics and GFS radiation to enable better performance and
are now described in turn.

• Data reorganization with thread-local SOA: A thread-local SOA transformation is applied to
the input and output arrays as described in Figure 1. This transformation makes it possible
to construct a thread-local SOA that is local to the thread to which it is assigned and small
enough to fit in cache. This transformation requires copying original input and output data
into the new thread-local SOA before passing it to the GFS driver function calls. In the work
by Ouermi et al. [25], the data reorganization transformed regular arrays to thread-local SOA.
Here, the data converted from large SOA, and regular arrays to thread-local SOA.

• Dynamic to static allocation: With static allocation the arrays sizes are known at compile time
whereas in the dynamic case the arrays sizes are not known a priori. The original GFS code
employs dynamic allocation for the input and output arrays in the GFS driver. This does not
guarantee contiguous data. However, each array in the SOA will be contiguously allocated but
the different allocations may be far apart in memory. Thus, accessing dynamically allocated
arrays is often more expensive than accessing statically allocated arrays. Instead of using
the original data or SOA that are dynamically allocated, the original inputs and outputs are
copied to statically allocated thread-local SOA and then passed to the function calls in the
GFS driver.

• Vectorization and low-level code transformations: The GFS physics and GFS radiation do
not have many serial bottlenecks that requires major code transformation at a low-level as
in WSM6 with niflv rain plm6 and niflv rain plm. Auto vectorization often fails to vectorize
large body loops, or relatively complex code. Given that there are not many serial bottlenecks,
the OpenMP directive OMP SIMD is used at the lower level in the physics parameterization
codes to improve vectorization. This directive is applied to the most inner loop, the i-loop,
which has no-dependencies. In the case of WM6, as shown by Ouermi et al. [25] major code
transformation was required in some cases to enable better vectorization.

4.2 Experimental Setup

4.2.1 Methodology

The methodology used here follows Ouermi et al. [24, 25] to investigate various optimization strate-
gies. This methodology consist of constructing standalone experiments to study the different ap-
proaches for parallelism in a more flexible and controlled environment. The findings from the stan-
dalone experiments inform the optimization decisions in the modules of interest, such as WSM6,
GFS physics, and GFS radiation.

4.2.2 Architectures

The Intel Knights Landing (KNL) [13] architecture consists of 36 tiles interconnected with a 2D
mesh, MCDRAM of 16GB high bandwidth memory on one socket. The KNL architecture has a
clock frequency of 1.3 GHz, which is lower than the 2.5 GHz of Haswell. The Knights Landing
tile is the basic unit that is replicated across the entire chip. This tile consists of two cores, each
connected to two vector processing units (VPUs). Both cores share a 1 MB L2 cache. Two AVX-512
vector units process eight double-precision lanes each; a single core can execute two 512-bit vector
multiply-add instructions per clock cycle. The Intel Xeon CPU E-7-8890 (Haswell) is composed of
four sockets and four Non Uniform Memory Access (NUMA) nodes. Each node is made of 18 cores
with 2 threads per core and clock frequency of 2.5 Ghz frequency.
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5 Results

5.1 Standalone Experiments

5.1.1 Synthetic Codes

These experiments analyze the thread-local SOA performance with different array sizes and dimen-
sions in order to find a suitable structure for the physics schemes. The thread-local SOA in Code 1
use 1D arrays whereas those in Code 2 use 2D arrays. In Code 1 the k-loop is vectorized whereas
in Code 2 the vectorization is along the i-loop. The access pattern is more involved in Code 1
compared to Code 2 because of the 1D versus 2D data layout. The performance results from the
data transpose approach, as shown in Figure 2, and the GFS and WSM6 codes take 2D (im× jm)
and 3D (im × jm × km) arrays where im > 800 and jm < 40. For a long long rectangular data
matrix (im×km) as shown in Figure 2, thread parallelism across the k loop is limited by the number
of iterations, i.e. km. In this case km < 40 which corresponds to less than 40 threads out of the
256 threads on KNL. Transposing the data matrix from im × km to km × im allows for better
thread parallelism while maintaining a good memory access pattern as illustrated in Figure 2. This
transformation does not have an impact on computation correctness because both the standalone
experiment codes, and target physics codes have no dependencies along the horizontal direction
(i-loop).

CODE 1

!$OMP PARALLEL DEFAULT( shared )
!$OMP PRIVATE( i t s , i t e , ice ,

tsoa , thread id , c )
!$OMP DO
do c=1, i t e

do j =1, j e
t soa%a ( j ) = a ( c , j )
t soa%b( j ) = b( c , j )
t soa%d( j ) = d( c , j )
t soa%e ( j ) = e ( c , j )

enddo
ca l l work ( t soa%a , t soa%b ,

t soa%d , t soa%e , 1 , i c e )
do j =1, j e

a ( c , j ) = tsoa%a ( j )
b( c , j ) = tsoa%b( j )
d( c , j ) = tsoa%d( j )
e ( c , j ) = tsoa%e ( j )

enddo
enddo
!$OMP END DO
!$OMP END PARALLEL

subroutine work (a , b , c , d )
i m l i c i t none
real , intent ( inout ) : : a ( : ) , b ( : )
real , intent ( inout ) : : c ( : ) , d ( : )
integer : : j
!$OMP SIMD
do j =2, je−1

a ( j ) = 0.1+c ( j )/d( j )
b( j ) = (0.2+ c ( j−1)−c ( j ) )

/( c ( j )−c ( j −1)+0.5)
enddo
end subroutine work

CODE 2

!$OMP PARALLEL DEFAULT( shared )
!$OMP PRIVATE( i t s , i t e , ice ,

tsoa , thread id , c )
!$OMP DO
do c=1, i t e

i t s = 1+ ( c−1)∗CHUNK
i t e = min( i t s+CHUNK−1, i e )
i c e = i t e− i t s+1
do j =1, j e

t soa%a ( 1 : i c e , j ) = a ( i t s : i t e , j )
t soa%b ( 1 : i c e , j ) = b( i t s : i t e , j )
t soa%d ( 1 : i c e , j ) = d( i t s : t te , j )
t soa%e ( 1 : i c e , j ) = e ( i t s : i t e , j )

enddo
ca l l work ( t soa%a , t soa%b ,

t soa%d , t soa%e , 1 , i c e )
do j =1, j e

a ( i t s : i t e , j ) = tsoa%a ( 1 : i c e , j )
b ( i t s : i t e , j ) = tsoa%b ( 1 : i c e , j )
d ( i t s : i t e , j ) = tsoa%d ( 1 : i c e , j )
e ( i t s : i t e , j ) = tsoa%e ( 1 : i c e , j )

enddo
enddo
!$OMP END DO
!$OMP END PARALLEL

subroutine work (a , b , c , d )
i m l i c i t none
real , intent ( inout ) : : a ( : , : ) , b ( : , : )
real , intent ( inout ) : : c ( : , : ) , d ( : , : )
integer , intent ( in ) : : i s , i e
integer : : i , j
do j =2, je−1

!$OMP SIMD
do i=i s , i e

a ( i , j ) = 0.1+c ( i , j )/d( i , j )
b ( i , j ) = (0.2+ c ( i , j−1)−c ( i , j ) )

/( c ( i , j )−c ( i , j −1)+0.5)
enddo

enddo
end subroutine work
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Figure 3 shows a code example of the transposition. Following the column major ordering in
Fortran, the i-loop becomes the outer loop with im = 10586 after transformation. Furthermore,
there are no dependencies along the i index, which allows parallelism in index i to be exploited.

................. .................

k

i

i

k

Figure 2: Transpose representation. This shows transposition of a 2D (im × jm) array, where
im > 800 and jm < 40. Given that Fortran is column major k is the outer loop before the transpose
shown on the left. The outer loop becomes i after the transposition as shown on the right. This
transformation increases thread parallelism on the outer loop.

Figure 3: Code transformation with transpose. This shows how the transposition is implemented
with a simple code. The loops and the indices are swapped.

Table 1 shows performance results from using SOA with 1D arrays, transposed data matrices and
unmodified original data. The SOA approach yields significant speed-ups with a maximum speed-up
of about 34. The data transpose approach performs the best in this particular experiment, with a
maximum speed-up of about 41. The length of the arrays in the SOA is 48. This small array length
translates to small amount of work for the innermost loop in Code 1. In this experiment the peak
performance is observed at 128 threads with two threads per cores. In hyper-threading, each core
resources are shared between the hyper-threads. The instructions from hyper-threads flow through
the same pipeline. This can help improve core utilization as observed in table 1. However, sharing
resource between hyper-threads may lead to performance decrease as observed with 256 threads. In
addition after 128 threads the work is not enough to enable further speed-up improvement.

Table 2 shows performance results similar to those in Table 1 with an increased problem size given
by ke = 768. The arrays in the SOA are 16 times larger that those used in previous experiments.
In both cases, these results indicate that the transpose approach for data organization yields better
results. After 64 threads each core uses hyper-threading, with two to four threads per core. For a
given core this divides up the resources between the hyper-threads causing cause the performance
to decrease.
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Threads Time (ms) Speed-up
Orig. Transp. SOA Orig. Transp. SOA

1 2.06 3.3 6 3.33 1 0.61 0.62
2 1.59 1.97 1.74 1.30 1.05 1.18
4 0.91 1.44 0.84 2.26 1.43 2.45
8 0.67 0.5 0.41 3.07 4.12 5.02
16 0.55 0.26 0.18 3.75 7.92 11.44
32 0.54 0.17 0.15 3.81 12.12 13.73
64 0.72 0.05 0.11 2.86 41.20 18.73
128 0.87 0.05 0.06 2.37 41.20 34.33
256 1.35 0.1 0.49 1.53 20.60 4.20

Table 1: Results from CODE 1 compared to transpose approach and original code. The maximum
speed-ups for transpose and thread-local SOA are at 128 threads. At 128 threads each core uses
two hyper-threads per core. The hyper-threads share the same instruction pipeline which helps
improve utilization of cores. Sharing resource can contribute to reducing core utilization as observed
at 256 threads. Hyper-threading performance is dependent on how the shared resources are manage
between hyper-threads.

Threads Time (ms) Speed-up
Orig. Transp. SOA Orig. Transp. SOA

1 33.82 29.53 75.45 1.00 1.15 0.45
2 26.98 19.44 45.7 1.25 1.74 0.74
4 15.54 13.47 23.37 2.18 2.51 1.45
8 10.9 5.09 7.44 3.10 6.64 4.55
16 8.86 2.98 5.96 3.82 11.35 5.67
32 8.93 2.61 1.72 3.79 12.96 19.66
64 10.97 0.95 1.39 3.08 35.60 24.33
128 16.14 1.17 5.93 2.10 28.91 5.70
256 22.27 2.17 9.57 1.52 15.59 3.53

Table 2: Results from CODE 1 compared to transpose approach and original code with large array
sizes. In this experiment the maximum performance occurs at 64 threads. After 64 threads hyper-
threading is used and the resource per core is divide up between the hyper-threads. This causes the
performance to slow down.

Table 3 shows performance results from using thread-local SOA with 2D arrays, transposed data
matrices and unmodified original data. In this experiment, the OpenMP chunk size is set to 8. In
contrast to the previous experiments, these results show that the thread-local SOA approach yields
higher speed-ups than the other methods for data organization. The maximum speed-up observed
is 103 at 32 cores. After 32 threads there is not enough work per thread to enable performance
scalability.
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Threads Time (ms) Speed-up
Orig. Transp. SOA Orig. Transp. SOA

1 2.06 3.36 1.99 1.00 0.61 1.04
2 1.59 1.97 1.07 1.30 1.05 1.93
4 0.91 1.44 0.53 2.26 1.43 3.89
8 0.67 0.5 0.14 3.07 4.12 14.71
16 0.55 0.26 0.07 3.75 7.92 29.43
32 0.54 0.17 0.02 3.81 12.12 103.00
64 0.72 0.05 0.06 2.86 41.20 34.33
128 0.87 0.05 0.27 2.37 41.20 7.63
256 1.35 0.1 0.04 1.53 20.60 51.50

Table 3: Results from CODE 2 compared to transpose approach and original code. The best
performance is observed at 64 threads for the thread-local SOA. At 128 and 256 threads each core
uses about two and four threads per core. The core resources, such as L1 cache, are shared between
the hyper-threads. This causes the performance to slow down for large core counts.

The results from Table 1 – 3 indicate that the size and the structure of the arrays in the thread-
local SOA play an important role in the performance. Vectorizing along the k-loop, in the 1D case,
has a more involved access pattern than vectorizing along the i-loop, in the 2D case. In addition,
there are no dependencies along the i-loop, which allows for trivial vectorization. Furthermore, the
L2 cache is about 16 times the size of the input data in each SOA. Thus the thread-local SOA fit
in the L2 cache, which allows for fast memory access. When the thread-local SOA does not fit in
the L2 cache, as shown in Table 4, the speed-ups are significantly lower than the ones observed in
Table 3. In Table 4 the peak performance for thread-local SOA is observed at about 16 threads.
This is lower than the previous cases because of the high rate of cache misses. This occurs because
the thread-local SOA does not fit in cache

Threads Time (ms) Speed-up
Orig. Transp. SOA Orig. Transp. SOA

1 264.71 194.94 159.98 1.00 1.36 1.65
2 119.93 120.69 113.15 2.21 2.19 2.34
4 98.89 61.57 57.08 2.68 4.30 4.64
8 54.17 25.57 34.25 4.89 10.35 7.73
16 30.11 16.3 22.83 8.79 16.24 11.59
32 16.87 13.51 34.23 15.69 19.59 7.73
64 13.81 13.15 29.72 19.17 20.13 8.91
128 15.74 6.56 38.25 16.82 40.35 6.92
256 23.33 13.24 45.51 11.35 19.99 5.82

Table 4: Results from CODE 2 compared to transpose approach and original code with large
arrays. The peak performance is observed at 16 threads. In this case the array thread-local SOA
do not fit in L2 cache. This lead to lower performance than the cases where the thread-local SOA
fit in cache.

Figure 4 shows the performance results from choosing different lengths for the index i. All the
chunk sizes considered yield higher speed-ups than using transpose approach. The best performance
is observed when using a chunk size of 32. The chunk size of 32 provides enough work to make
better use of the SIMD units. The choice of the chunk size is application dependent.
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Figure 4: Plots of thread-local SOA performance wieh different chunk sizes. The bars indicate the
run time of the optimized standalone Code 2 with different size thread-local SOA which determined
by the choice of chunk. The lowest run time occurs at 64 with chunk = 32. This indicates that
chunk = 32 provide enough work per thread and one thread per core enables a better usage of core
resources compare to two and four threads per core

5.1.2 Rain Routines

The WSM6 module contains semi-Lagrangian routines [14], nisflv rain plm6, and nisflv rain plm6
for simulating falling hydrometeors. These semi-Lagrangian routines, an alternative to a traditional
eulerian scheme, use forward advection to calculate the path of the falling hydrometeors. Initially,
nisflv rain plm6, and nisflv rain plm6 used Fortran keywords cycle, goto, and exit. With these
keywords, the termination criteria is not known a priori, which prevents parallelism. This limitation
was resolved by substituting the keywords with carefully engineered logic that performs the same
computation. The exits were replaced by masking, the gotos by loops couple with conditionals and
cycle by conditionals. After removing these serial bottlenecks, the thread-local SOA and transpose
approaches from CODE 2 are applied to the rain routines. As in CODE 2, the rain routines have
no dependencies along the i-loop and the a thread-local SOA with a chunk size of 32 now fits into
the L2 cache.

The results in Figure 5 and Table 5 for the optimized rain routine with chunk = 32 demonstrate
that using thread-local SOA produces larger speed-ups than transposing the input data. In this
case, the thread-local SOA are chosen to fit in cache and designed for contiguous memory access
to improve performance. In contrast, transposing the input data increase parallelism at the thread
level but does not improve memory performance. The optimized, thread-local SOA, version of the
rain routine runs 50 faster than the original serial version, and 2 faster than the transpose version.
Sections 5.2–5.3 present results of applying thread-local SOA to WSM6, GFS physics, and GFS
radiation.
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Figure 5: Transpose vs SOA speed-ups on nisflv rain plm6. This thread scalability plot reaffirms
that using thread-local SOA scales better than transposing the input data.

Threads Transpose (ms) SOA (ms)
1 250 450
2 127 220
4 74 112
8 37 60
16 24 31.2
32 20 16.3
64 19 10.1
128 17 8.9
256 18 12.3

Table 5: Thread-local SOA and Transpose approach applied to nisfl rain plm6. This show run
times of transpose and thread-local SOA on a subroutine in WSM6.

5.2 WSM6

In addition to the transformations in nisflv rain plm6 and nisflv rain plm6 routines, the OMP SIMD
directive is applied at the lower level to the innermost loops instead of relying onto the Intel compiler
auto vectorization. Thread parallelism is implemented at the parent level in the WSM6 module.
Figures 6 -10 show the results of these optimization efforts. The bar plots in Figure 6 and 7 does
not show significant differences in run time for various thread-local SOA sizes on KNL and Haswell.
These figures indicate that the different chunk sizes used in this experiment achieve about the same
performance improvement with a best speed-up of about 26 when using static scheduling.

Figures 8, and 9 compare static versus dynamic scheduling performance on KNL and Haswell
respectively. In both systems, dynamic scheduling performs better than static scheduling. The
dynamic scheduler helps load balance the work between the threads. Because of the conditionals and
complexity within physics routines, the work distributed between the threads may be unbalanced,
causing some threads to run longer than necessary. With dynamic scheduling an internal work queue
is used to give block of iterations to each thread. When a thread finishes its current task it retrieves
the next ready block for the top of the queue. This help reduce the wait time observed in the static
scheduling case. In the case of KNL the performance can be further improved by enabling the flat
configuration. In the flat configuration, the high band width memory (HBM) MCDRAM is used
as a physical address instead of cache. This flat configuration in WSM6 make better usage of the
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HBM compare to cache configuration. Figure 10 compares flat versus cache performance on KNL.
The flat KNL configuration provides better performance than the cache configuration by a factor
of 1.6. Overall the optimized version of WSM6 runs 70 faster, and 26 faster on KNL and Haswell
respectively. Haswell performs better than KNL by a factor of by a factor of 1.3. In addition,
the optimized version of WSM6 on KNL runs 23.3 faster than the optimized version presented by
Ouermi et al. [24]
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Figure 6: WSM6 run time with various thread-local SOA sizes and static scheduling on KNL. The
bars shows that the run times decreases exponentially as the number of threads increase regardless
of the chunk sizes. Each chunk provide enough work for thread and vector parallelism. The lowest
run time occurs at 64 threads and plateaus after that.
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Figure 7: WSM6 run time with various SOA sizes and static scheduling on Haswell. The bars show
that the run times decrease exponentially as the number of thread increase up to about 32 threads.
The best run time is observed at 64 threads with chunk = 32. The performance plateaus after the
64 threads. This indicate that hyper-threading doesn’t improve performance in WSM6. In addition
after 64 threads the amount of work per thread is not large enough to enable scalability.
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Threads cache (ms) flat (ms)
1 1079.3 1084.32
2 570.51 574.92
4 325.86 324.91
8 171.67 167.61
16 93.3 90.32
32 53.66 50.21
64 35.4 31.66
128 45.39 23.45
256 65.59 24.2

Table 6: SOA approach applied to WSM6 with flat and cache modes.
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Figure 8: WSM6 speed-ups on KNL. This shows scalability plots of WSM6 with static and dynamic
scheduling. The chunk size is chosen to be 32 in this case. The performance scales up to 64 threads
and then decreases. Hyper-threading is used at 128 and 256 threads. In hyper-threading, the core
resources are divided up between hyper-thread and this may limit the performance as seen in this
case.
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Figure 9: WSM6 speed-ups with static and dynamics scheduling on Haswell. The best performance
occurs at 32 threads. After 16 threads performance is limited by NUMA affect because OpenMP is
not suitable for parallelism across NUMA nodes. The performance could be improve by using MPI.
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Figure 10: WSM6 speed-ups on KNL with flat configuration. In this scalability plot of WSM6
with cache and flat configuration, dynamic scheduling is used for both and the chunk size is set
to 32. The maximum speed-up is observed at 64 threads in the case of cache configuration and
128 threads in the case flat. In the case of the flat mode, hyper-threading with two hyper-threads
per core improved performance. Though the resources per core are share between hyper-threads,
in this case the set instructions in the shared instruction pipeline enable a better utilization of core
resources.

5.3 GFS physics Results

GFS physics does not have many serial bottlenecks that requires major code transformations as in
the case of WSM6 with niflv rain plm6 and niflv rain plm. Thread parallelism is applied at a high
level in the GFS driver using thread-local SOA. OMP SIMD directives are instrumented at lower
level, innermost loops, to enable better vectorization. In addition, static allocation is used for the
thread-local SOA instead of dynamic allocation as in the original input data.

Figures 11–17 summarize GFS physics performance results. Figures 11 and 12 show run time
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performance on KNL and Haswell respectively with different chunk sizes. In the case of KNL the
run time decreases exponentially, indicating good scalability. As shown in Figure 12 the run time
decreases up to about 16 threads. The first 16 threads are running in one NUMA node. After 16
threads more NUMA nodes are used. Shared memory parallelism is not suitable for parallelism across
NUMA nodes. This limitation is addressed by using four MPI ranks, one for each node. Figure
13 indicates that coupling the four MPI ranks with shared memory parallelism led to significant
improvement on run time past the 16 threads.

Figures 14–16 compare static and dynamic scheduling scalability. In Figure 15 the speed-up
increases up to 16 threads and decrease rapidly after the 16 threads because of difficulties shared
memory parallelism across the NUMA nodes. In both Figures 14 and 16 static scheduling performs
better than dynamic scheduling. The work load between threads is sufficiently balanced that using
a dynamic scheduler does not yield any improvement. In the case of KNL, the flat configuration
improves the speed-up by a factor of 1.04 compared to the cache configuration. The optimized
version of GFS physics runs about 2.4 faster on Haswell compared to KNL. This corresponds to
speed-ups of 27 and 18 on KNL and Haswell respectively over the original serial versions.
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Figure 11: GFS physics run time with various thread-local SOA sizes on KNL. This plot shows
the run times of different thread-local SOA to help guide the choice of chunk size. Static scheduling
is used in this experiment. The maximum speed-up occurs at 128 threads with chunk = 8. The
maximum number of loop iterations is 108. Thus using 256 threads is largely more than necessary
given there is only 108 loop iterations.
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Figure 12: GFS physics run time with various SOA sizes on Haswell. This plots shows run times
of different thread-local SOA to help inform on the appropriate chose for the chunk size. MPI was
not used. OpenMP is used for shared parallelism across NUMA nodes. the default static scheduler
is used in this experiment. The lowest run time occurs a 16 threads. After 16 threads NUMA effect
start limiting performance. This can be addressed by using MPI for parallelism across NUMA nodes.
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Figure 13: GFS physics run time with various SOA sizes on Haswell with MPI. This plots shows
run times of different thread-local SOA to help inform on the appropriate chose for the chunk size.
MPI was used for parallelism across NUMA nodes and OpenMP for shared parallelism within NUMA
nodes. The default static scheduler is used in this experiment. The performance scales up to 72
threads. Hyper-threading does not help improve speed-ups.
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Figure 14: GFS physics speed-ups on KNL. These plots show thread scalability performance with
static and dynamic scheduling on KNL. The performance scales up to 128 threads. The uses a
maximum of 128 threads because there is 108 iteration. Using 256 would oversubscribing. In this
case hyper-threading enable better performance.
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Figure 15: GFS physics speed-ups on Haswell. These plots show thread scalability performance
with static and dynamic scheduling on Haswell. OpenMP is used for parallelism within and across
NUMA nodes. The perfomance decrease after 16 threads because of NUMA effects. Using OpenMP
fr parallelism across NUMA nodes does not improve speed-ups.
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Figure 16: GFS physics speed-ups on Haswell with MPI across nodes. These plots show thread
scalability performance with static and dynamic scheduling on Haswell. MPI and OpenMP are used
for parallelism across and within NUMA nodes respectively. This optimization scales up to 72 cores.
Hyper-threading does not improve the utilization of core resources.
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Figure 17: GFS physics speed-ups on KNL. These plots show thread scalability performance with
flat and cache configuration on KNL. Dynamic scheduling is used. Both cache and falt configuration
scale up to 128 threads.

5.4 GFS radiation

As in GFS physics, GFS radiation is optimized at the high-level with thread-local SOA to improve
thread parallelism and at the low-level with OMP SIMD to improve utilization of SIMD units. Static
instead of dynamic allocation is used as well to improve memory accesses. Figures 18 – 24 show GFS
radiation performance results. Similarly to WSM6 and GFS physics, the bar plots in Figures 18 -
20 inform on the appropriate thread-local SOA size to choose for optimization. Figure 19 indicates
limitation of using OpenMP for parallelism across NUMA nodes. Figures 18 and 20 show that the
chunk sizes of 8 and 16 yield lowest run time on both KNL and Haswell.

Figures 21 – 23 compare static and dynamic performance on KNL and Haswell. Similar to
previous case with GFS codes no using MPI for parallelism across NUMA nodes does not scale as
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shown in Figure 22. On both KNL and Haswell dynamic scheduling performs better than static
scheduling. The dynamically assigned work loads to threads reduces threads wait time compared
to statically distributing work between the threads. Further performance improvement is observed
when using flat configuration in the case of KNL by a factor of 1.05 as shown in Figure 24.

The optimized version of GFS physics run 23 and 30 faster on KNL and Haswell respectively
over the serial times. The run time on Haswell is 6.5 faster than the run time on KNL.
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Figure 18: GFS radiation run time with various SOA sizes on KNL. This plots shows run times
of different thread-local SOA to help inform on the appropriate chose for the chunk size. Static
scheduling is used in this experiment. The best speed-up is observed at 64 threads. This indicates
that one thread per core allows for better utilization of core resources compare to two threads per
core.
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Figure 19: GFS radiation run time with various SOA sizes on Haswell This plots shows run times
of different thread-local SOA to help inform on the appropriate chose for the chunk size. MPI was
not used. OpenMP is used for shared parallelism across NUMA nodes. the default static scheduler
is used in this experiment. The best performance is observed at 16 threads. After 16 threads using
OpenMP for parallelism across NUMA nodes limits performance. OpenMP is designed for shared
memory parallelism.
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Figure 20: GFS radiation run time with various SOA sizes on Haswell. This plots shows run times
of different thread-local SOA to help inform on the appropriate chose for the chunk size. MPI was
used for parallelism across NUMA nodes and OpenMP for shared parallelism within NUMA nodes.
The default static scheduler is used in this experiment. This experiment scales up to 64 threads.
Using hyper-threads does not help improve performance.
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Figure 21: GFS radiation speep-ups on KNL These plots show thread scalability performance
with static and dynamic scheduling on KNL. The maximum performance is observed at about 64
threads. The performance does not change much between 32 and 64 threads because there is not
enough work per thread to improve scalability After 64 threads the performance decreases because
the hyper-threading does not enable better utilization of core’s resources.

321



Performance Optimization Strategies

0 50 100 150

 number of threads

1

2

3

4

5

6

7

8

9

10

S
p
e

e
d

-u
p
s

Static

Dynamic

Figure 22: GFS radiation speed-ups on Haswell. These plots show thread scalability performance
with static and dynamic scheduling on Haswell. OpenMP is used for parallelism within and across
NUMA nodes. The best performance is observed at 16 threads. After 16 threads, the performance
decreases because OpenMP is not suitable for parallelism across NUMA nodes.
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Figure 23: GFS radiation speed-ups on Haswell with MPI across nodes. These plots show thread
scalability performance with static and dynamic scheduling on Haswell. MPI and OpenMP are used
for parallelism across and within NUMA nodes respectively. This optimized code scales up to 72
threads. After the 72 threads the performance decreases. This indicates that one thread per core
enable a better utilization of core’s resources than two threads per core.
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Figure 24: GFS radiation speed-ups on KNL These plots show thread scalability performance with
flat and cache configuration on KNL. Both flat and cache scale up to 64 threads. The performance s
decreases after the 64 threads because hyper-threads do not improve utilization of core’s resources.
Because the test case fit in MCDRAM, the flat configuration enable a slightly better memory usage
which is translated into better performance.

6 Discussion

The results from the standalone experiments in Section 5.1 demonstrate that the thread-local SOA
approach is suitable for optimizing the physics schemes with in NEPTUNE. These standalone exper-
iments are instrumental in identifying the modifications necessary to optimize WSM6, GFS physics
and GFS radiation on the KNL and Haswell. This study exploits the flexibility and simplicity of
the standalone experiments to prototype and test the different optimization strategies which are not
easily and trivially testable in NEPTUNE.

The transformation of the input and output data into thread-local SOA is the main approach
used in optimizing the WSM6 and GFS codes. The size of the thread-local SOA is chosen to fit in
the L2 cache. Each thread-local SOA is composed of the inputs and outputs required to calculate
the physics for few columns. This data transformation reduces memory traffic and increase data
locality. In the transpose approach, the data might be far apart in memory and to large to fit in the
L2 cache. This causes cache misses which limits performance. In addition, applying the transpose to
the entire physics routines requires significant code modification compared to the thread-local SOA
approach.

The OpenMP directive OMP SIMD is used to improve vector parallelism at the low-level. In
cases similar to the rain routines, significant low-level code modifications are required to enable
vectorization. Given that there are dependencies along the vertical direction, the OMP SIMD
directive is applied along the horizontal direction (i loop). In the thread-local SOA, the i-loop
corresponding to the chunk size is chosen to be a multiple of the SIMD unit length.

The original serial version of WSM6, GFS physics, and GFS physics ran for 1.65 sec, 0.130 sec,
4.40 sec on KNL and 0.444 sec, 0.036 sec, 0.870 sec on Haswell. This about 3.7, 3.6 and 5.05 faster
on Haswell compared to KNL for serial codes. The original codes rely on auto vectorization which
does not work well with complex and large body of code. Haswell has lower run times because it has
a higher clock frequency and a turbo boost. Table 7 show a summary of performance improvement
from original codes to optimized thread-local SOA on both KNL and Haswell.

The optimized version of WSM6 yields a speed-up of 70 and 26 on KNL and Haswell respectively
over the serial times. This about 1.3 faster on Haswell compare to KNL. In the case of Haswell,
the maximum performance is observed at about 32 cores compared to 64 cores on KNL. Haswell
performs better than KNL because it has higher clock speed and transactional synchronization
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extensions (TSX-NI) technology to improve threading. The performance of WSM6 on Haswell could
be improved by designing the code to run with 4 MPI ranks for parallelism across NUMA nodes.
On KNL it could be further improved by better using the SIMD units.

The optimized version of GFS physics runs about 2.4 faster on Haswell compared to KNL. GFS
physics scales up to the 72 cores Haswell and the 64 cores on KNL. The large SIMD units on KNL
are not sufficient to outperform Haswell which has more cores and a higher clock frequency than
KNL. After optimization, GFS physics runs 27, and 18 faster on KNL and Haswell respectively over
the serial times.

The optimized GFS radiation runs 23 faster on KNL and 30 faster on Haswell with respect to
their serial times. In this case Haswell performs about 6.5 better than KNL. As in the GFS physics
optimization, the GFS radiation scales up to the 64 cores on KNL and the 72 cores on Haswell.

The test cases used in this study have about 10K iterations for WSM6 and 800 iterations for
GFS codes. These test cases are not large enough to provide sufficient work to each threads and
scale well to the 64 cores on KNL and 72 cores on Haswell. As this work continues large test cases
will be studied.

With regard to peak performance, some of the challenges faced by physics codes are illustrated
by CODE 2 in Section 5. In this case, there are only 9 flops in the inner loop. This is typical of
some of the loops in WSM6. As a result, with array dimensions of 10592 and 39, there are only
3.7M flops. A loop time of 0.02ms gives a flop rate of 185 GFLOPs, which is about 6.6% of peak
and is not unexpected for loops that have low flop counts.

All the tables and plots show a performance decrease after 128 threads for KNL and 72 threads
for Haswell. This corresponds to two or four thread per core. In the KNL and Haswell, all active
threads in a given core flow through the same pipeline, and thus they share resources such as
instruction cache and instruction queue. The increase in the number of threads per cores leads to
the division of the shared resources among threads, and to an increase in memory access conflicts.
This competition for resources indicates why a performance decrease is observed after 128 threads
and 72 threads on KNL and Haswell respectively.

physics schemes WSM6 GFS physics GFS radiation

KNL

best time (ms) 23.0 4.8 190.0
speed-up 70 27 23
threads 64 128 64

configuration dynamic+flat static+flat dynamic+flat

Haswell

best time (ms) 17.0 2.0 29.0
speed-up 26 18 30
threads 32 72 72

configuration dynamic static dynamic

Table 7: Performance summary. This shows best performance results for the different physics codes
used on KNL and Haswell. On KNL the chunk size is set to 8 and on Haswell it is set 32.

7 Conclusion and Future Work

This work demonstrated the efficiency of high-level optimization approach using thread-local SOA
paired with low-level optimization technique using OMP SIMD directive. As presented in the results
section, these optimization approaches enables a better utilization of the KNL and Haswell resources
by improving locality, memory allocation and vectorization. The use of thread-local SOA and static
allocation enable better memory traffic by increasing locality and decreasing cache misses. The use
OMP SIMD directives coupled with SOA chunk sizes, set to be multiples SIMD length, enable a
better utilization of SIMD units in KNL and Haswell. Overall, the various optimizations achieved
a speed-ups of 70, 27, 23 on KNL, and 26, 18, 30 on Haswell over the original serial version of
WSM6, GFS physics, GFS radiation respectively. In addition, the results indicated that WSM6,
GFS physics, GFS radiation run 1.3, 2.4 and 6.5 faster on on Haswell compared to KNL. This
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is because the Haswell system used here has more cores and a higher clock frequency than KNL.
As mentioned in the discussion peak performance is still relatively challenging to achieve given
the complexity of the physics schemes and we continue to investigate methods for improving the
percentage of peak performance. In terms of future work, a better understanding of how to use
hyper-threading, a study of MPI + OpenMP on large test cases will better inform on more effective
optimization approaches in NEPTUNE on supercomputers.
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