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Abstract

Recently, in large-scale Internet of Things (IoT) systems based on cloud computing, prob-
lems such as increase in network load, delay in response, and invasion of privacy have become
concerning. To solve these problems, edge computing has been introduced to the IoT systems.
However, if the cloud function is excessively migrated to the edge, the collected data cannot be
shared between IoT systems, thus reducing the system’s usefulness. In this paper, we propose
a multi-agent based flexible IoT edge computing architecture to balance global optimization by
a cloud and local optimization by edges and to optimize the role of the cloud server and the
edge servers dynamically. Further, as an application example, we introduce an energy manage-
ment system based on the proposed edge computing system architecture to demonstrate the
effectiveness of our proposal.

Keywords: IoT, edge computing, cloud computing, flexible, multi-agent

1 Introduction

Recently Internet of Things (IoT) systems, in which many sensors or devices are connected directly
to the Internet to provide various services without human intervention, have been attracting atten-
tion [1–3]. IoT applications are adopted in the industrial, household, as well as social sectors. In the
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industrial sector, IoT application provides an increasing sophistication of remote maintenance and
supply chain management. In the home sector, it offers well-developed health care and energy man-
agement. In the social sector, IoT systems are effective for disaster prevention, such as monitoring
and preventing floods. These conventional IoT systems are based on a cloud-centric architecture.
Therefore, problems such as increase in network load, delayed feedback response, and invasion of
privacy are identified in a large-scale IoT system [4].

To solve these problems, the concept of edge computing (EC) has been introduced to the IoT
architecture [4, 5]. In EC, the data collection, filtering, and feedback control functions are imple-
mented on the edge servers in the base-stations of the mobile communication carrier or the IoT
gateways close to the sensors and actuators. EC is effective in solving communication traffic short-
age and delayed feedback control issues. However, if the cloud function is excessively migrated to
the edge, the collected data cannot be shared between IoT systems and this decreases the system’s
usefulness [6]. Moreover, while EC is effective for local optimization in an edge domain, it does not
aid in global optimization of multiple domains.

Studies have been conducted to address these problems. A previous research [7] proposed a
method to cooperate analysis of the data distributed to clouds and edges in the electric power
system. Another research [8,9] proposed an environment adaptive IoT architecture to optimize the
roles of clouds and edges.

In this paper, we extend these previous studies and propose a multi-agent based flexible IoT-EC
architecture to solve the problems of the conventional EC. The proposed IoT architecture balances
global optimization by a cloud and local optimization by edges to optimize the roles of the cloud
server and the edge servers dynamically using multi-agent technology. In Section 2, we present
the background of the research. In Section 3, we propose the concept of flexible IoT-EC and its
architecture. In Section 4, as an application example, we introduce an energy management system
and demonstrate the effectiveness of our proposed architecture. In the field of energy management
systems, responding to imminent power supply shortage and realizing efficient power consumption
has become a problem. Thus, a demand response (DR) system has been developed that introduces
a smart meter with a bidirectional communication function in the wattmeter and efficiently operates
the entire power grid while exchanging information on power supply and power consumption. A DR
system is a large-scale IoT system with smart meters as IoT devices. In the current DR system, power
consumption is reduced after informing the customer of the reduction in power supply. However,
the customer’s situation is not considered in this system. To operate the entire power grid system
efficiently, it is necessary to properly balance information and processes on the supply side (cloud)
and the customer side (edge). In our example, we demonstrate how our proposed IoT architecture
can be used to improve the DR system.

2 Background of This Research

2.1 Conventional Cloud-centric IoT Architecture

Various IoT architectures are proposed by standards bodies and researchers [1, 3]. A couple of
architectures are based on a three-layer IoT architecture, as shown in Figure.1(a). As functional
decomposition depends on the architecture, this three-layer architecture is regarded as vertical in-
tegration IoT architecture. Another type of architecture is the five-layer IoT architecture that
extracts the common function from the three-layer IoT architecture and adds a business layer to it.
Figure.1(b) is one example of a five-layer IoT architecture proposed by Al-Fuqaha called API-based
five-layer IoT architecture.

The service management layer of the five-layer IoT architecture supports common IoT functions,
such as data collection, data analysis, device management, and service discovery. These common
functions are considered horizontal integrated IoT platform on the cloud. As a result, certain
advantages such as reduction of development cost, protocol independency, and easy reuse of collected
data can be achieved.

In the five-layered IoT architecture, all the data is collected and analyzed on the cloud. Further,
all the actuators in the object layer are controlled by the results on the cloud. This behavior causes
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Figure 1: IoT Architecture: a) Three-layer IoT Architecture; b) Five-layer IoT Architecture

some demerits [4].
1) Under a large IoT system containing several sensors, collecting a large amount of data leads

to communication traffic shortage and deteriorates the service.
2) The communication convergence in the Internet and the cloud causes control delay. The

system delay also depends on the frequency of the data collection.
3) Collecting all the data on the cloud causes more serious security issues.

2.2 IoT Edge Computing

To solve the problems explained in the previous section, the concept of EC is introduced to the
IoT architecture [5, 6, 10–21]. EC is the method of performing the processing at the place near the
data origin or control targets. A well-known example is a content delivery network (CDN). A CDN
deploys the Internet contents near the clients to improve Web performance.

There are various types of EC architectures including three-layer, four-layer, and seven-layer. The
most common EC architecture is the three-layer architecture that adds an edge layer between the
device and cloud layers. Figure.2 shows the IoT architecture with a three-layer EC system. In this
architecture, the data collection, filtering function, and feedback control functions are implemented
on the edge servers in the career base-stations or IoT gateways closer to the IoT devices.

Figure 2: IoT-EC

T. G. Rodrigues et al. proposed a method to offload tasks from cloud to cloudlet servers in the
edge [11]. They presented a mathematical model of their method.

J. Ren et al. proposed a transparent computing based IoT architecture [12]. Under this archi-
tecture, the required services are loaded on the edge servers from the cloud. As a result, on-demand
apps/services can be dynamically provisioned for lightweight IoT devices.
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J. Ren also proposed mobile crowdsourcing that can enable mobile users to acquire the outsourced
task. By leveraging the sensing capabilities of mobile devices and integrating human intelligence
with machine-computation, mobile crowdsourcing has the potential to revolutionize the approach to
data collecting and processing [14].

M. Marjanović et al. proposed an EC architecture adequate for massive-scale mobile crowd
sensing (MCS) services [22]. MCS is a human-driven IoT service that empowers citizens to observe
the phenomena of individual, community, or even societal values by sharing sensor data about their
environment while on the move [23]. By moving computation to the network edge, the associated
traffic in the mobile core is reduced. Sahni et al. proposed a new computing paradigm, named
Edge Mesh, which distributes the decision-making tasks among edge devices within the network
instead of sending all data to a centralized server [24]. RedEdge is a big data processing solution
that enables processing of big data streams near the data source in mobile edge cloud computing
environments [25]. In particular, they focus on a new dimension that IoT adds to big data and
analytics: a massively distributed number of sources at the edge.

Fog computing is a similar concept to transparent computing. Proposed by F. Bonomi, it is a
hierarchical distributed architecture that extends from the edge of the network to the core [26]. T.
H. Luan et al. presented a three-tier Mobile-Fog-Cloud architecture that deploys highly virtualized
computing and communication facilities with easy access to mobile users [27]. B. Tang et al. intro-
duced a four-layer hierarchical fog computing architecture for big data analysis in smart cities [28].
It parallelizes data processing at the edge of the network, which satisfies the requirements of location
awareness and low latency for smart city services.

2.3 Problems of IoT Edge Computing

IoT-EC is effective in solving network traffic shortage and delay in feedback control. However, there
are a couple of problems in IoT-EC as described below [6,9].

Problem-1) Provisioning of the IoT functions depends on the resources and network environment
of the edge servers. Under the large-scale IoT system, it is difficult to deploy the same resources for
all edge servers. That is, we need a method to optimize all IoT systems by changing the roles of the
cloud and the edge part dynamically according to the resources and the network environment of the
edge servers.

Problem-2) If all the IoT functions are placed at the edge servers, all the IoT systems become
the localized vertical integrated system. This prevents global optimization based on the collected
data. On the contrary, prioritizing global optimization in cloud hinders local optimization, such as
real-time control in edge. That is, when we introduce EC to the IoT system, we need a mechanism
to balance global optimization by a cloud and local optimization by edges.

Problem-3) In IoT-EC, local optimization at one edge domain may interfere with local optimiza-
tion of other edge domains. In that case, a mechanism is needed to coordinate the edges and to
balance local optimization of edges without going through the cloud.

3 Flexible Multi-agent Based IoT Edge Computing

There have been consistent studies [6–9] that aim to solve the problems of IoT-EC described in
the previous section. To solve Problem-1) of IoT-EC, an environment adaptive IoT architecture
was proposed in the studies [6, 7]. Figure.3 shows the concept of the environment adaptive IoT
architecture. In the figure, “Environment Adaptability” autonomously assigns the allocation of
processing to edges and clouds as appropriate points on a plane by two axes according to the quality
of work, quantity, and variation. On the other hand, “User-oriented Property” is reflected in the
appropriate service for each user by autonomous control based on the user’s behavior collected by
IoT and on detailed information such as expression and gesture.

In this paper, based on the concept presented in [6,7], we propose a flexible IoT-EC architecture
to solve the above Problem-2 and to determine a mechanism to balance the global optimization by
cloud and the local optimization by edges. We also formulate the optimization and demonstrate the
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Figure 3: Concept of Environment Adaptive IoT Architecture

Figure 4: Balancing Cloud Performance and Edge Performance

intelligent protocol to satisfy the optimization. Thereafter, an example application for the energy
management is described.

3.1 Basic Concept

Here, we will explain how total balancing mechanisms work in our proposed architecture.

The balancing optimization functions are divided into both the cloud side and the edge side.
Each optimization subtask can only optimize its side because it does not have enough information
to tend to the other side. The cloud side subtask, that is, global optimization subtask, can improve
its performance of the cloud, but that does not improve the edge performance, as shown in Figure.4.
For the edge subtask (local optimization subtask), the situation is reversed and it cannot improve
the edge side performance. Especially, for actual applications described in the following section, a
relationship between the cloud and the edges is often a trade-off relationship. By simply improving
the performance of one side, the performance of the other side may be decreased.

In our architecture, we propose the balancing optimization mechanism with the collaboration of
both the global and the local subtask. The goal of this mechanism is to achieve total optimization
of the system, as shown in Figure.4.

The architecture, formulation, and protocol of our proposed mechanism are explained below.
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Figure 5: Multi-agent based Architecture of Flexible IoT-EC

3.2 Architecture

Figure.5 shows the overall proposed architecture. An application is divided into multiple subtasks
that are assigned to a cloud or edges according to their characteristics as agents. For example, a
global optimization subtask is placed in the cloud as it needs to access all the summary informa-
tion gathered at the cloud. A real-time actuator control subtask, however, requires low latency
communication and thus it is assigned to the edge servers connected to the actuators.

Subtasks typically use autonomous distributed multi-agency technology. When necessary, agents
can move from the cloud to the edges, from one edge to another, etc. This is how Problem-1) is
solved. The complete process is described in detail in [7].

When an application is divided into subtasks and distributed to the cloud and the edges, it is
necessary to have a mechanism that allows the entire system to work properly. If all information
that determines the behavior of the entire system is gathered in the cloud, then the optimization
and control functions can also be executed only in the cloud. In many cases, such information is
dispersed throughout the system and it is difficult for a single agent in the cloud to control the entire
system. When such agents exist both in the cloud and the edges, both agents should collaborate so
that the system balances properly for both the cloud and edge. In this paper, we will explore this
optimization mechanism in 3.4. In some cases, one edge agent needs to communicate with a different
edge agent in its vicinity. Alternatively, if necessary, the cloud may communicate with other clouds
to collaborate a task. In our system, these functions are realized as the cooperation between edges or
clouds. With the mechanisms described above, our proposed system can overcome three challenges
encountered by IoT-EC.

3.3 Formulation

To balance the optimization of the total application, the cloud and edge subtasks should communi-
cate and discuss the details of the optimization process.

When an application is divided into subtasks and deployed to the cloud and the edges, each
subtask has limited access to the system information that is necessary to optimize the total system.
As a result, a subtask in the cloud can optimize only the cloud system and subtasks in the edges
can optimize only the edge systems.

Let us explain this situation with formalization.

1. Basic case
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variables: v = [v1, v2, · · · vN ]

cost function: cost(v)

optimization: MIN
v1,v2,···vN

(cost(v)) under constraints(v)

(1)

All the parameters that affect the system behavior are described as variables vi(i = 1 to N).
We merge various indicators that evaluate the system behavior into one evaluation function.
Here, we aim to minimize the evaluation function. We call this evaluation function as a cost
function. Though not all variables can be freely changed, there are some constraints (such
as 0 < v0 < v1 + v2). Therefore, the system optimization is paraphrased as a problem of
minimizing the cost function under certain constraints.

Variables v vary with time. The optimization subtask executes the calculation and selects
the suitable values. Although whether the optimum value to minimize the cost function can
be obtained mathematically is not discussed in this paper, we assume that some values of
practical range can be obtained using a suitable method.

2. IoT-EC case

When an application is distributed to the cloud and edges, the variables, cost functions, and
constraints vary depending on the node.

variables:

vc = [vc1, vc2, · · · vcK ] ; from cloud

ve = [ve1, ve2, · · · veL] ; from edges

vs = [vs1, vs2, · · · vsM ] ; from both

(2)

cost function:

costc(vs,vc) ; for cloud

coste(vs,ve) ; for edge

costc(vs,vc,ve) =

costc(vs,vc) + k ∗
∑

All edge

coste(vs,ve) ; for both cloud and edges

(3)

global optimization (cloud):

MIN
vs,vc

(costc(vs,vc)) under constraintsc(vs,vc) (4)

local optimization (edge):

MIN
vs,ve

(coste(vs,ve)) under constraintse(vs,ve) (5)

total optimization:

MIN
vs,vc,ve

(costt(vs,vc,ve)) under constraintst(vs,vc,ve) (6)

The variables vi are classified according to accessible nodes: from the cloud, from the edges,
and from both. vs is a shared variable and is used to affect both the cloud and the edge
system. vc is a variable used to affect only the cloud behavior. ve is a variable used to affect
only the edge behavior.
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Particularly, coste() are different for each edge, but we use the same designation coste() to
make the expression easier to read. In the case of an IoT system in which data loss occurs
frequently, the cost function must include those data loss situations.

costc() and coste() are calculated only in the cloud or the edges, respectively. As a result, the
total optimization cannot be calculated in one place. We thus propose a protocol to obtain
optimal values step by step by communicating between the cloud and the edges. costt() is a
total cost function and the total optimization is defined to minimize this cost function under
all the constraints. k is a parameter for properly balancing the processing of the cloud and of
the edge. Although, here, a total cost is assumed to be a linear equation of costc() and coste(),
it may be a higher order equation depending on the system.

3.4 Protocol

Figure.6 shows the step by step protocol to obtain total optimized values under our proposed archi-
tecture.

Figure 6: Protocol for Optimizing Between Cloud and Edges

At time t0, the cloud subtask calculates the global optimized values for vs and vc under
constraintsc(vs,vc). After this step, the cloud subtask sends the result of vs to the edges sub-
task. At time t1, the edge subtasks calculate the local optimized value for vs and ve under
constraintse(vs,ve). Then, it sends back new values for vs.

By advancing this communication step by step, the total optimization is realized with the common
shared variables vs as intermediaries. In an actual application, depending on the characteristics of
the problem, the frequency of communication and the time required to complete the communication
will be adjusted.

The process of obtaining optimal value depends on the application. In many applications, it
is not necessary to precisely calculate the mathematical minimum value, and an appropriate value
within an acceptable range is required within the required time.

In the case of multiple edges, the shared variable required for the optimization of the self-edge
may be different for each edge, and optimization is performed through only the necessary shared
variables. If different values are returned to the same shared variable between reply from multiple
edges, the difference will be adjusted on the cloud side. The adjustment method depends on the
application.

4 APPLICATION TO ENERGY MANAGEMENT SYETEM

In this section, we discuss an application of the flexible balanced IoT-EC architecture in energy
management system.
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In recent years, the electric power DR system that stabilizes the supply and price of electric
power is progressing by reducing customers’ electric power consumption when the power supply
becomes limited and the electricity cost rises [29]. The basic structure of the DR system is shown in
Figure.7. In the DR, a resource aggregator (RA) predicts the power demand of customers considering
the weather forecast for the next day and the past power consumption records, and reduces the
customers’ power consumption so that the supply of power and demand match. On the other hand,
the customers obtain incentive according to the ratio of the actual reduction amount to the reduction
amount in their contracts. When customers join the DR system, they decide the contract reduction
amount, which is the amount of electricity that can be reduced when required.

Figure 7: Electric Power Demand Response System

However, because of the introduction of photovoltaic power generation and storage batteries (SB
in Figure.7) to customers, it has become difficult to predict their power consumption [30]. Further,
the current DR takes into consideration only the maintenance of supply and demand balance of
electric power (global optimization of electric power system), and does not consider comfort and
energy conservation (local optimization of energy consumption) of each customer [9]. The current
DR expects customers’ voluntary demand adjustment by changing prices [31, 32]. In the future, in
order to disseminate DR, providing the Advanced DR that considers both the global optimization
of power system and the local optimization of energy consumption of customers will be required.

Before discussing the Advanced DR system, we explain the general behavior of the current DR
system. The electric power company predicts the amount of electricity consumption from past data
and makes plans for the electric power supply. If the actual power consumption greatly deviates
from this supply amount, it leads to accidents such as power outage. Hence, some measures need to
be taken. In the case of DR system, when the power consumption is expected to exceed the supply
amount, the contract customer is requested to reduce their power consumption (Figure.8(a)). The
request is sent from the power company to the RA, and the RA distributes the reduction amount
to each customer.

At present, in the current DR system, the customer’s needs are not taken into consideration, and
the reduction amount is determined based on the contract. Each customer has a different contract
reduction amount.

For the customer, there are two thresholds: the maximum power amount (demand peak-load
upper limit) and the minimum power amount (demand base-load lower limit) in Figure.8(b). When
power consumption exceeds the demand peak-load upper limit, the basic fee of the electricity charge
usually increases for the following one year. The customer thus has to control the consumption so
that it does not exceed the maximum thresholds. The demand base-load lower limit is the minimum
amount of electric power required by the customer. When the electricity supply is below this value,
facilities such as the air conditioner and lights will not function and the customer’s comfort will be
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(a) Global Optimization by RA (b) Local Optimization by Customer’s EMS

Figure 8: Optimization of Advanced DR System

impaired.

In the DR system, customers receive compensation according to the reduced amount ratio of
the actual reduction amount and the contract reduction amount. If other conditions are satisfied,
increasing the required reduction rate will increase the customer’s reward (Figure.9).

Figure 9: Control and Contract of DR system

4.1 Formulation of Advanced DR Optimization

In advanced DR, requirements and constraints of the global optimization to be achieved by the cloud
service of RA and the local optimization to be achieved by an edge service of the customer’s energy
management system (EMS) should be as follows.

In a real environment, multiple RAs provide systems with different policies, and the customer
selects the most suitable RA and agrees on a contract with that RA. In this paper, we assume and
discuss the most common RA policy selected by customers. Moreover, for simplicity, we assume
every edge has the same cost function.

4.1.1 Global Optimization by RA

The global optimization by RA is to minimize the cost function Costc().

MIN
vs,vc

Costc(vs,vc) under constraintsc(vs,vc) (7)
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RA monitors power supply and electric power demand in real time. When electric power demand
is expected to exceed electricity supply, the RA requests electricity reduction from the customers
via the Internet. Figure.8(a) shows the global optimization of power supply and demand power
adjustment made by the RA. The amount of requested reduction for each customer shall be allocated
fairly to customers.

The cost function of the global optimization by RA can be expressed as Equation 8.

Costc(vs,vc) =

√√√√ 1

n

n∑
k=1

(
Ck(t)

Rk
− CR(t)

)2

CR(t) =
1

n

n∑
k=1

(
Ck(t)

Rk

)
n∑

k=1

Ck(t) =

n∑
k=1

Dk(t) − S(t)

vs = [(D1(t), C1(t)), (D2(t), C2(t)), · · · (Dn(t), Cn(t))]

vc = [S(t)]

(8)

Where S(t) is the power supply amount at time t, Dk(t) is the power demand of the customer
k at time t, Ck(t) is the reduction amount allocate to the customer k at time t, Rk is the contract
reduction amount of the customer k, and n is the number of customers.

Equation 8 means that the cost function is the standard deviation of the ratio of the power
reduction amount allocated to each customer to the contract power reduction amount. This is based
on the idea that reduction allocation to customers is fair if the incentive percentage remains the
same when possible. Constraint conditions in this global optimization problem are as follows.

Ck(t) ≥ 0, Dk(t) ≥ 0, Rk ≥ 0, S(t) ≥ 0 (9)

To balance the supply and demand, it may be possible to utilize storage batteries (SB in Figure.7)
installed in RA and at the customer’s place. In this case, a mechanism to control the charging and
discharging of the storage battery effectively is required [30]. However, this is not taken into con-
sideration in this discussion. As the reliability of the electric power grid is very high, data losses are
not considered in this example.

4.1.2 Local Optimization by Customer’s EMS

The customer’s EMS controls equipment in edge domain to maintain comfort and positive energy
savings. Specifically, to maintain comfort, even when a request to reduce power consumption comes
from the RA, electricity supply is controlled so that it does not fall below the minimum power
consumption (demand base-load lower limits). Further, to maintain energy saving, electricity supply
is controlled so that it does not exceed the predetermined power consumption upper limit (demand
peak-load upper limits). Fig.8 (b) shows the local optimization to maintain comfort and energy
saving by costumer’s EMS.

The objective function of the local optimization by customer’s EMS can be expressed as Equation
10.
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vs = [(D1(t), C1(t)), (D2(t), C2(t)), · · · (Dn(t), Cn(t))]

ve = [B1(t), B2(t), · · ·Bn(t)]

Coste(vs, ve) =

n∑
k=1

((
1 − Ck(t)

Rk

)
+ S

(
Bk(t) + Ck(t) −Dk(t)

Rk

))

S(x) = x when x > 0
= 0 when x ≤ 0

(10)

where Bk(t) is the demand base-load lower limits to maintain comfort for the costumer at time
t.

The first term of Equation 10 indicates the ratio of the allocated reduction amount to the
contract power reduction amount. That is, when the customer can receive maximum incentive, this
term becomes zero. The second term of Equation 10 indicates the cost of comfort. This is, when
comfort is maintained, this term is zero. However, when the demand electric power falls below the
demand base-load lower limit, we define the ratio of the excess amount to the contract reduction
amount as the cost of comfort.

Constraint conditions in this local optimization problem are as follows.

Rk − Ck(t) ≥ 0

Dk(t) −Bk(t) − Ck(t) ≥ 0

Bk(t) ≥ 0

(11)

Where the electric power demand is significantly lower than the electricity supply, it may be
possible to request the customer to increase the electric power demand by charging the storage
battery (SB in Figure. 7). In this case, to maintain energy saving for the customer, it is necessary to
add constraint conditions to prevent the electricity demand from exceeding the demand peak-load
upper limits. However, this is not taken into consideration in this discussion.

4.1.3 Total Optimization

As shown in Equation 8 and Equation 10, both global optimization and individual optimization in
the advanced DR system are time-series optimization problems. Furthermore, coordination between
RA (cloud) and EMS (edge) is required so that each objective function can be minimized in a
balanced manner. Here, assuming that the weights of optimization of the cloud and edge are equal
(k = 1), the overall cost function of this system is presented as Equation 12.

Costt(vs,vc,ve) = Costc(vs,vc) +
∑

All edges

Coste(vs,ve) (12)

4.2 System Configuration

Figure.10 shows a system configuration diagram of the advanced DR system with the storage batter-
ies based on the proposed flexible IoT-EC architecture. In the figure, the RA gathers power energy
data from the customer’s EMS once every half hour. In the case of limited power supply, the RA
calculates the amount of reduction request to be allocated to each customer to balance power supply
and demand based on Equation 8. On the other hand, the customer’s EMS adjusts the electric power
demand based on Equation 10 while maintaining the comfort and energy saving. The RA and EMS
exchange vs to balance global optimization of RA and local optimization of EMS.
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Figure 10: System Configuration of Advanced DR System

5 EVALUATION AND DISCUSSION

In this section, the effect of the proposed method is shown using two phase simulations. As previously
explained, there are several cases where the cloud and the edges are in a trade-off relationship. The
superiority of the proposed method is evident when the condition of the trade-off is severe. The first
simulation is performed under three cases from a case with severe condition, that is, when the lower
limit is high, to a case with relaxed condition, that is, when there is no lower limit. This simulation
demonstrates the detailed behavior of the proposed system. To easy comprehension, the number of
customers is kept at three. The second simulation is to confirm that the proposed method works
well with multiple customers.

5.1 First Phase Simulation

Here, we describe a simulation example when the number of customers is three (C1, C2, and C3).
The total supply is 600 kWh and the sum of demand for each customer is 900 kWh. The RA has
to reduce 300 kWh and dispatch the reduced amount to each customer (Figure 11).

Simulation is conducted in three cases, 1) High Lower Limit, 2) Moderate Lower Limit, and 3)
No Lower Limit (Figure. 12). Each customer has a different contract reduction amount, as shown
in Table 1.

First, we describe the details of case 1). After that, the summary of cases 2) and 3) are shown.

5.1.1 High Lower Limit Case

As the lower limits in this case are the highest among the three cases, this scenario is the most severe.
The RA tries to reduce Costc() in Equation 8 and the results are requested from each customer, as
shown in Figure. 13.

For customers C1 and C3, this request is acceptable. However, for customer C2, this request
(reducing 177 kWh) results in the lack of demand.

300kWh− 177kWh = 123kWh < 200kWh(= Contract Reduction Amount for C2) (13)
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Figure 11: Simulation

Figure 12: Simulation cases

Table 1: Simulation Conditions

C1 C2 C3 Sum

Dk(tj) (= Demand) [kWh] 300 300 300 900

Rk (= Contract Reduction Amount) [kWh] 150 290 50 490

Bk(tj) High 100 200 250 460

(=Lower Limit) Moderate 50 150 100 300

[kWh] No 0 0 0 0

Dk(tj) : power consumption of customer k at time tj
Rk : contract reduction amount of customer k
Bk(tj) : demand base-load lower limit of customer k at time tj
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Figure 13: Step1: Reduction Request in case1

Thus, C1 and C3 reply with acceptance of the request, but C2 replies that only 100 kWh reduction
is acceptable (Figure.14).

Figure 14: Step1: Reduction Reply in case1

The RA recalculates the reduction request for C1 and C3 based on the condition C2 for the
reduction amount to be 100 kWh. Then, the RA resends the reduction request (Figure.15).

Here, all customers accept the request and reply, as shown in Figure.16.

Table.2 shows the result of cost calculation. In step 1 of the optimization, the cost of global
optimization by the RA becomes zero. However, as the amount of reduction of customer C2 was
lower than the demand base-load lower limits, the total cost of the optimization becomes 1.17. As a
result of reflecting the constraint condition of customer C2 in step 2, although the cost of the global
optimization by the RA increased to 0.15, the total cost improved to 0.96. The ratio of improvement
is 33%.
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Figure 15: Step2: Reduction Request in case1

Figure 16: Step2: Reduction Reply in case1

Table 2: Results of Optimization for case1

C1 C2 C3 RA Costt

Step 1 Ck(tj) [kWh] 92 177 31 300 -

Cost 0.39 0.66 0.39 0.0 1.17

1.43

Step 2 Ck(tj) [kWh] 150 100 50 300 -

Cost 0.0 0.65 0.0 0.31 0.96

0.65

Ck(tj) : reduction allocation amount to customer k at time tj

Figure.17 shows the communication between the cloud and the edges in case 1). In order to make
the figure clearer, every three edges are written as one edge. In fact, only the information on that
edge is exchanged for each three edges, as shown in from Figure.13 to Figure.16.
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Figure 17: Protocol Simulation for case1

5.1.2 Other Cases

In the other 2 cases (Moderate Lower Limit, No Lower Limit), the final cost values are shown in
Table 3 and Table 4.

In case 2), the total cost for step 1 is 1.26 and that for step 2 is 1.10. The ratio of improvement
is 13%.

In case 3), the request of step 1 is accepted by all the edges and there is no need to proceed to
step 2).

Figure.18 shows the results for all three cases.

Table 3: Results of Optimization for case2 (Moderate Lower Limit)

C1 C2 C3 RA Costt

Step 1 Ck(tj) [kWh] 92 177 31 300 -

Cost 0.39 0.48 0.39 0.00 1.26

1.26

Step 2 Ck(tj) [kWh] 112 100 38 300 -

Cost 0.25 0.48 0.25 0.12 1.10

0.98

Table 4: Results of Optimization for case 3) (No Lower Limit)

C1 C2 C3 RA Costt

Step 1 Ck(tj) [kWh] 92 177 31 300 -

Cost 0.39 0.39 0.39 0.00 1.16

1.16
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Figure 18: Simulation Results for All Cases

5.2 Second Phase Simulation

In the second phase simulation, we executed the simulation with a more reasonable number of
customers and used the same method as previously described. The number of customers (N) changed
from 10 to 10,000. In the case of Japan, the target customers of DR are estimated as approximately
700,000 [33]. Assuming that there are 10 electric power companies, the contract rate is 10%, and
there are 10 aggregators in the same area. It is considered that there are approximately thousands
of customers per aggregator. The current demand (Dk) is 300 kWh for all customers. The contract
reduction amount (Rk) and the demand base-load lower limit (Bk) are set randomly between 0
kWh and 300 kWh. Supply power will be reduced to 200 kWh. The simulation used the same
procedures as previously described. We measured the number of steps to obtain the optimum value
and the ratio of reduction of the cost value. Depending on the value of the randomly set parameter,
some cases were unable to obtain the optimum value. Such cases were removed from the simulation
results. The simulation was executed 1000 times and the resulting average value is shown.

Figure 19: Cost Value Improvement in the Second Phase Simulation

The results are shown in Figure.19 and Figure.20. As seen in Figure.19, when the number of
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Figure 20: Average Step Counts in the Second Phase Simulation

customers increases, the degree of improvement of the cost function also increases. The average
improvement ratio is approximately 40% when the number of customers is 1000 to 10,000. From
Figure.20, we see the number of steps required to obtain the optimum value increases as the number
of customers increases. It is approximately four to five steps with the number of customers being
10,000.

5.3 Discussion

As shown in the above simulation results, in the conventional DR system that does not consider the
comfort and energy saving, although the cost of optimization of the cloud is 0, the cost of the edge
increases (Step 1 in Table2, Table3). On the other hand, in the advanced DR systems, based on our
proposed architecture, it is possible to balance the optimization of the cloud and the edge (Step 1
in Table2, Table3). The total cost is improved in the advanced DR system by 33% for case 1) and
by 13% for case 2) (Figure 18) in the first phase simulation.

In the second phase simulation, we can identify improved performance number such as 40% or
more with 1,000 or 10,000 customers. The number of steps required to achieve the optimal result
is not significant, and we believe our proposed method can be applied to the actual advanced DR
system.

In the advanced DR system shown above, we assumed that the cloud task (RA) is to maintain
the electricity supply and the demand balance, and the edge task (EMS) is to maintain comfort and
energy saving. Depending on the environment of the application, it may be necessary to optimize
the roles of the cloud and the edge. In that case, it can be combined with the environment adaptive
IoT architecture [6, 7].

Further, in the above simulation, the temporal fluctuation of electricity supply and demand is not
considered. In fact, variables of the cost function and the constraint condition change with time and
therefore need to be treated as a combination problem of the time series optimization. Moreover,
as the number of customers increases, the optimization may not converge. Therefore, when applied
to a real system, research on a more efficient distributed optimization algorithm is necessary. In
addition, if there are storage batteries available with customers (SB in Figure 7 and Figure 10),
it may be considered an effective method of distributing reproduced power autonomously among
customer’s EMSs without involving the RA of the cloud. For this purpose, we need research to solve
Problem 3 described in Section 2.

Regarding the cost function for edges, we assume all the edges have the same cost function in
this simulation. In our future work, we intend to evaluate more general cases in which each edge
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has a different cost function. We also aim to evaluate our architecture on other applications with
mobile devices such as ITS systems.

6 CONCLUSION

In this paper, we proposed a flexible IoT-EC architecture to balance a global optimization in the
cloud and a local optimization in the edge. We then showed its effectiveness by applying the proposed
architecture to the electric power demand response system. As our future work, we intend to study
the general formulation of the distributed optimization problem by clouds and edges and cooperative
control among edges. For the application to electric power systems, we will study the distributed
optimization between the RA and customers with storage batteries (SB in Figure.7 and Figure.10).
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