
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 8, Number 1, pages 32–52, January 2018

Complete Visibility for Mobile Robots with Lights Tolerating Faults

Aisha Aljohani

Kent State University
Kent, OH, USA

Email: aaljoha6@kent.edu

Gokarna Sharma

Kent State University
Kent, OH, USA

Email: sharma@cs.kent.edu

Received: August 1, 2017
Revised: October 31, 2017

Accepted: November 29, 2017
Communicated by Susumu Matsumae

Abstract

We consider the distributed setting of N autonomous mobile robots that operate in Look-
Compute-Move (LCM) cycles and communicate with other robots using colored lights (the robots
with lights model). We study the fundamental Complete Visibility problem of repositioning
N robots on a plane so that each robot is visible to all others. We assume obstructed visibility
under which a robot cannot see another robot if a third robot is positioned between them on
the straight line connecting them. We are interested in fault-tolerant algorithms; all existing
algorithms for this problem are not fault-tolerant (except handling some special cases). We
study fault-tolerance with respect to failures on the mobility of robots. Therefore, any algo-
rithm for Complete Visibility is required to provide visibility between all non-faulty robots,
independently of the behavior of the faulty ones. We model mobility failures as crash faults in
which each faulty robot is allowed to stop its movement at any time and, once the faulty robot
stopped moving, that robot will remain stationary indefinitely. In this paper, we present and
analyze an algorithm that solves Complete Visibility tolerating one crash-faulty robot in a
system of N ≥ 3 robots, starting from any arbitrary initial configuration. We also provide an
impossibility result on solving Complete Visibility if a single robot is Byzantine-faulty in a
system of N = 3 robots; in the Byzantine fault model, a faulty robot might behave in an unpre-
dictable, arbitrary, and unforeseeable ways. Furthermore, we discuss how to solve Complete
Visibility for some initial configurations of robots (which we call feasible initial configurations)
in the crash fault model, where two robots are (crash) faulty.

1 Introduction

In the classical model of distributed computing by mobile robots, each robot is modeled as a point
in the plane [10]. The robots are assumed to be autonomous (no external control), anonymous
(no unique identifiers), indistinguishable (no external identifiers), and disoriented (no agreement
on local coordinate systems and units of distance measures). They execute the same algorithm.

32

International Journal of Networking and Computing

Each robot proceeds in Look-Compute-Move (LCM) cycles: When an robot becomes active, it
first gets a snapshot of its surroundings (Look), then computes a destination point based on the
snapshot (Compute), and finally moves towards the destination point (Move). Moreover, the robots
are oblivious, i.e., in each LCM cycle, each robot has no memory of its past LCM cycles [10].
Furthermore, the robots are silent because they do not communicate directly, and only vision and
mobility enable them to coordinate their actions.

While silence has advantages, direct communication is preferred in many other situations, for
example, hostile environments, which make coordination efficient and relatively viable. One model
that incorporates direct communication is the robots with lights model [8, 10, 15], where each robot
has an externally visible light that can assume colors from a constant sized set, and hence robot can
explicitly communicate with each other using these colors. The colors are persistent; i.e., the color
is not erased at the end of a cycle. Except for the lights, the robots are oblivious as in the classical
model.

Di Luna et al. [12] gave the first algorithm for robots with lights to solve the fundamental
Complete Visibility problem defined as follows: Given an arbitrary initial configuration of N
autonomous mobile robots located in distinct points on a plane, they reach a configuration in which
each robot is in a distinct position from which it can see all other robots. Initially, some robots may
be obstructed from the view of other robots and the total number of robots, N , is not known to
robots. The importance of solving Complete Visibility is that it makes it possible to solve many
other robotic problems, including gathering, shape formation, and leader election, under obstructed
visibility in the robots with lights model. That is, in the lights model, instead of robots terminating
their execution, they assume a special color, say “Done”, and then a node with color “Done” can start
executing the algorithm for some other robotic problem after all robots that are visible to it also have
color “Done”. It can be shown that a robot colored “Done” finds all robots it sees also have color
“Done” only after Complete Visibility is solved. We refer to Di Luna et al. [11] for an example
where they solve circle formation problem after complete visibility is achieved by robots in the lights
model. Most importantly, Complete Visibility recovers unobstructed visibility configuration
starting from obstructed visibility configuration. Subsequently, several papers, e.g. [11, 17], focused
on solving this problem minimizing the number of colors. Recently, faster runtime algorithms for
Complete Visibility [19–22] were studied in the lights model (details in Section 2).

In this paper, we are interested in the fault-tolerant algorithms for Complete Visibility in the
robots with lights model. All existing algorithms, except the work of Di Luna et al. [11], do not
consider faults and hence may fail to solve this problem when robots are faulty. However, Di Luna
et al. [11] only handles the special case of a faulty robot being in the perimeter of the hull, i.e., Di
Luna et al. [11] cannot handle if the faulty robot is in the interior of the hull.

We study fault-tolerance with respect to failures on the mobility of robots. Therefore, any
algorithm for Complete Visibility is required to provide visibility between all non-faulty robots,
independently of the behavior of the faulty ones and the locations of the faulty robots. We model
mobility failures as crash faults where each faulty robot is allowed to stop its movement at any
moment of time and remains stationary indefinitely thereafter, and Byzantine faults where each
faulty robot behaves in unpredictable, arbitrary, and unforeseeable ways [2].

Contributions We consider the same robot model as in Di Luna et al. [11, 12], namely, robots are
oblivious except for a persistent light that can assume a constant number of colors. Visibility could
be obstructed by other robots in the line of sight and N is not known. Moreover, we assume that the
setting is semi-synchronous where there is a notion of common time, at least one robot is active in
each LCM cycle, and the robots that are active perform their cycles simultaneously. We also assume
that a robot in motion cannot be stopped (by an adversary) before it reaches its destination point,
that is, the moves of the robots are rigid. As in Di Luna et al. [12], two robots cannot head to the
same destination and their paths when they move cannot cross. The path crossing would constitute
a collision. Furthermore, we assume that the robots agree on common x- and y-axes (directions and
orientations) [10]. In this paper, we prove the following result which, to our knowledge, is the first
algorithm for Complete Visibility that tolerates a single faulty robot in the semi-synchronous
setting.

33

Complete Visibility for Mobile Robots with Lights Tolerating Faults

Theorem 1.1 For any initial configuration of N ≥ 3 robots (with lights) being in the distinct
positions in a plane, there is an algorithm that solves the Complete Visibility problem tolerating
a crash-faulty robot using 3 colors and without collisions in the semi-synchronous setting.

When the robots are non-faulty, the idea used in the existing algorithms [11, 12, 17, 20–22] is to
reposition the robots so that they all become corners of a N -corner convex hull. When all N robots
are positioned in the corners of a convex hull, a property of the convex hull guarantees that there is
a line connecting each corner with all others of the hull without any third robot being collinear on
those lines. Therefore, this naturally solves Complete Visibility.

Consider the situation where one robot is crash faulty. If the faulty robot is in the corner (or
side) of the hull, then it does not block the visibility to other non-faulty robots and some of the
previous algorithms, especially of Di Luna et al. [11, 12], naturally handle this case. However, the
faulty robot may be in the interior of the convex hull. Therefore, the question is how to figure out
this situation and guarantee that all non-faulty robots see each other. Since robots are oblivious and
non-faulty robots do not know which robots are faulty, this task becomes quite challenging. In this
paper, we develop a technique that guarantees that Complete Visibility is achieved even when
the (crash) faulty robot is in the interior of the hull.

We also show that it is impossible to solve Complete Visibility even if a single robot is
Byzantine faulty. For this impossibility proof, we consider a system of N = 3 robots, out of which
one is Byzantine faulty. This result shows that we cannot hope for a Complete Visibility solution
tolerating even a single fault in the Byzantine fault model.

Given the above impossibility result, it is quite natural to look at whether two or more faulty
robots can be tolerated in the crash-fault model. We found that this is quite challenging for arbitrary
initial configurations. Therefore, we consider a subset of arbitrary initial configurations (which we
call feasible initial configurations) and outline an algorithm for Complete Visibility that tolerates
two (crash) faulty robots in a system of N ≥ 3 robots using 3 colors in the semi-synchronous setting.

Remarks We do not know whether the semi-synchronous model is necessary to solve the problem.
But, we could not manage to proof the correctness of our algorithm (that robots achieve Complete
Visibility configuration and terminate their computation) when the model is fully asynchronous.
Nevertheless, we conjecture that it may be possible by increasing the number of colors.

When robots are fault-free, it is known from [11] that any 2-color algorithm for Complete
Visibility is optimal w.r.t. the number of colors in the robots with lights model, when N is not
known to robots. When N is known to robots and no faults, Complete Visibility can be solved
in the semi-synchronous model without colors [13]. However, with just 2 colors in our algorithm,
since N is not known, robots have difficulty deciding whether Complete Visibility configuration
is achieved or not. Therefore, the third color allows them to break that ambiguity. Therefore, it
will be interesting to have a 2-color algorithm for Complete Visibility when N is not known in
the fault model or prove that any 3-color solution is optimal. Note that in the fault-free model, a
2-color algorithm is known for Complete Visibility [17] even when N is not known to robots.

Paper Organization The rest of the paper is organized as follows. We discuss the detailed related
work in Section 2. We present the robot model and some preliminaries in Section 3. We then present
our Complete Visibility algorithm tolerating a single crash-faulty robot in Section 4 and analyze
it in Section 5. We then present an impossibility result on solving Complete Visibility in the
Byzantine fault model in Section 6. After that, we present a Complete Visibility algorithm that
tolerates 2 crash faulty robots for certain initial configurations in Section 7. Finally, we conclude in
Section 8 with a short discussion.

2 Detailed Related Work

Di Luna et al. [12] gave the first algorithm for Complete Visibility in the robots with lights
model. They solved the problem using 6 colors in the semi-synchronous setting and 10 colors in the
asynchronous setting (under both rigid and non-rigid movements). After that, a series of papers

34

International Journal of Networking and Computing

[11, 17] provided solutions to Complete Visibility minimizing the number of colors. Di Luna et
al. [11] solved the problem using 2 colors in the semi-synchronous setting under rigid movements and
using 3 colors in the semi-synchronous setting under non-rigid movements and in the asynchronous
setting under rigid movements. The also provided a solution using 3 colors in the asynchronous
setting under non-rigid movements under one-axis agreement. Sharma et al. [17] improved the
number of colors in the solution of Di Luna et al. [11] from 3 to 2 (in the semi-synchronous
setting under non-rigid movements and in the asynchronous setting under both rigid and non-rigid
movements). All these results proved the correctness of their algorithms but provided no runtime
analysis (except the finite time termination of their algorithms).

Vaidyanathan et al. [22] considered runtime for the very first time for Complete Visibility
in the robots with lights model. They provided an algorithm that runs in O(logN) time using
O(1) colors in the fully synchronous setting under rigid movements. Later, Sharma et al. [20]
provided an O(1) time algorithm using O(1) colors in the semi-synchronous setting under rigid
movements. Recently, Sharma et al. [21] provided an O(logN) time algorithm using O(1) colors
in the asynchronous setting under rigid movements, which they improved to O(1) in [19]. In the
classic oblivious robots model (with no lights), Di Luna et al. [13] solved Complete Visibility
assuming N is known to robots in the semi-synchronous setting. However, they did not provide the
runtime analysis except the proof that their algorithm terminates in finite time. Recently, Sharma
et al. [18] showed that the algorithm of Di Luna et al. [13] has a runtime lower bound of Ω(N2)
rounds in the fully synchronous setting and provided an algorithm that runs in O(N) rounds in
the fully synchronous setting. However, all these previous algorithms [11–13, 16, 18, 20–22] are not
fault-tolerant.

The obstructed visibility, in general, is considered in the problem of uniformly spreading robots
operating in a line, studied by Cohen and Peleg [5]. The work of Pagli et al. [14] considers the
near-gathering problem where collisions must be avoided among robots. The obstructed visibility is
also considered in the so-called fat robots model [1, 4, 6, 7, 9] in which robots are not points, but
non-transparent unit discs, and hence they can obstruct visibility of collinear robots. However, all
these work do not consider faulty robots. The faults (both crash and Byzantine) are considered for
the gathering problem in Agmon and Peleg [2] in the classical oblivious robots model. We borrow
the definitions of crash and Byzantine faults from Agmon and Peleg [2].

3 Model and Preliminaries

We consider a distributed system of N autonomous robots from a set Q = {r1, . . . , rN}. Each
robot ri ∈ Q is a (dimensionless) point that can move in the two-dimensional Euclidean plane R2.
Throughout the paper, we denote by ri the robot ri as well as its position pi in R2. We assume that
each robot ri ∈ Q shares directions and orientations with other robots in Q, i.e., they agree on both
x- and y-axes. Due to this agreement assumption on x- and y-axes, we can denote the position pi of
the robot ri by its x and y coordinates, i.e., pi = (ri.x, ri.y). We can then denote counterclockwise
and clockwise directions as usual which is the same for all the robots in Q.

A robot ri can see, and be visible to, another robot rj if and only if there is no third robot rk in
the line segment rirj connecting ri and rj . Each robot ri ∈ Q has a light that can assume a color at
a time from a set of constant number of different colors. We denote the color of a robot ri ∈ Q at
any time by variable ri.light. If ri.light = Red, then it means that ri has color Red. Moreover, the
color Red of ri is seen by all robots that can see ri at that time (ri also can see its current color; the
assumption is that ri can read the color that is assigned to variable ri.light). The execution starts
at time t = 0 and at time t = 0 all robots in Q are stationary with each of them colored Off.

Look-Compute-Move Each robot ri is either active or inactive. When a robot ri becomes active,
it performs the “Look-Compute-Move” cycle as described below.

• Look: For each robot rj that is visible to it, ri can observe the position of rj on the plane and
the color of the light of rj . Robot ri can also observe its own color and position; that is, ri is
visible to itself.

35

Complete Visibility for Mobile Robots with Lights Tolerating Faults

Each robot observes positions on its own frame of reference. That is, two different robots
observing the position of the same point may produce different coordinates. However, an
robot observes the positions of points accurately within its own reference frame.

• Compute: In any LCM cycle, ri may perform an arbitrary computation using only the colors
and positions observed during the “look” portion of that LCM cycle. This includes determi-
nation of a (possibly) new position and color for ri for the start of next LCM cycle. robot ri
maintains this new color from that LCM cycle to the next LCM cycle.

• Move: At the end of the LCM cycle, ri changes its light to the new color and moves to its new
position.

Robot Activation and Synchronization In the fully synchronous setting (FSYNC), every
robot is active in every LCM cycle. In the semi-synchronous setting (SSYNC), at least one robot
is active, and over an infinite number of LCM cycles, every robot is active infinitely often. The
activations are decided by an (indeterministic) adversary which applies also to the asynchronous
model. In the asynchronous setting (ASYNC), there is no common notion of time and no assumption
is made on the number and frequency of LCM cycles in which a robot can be active. The only
guarantee is that every robot is active infinitely often. We assume that the moves of the robots
are rigid – during the Move phase the robots move in a straight line and they stop their movement
only after they reach to the destination point computed in the Compute phase. We assume that the
faulty robot can crash (behave in a Byzantine manner) at any moment of time. That means, the
robot may crash (become Byzantine) at any time during the LCM cycle. After the robot crashes, it
does not become active again (i.e., stays stationary indefinitely). Moreover, after the robot crashes,
its color remains as the color that it had at the time of crashing. However, after the robot becomes
Byzantine, it might behave in arbitrary and unforeseeable way, which includes assuming any color
it wants from the color set and move (or not move) wherever it wants.

c1c0

c2

c3

c4

s1

s2

s3

s4

s5

s6

interior of hull

Convex Hull For any set of N ≥ 3 robots in Q, a convex hull (or poly-
gon) may be visualized as the shape enclosed by a rubber band stretched
around Q so that all the robots of Q are either in the perimeter of
the shape or in the interior of it. It can be represented as a sequence
P = (c0, c1, · · · , cm−1, c0) of corner points (or robots) in a plane that enu-
merates the polygon corners in clockwise order starting and ending at
the same corner, where m is the number of corners in P. Figure on the
right shows a 5-corner convex hull (c0, c1, c2, c3, c4, c0). A point s on the
plane is a side point of P if and only if there exists 0 ≤ i < m such that
ci, s, c(i+1)(mod m) are collinear. Figure on the right shows six side points
s1–s6. A side S = (ci, s1, s2, · · · , sm, ci+1) is a sequence of collinear points whose beginning and
end are adjacent corner points and whose remaining points are side points. We say that the area
enclosed by P the interior of the hull (except the boundary points), the rest is exterior. For any pair
of points a, b, we denote the line segment connecting them by ab and the length of ab by length(ab).

Configuration and Local Convex Hull A configuration Ct = {(rt0, colt0), . . . , (rtN−1, col
t
N−1)}

defines the positions of the robots in Q and their colors for any time t ≥ 0. A configuration for an
robot ri ∈ Q, Ct(ri), defines the positions of the robots in Q that are visible to ri (including ri)
and their colors, i.e., Ct(ri) ⊆ Ct, at time t. The convex hull formed by Ct(ri), Pt(ri), is local to ri
since Pt(ri) depends only on the points that are visible to ri at time t. For simplicity, we sometime
write C,P,C(ri),P(ri) to denote Ct,Pt,Ct(ri),Pt(ri), respectively.

36

International Journal of Networking and Computing

Algorithm 1: Complete Visibility algorithm for any robot ri ∈ Q
1 // Look-Compute-Move cycle for each robot ri ∈ Q
2 C(ri)← configuration C for robot ri (including ri);
3 P(ri)← convex hull of the robots in C(ri);
4 if |C(ri)| = 2 then
5 rj ← the robot in C(ri)\{ri};
6 if ri.x < rj .x then
7 move perpendicular to (the line segment) P(ri) in clockwise direction by distance

δ > 0;
8 else if ri.x > rj .x then
9 move perpendicular to (the line segment) P(ri) in counterclockwise direction by

distance δ > 0;
10 else if ri.y < rj .y then
11 move perpendicular to (the line segment) P(ri) in clockwise direction by distance

δ > 0;
12 else if ri.y > rj .y then
13 move perpendicular to (the line segment) P(ri) in counterclockwise direction by

distance δ > 0;
14 else
15 if ri is a corner of P then
16 Corner(ri,C(ri),P(ri));

c0
c1

c2

c3

c4

P

x2

x3 (or y2)

y3

CLS3

TLS3

TR()c3

r

Corner Triangle, Corner Line Segment, and Triangle Line Seg-
ment Let ci be a corner of P. Let ni−1 and ni+1 be the neighbors of
ci in P (either corners or sides). Indeed, the neighbors ni−1 and/or ni+1

may not necessarily be the corners ci−1 and/or ci+1 of P, respectively,
when there are side robots on cici−1 and/or cici+1. If there are no side
robots on cici−1 and cici+1, then ni−1 is ci−1 and ni+1 is ci+1. In the side
robots case, we take the neighboring robots of ci that are closest to ci in
the boundary of P as ni−1 and ni+1. Let xi, yi be the points in lines cini−1
and cini+1 at distance length(cini−1)/2 and length(cini+1)/2, respectively,
from ci. We say that line segment xiyi is the triangle line segment for ci,
denoted as TLSi. We say that the triangular area of P divided by TLSi
towards ci is the corner triangle for ci, denoted as TR(ci). Let r be any
robot inside TR(ci) and CLSi be the line segment parallel to TLSi passing through r. We say that
CLSi is the corner line segment for ci if there is no other robot inside TR(ci) divided by CLSi
towards ci. Figure on the right shows TR(c3), TLS3, CLS3 for corner c3 of P.

c0

P(r’ c0)

a

b

Lr’

Closest robot to a corner Let ci be a corner robot of P(ci) and a, b
be its left and right neighbors in the boundary of P(ci). Let r′ be an robot
of P(ci)\{a, b, ci} and Lr′ be a line parallel to line segment ab passing
through r′. Robot r′ is said to be closest robot to ci if there is no other
robot in P(ci) divided by line Lr′ towards ci. If there are other robots on
Lr′ , then we take as closest robot to ci the robot on Lr′ that is closer to b
(note that b is the right neighbor of ci in P(ci)). Figure on the right shows
the closest robot r′ to the corner c0 in P(c0).

4 Algorithm Tolerating a Single Fault

In this section, we present our Complete Visibility algorithm for N ≥ 3 robots with lights
tolerating a crash-faulty robot, starting from any arbitrary initial configuration with robots being

37

Complete Visibility for Mobile Robots with Lights Tolerating Faults

in the distinct positions in a plane. We first provide a high level overview and then give its details.

4.1 High Level Overview of the Algorithm

The idea is to make robots progress toward converging to a configuration where all the robots (except
at most one) are in the corners of a convex hull P. When all the robots in Q are on the corners of
P, the property of a convex hull naturally solve the Complete Visibility problem. All previous
algorithms for Complete Visibility [11–13, 16, 18, 20–22] also arrange robots on the corners of
a convex hull. Although convex hull is not the required condition to solve Complete Visibility
(i.e., it is a sufficient condition), the correctness analysis becomes easier for convex hull [11, 16]. It is
largely an open question to deterministically solve Complete Visibility without arranging robots
on the corners of a convex hull and recently an attempt has been made in [3].

We differentiate initial configurations C0 into two categories as follows:

(i) all robots in Q are collinear (in a line) and

(ii) not all robots in Q are collinear.

If the category (i) is satisfied for C0, we ask the endpoint robots in the line configuration to move
small distance perpendicular to the line, which ensures that the resulting configuration will be of
category (ii). When the robots of Q satisfy category (ii), there is a convex polygon P (with at least
three corners) so that all the robots in Q are on the corners, sides, and in the interior of P. We ask
the robots in the corners of P to move inward to shrink the hull (the side and interior robots of P
do nothing until they become corners of P). Due to the shrinking, the robots that were in sides and
in the interior of P start becoming new corners of P. This process repeats until either there is no
robot in the interior of P or there is exactly one robot in the interior of P.

In the former case, we are done. In the latter case, we ask the corner robots and the only one
interior robot to detect the situation and terminate their computation making an appropriate move
so that the Complete Visibility problem is solved. The guarantee we provide is that when the
robots terminate, the Complete Visibility problem is indeed solved for all non-faulty robots (even
when the faulty robot is in the interior of P). The synchronization between robots to reach such
configuration is provided by the colors they can assume during the execution of the algorithm. In
particular, in the initial configuration C0 (at time t = 0), all robots in Q have color Off and are
stationary. But, in the Complete Visibility configuration, say Cmv, all non-faulty robots have
color Green and the faulty robot has color ∈ {Green, Red, Off}. Since there is a single faulty robot,
at most one robot in P can have color Red or Off when all the robots in Q terminate. The color Red
is assumed by robots during the computation until Complete Visibility is reached. Therefore,
the algorithm uses three colors Green, Red, and Off. Moreover, note that the robots do not know
N and their termination decision is solely based on the colors of the other robots that they see in
their view C(∗).

4.2 Details of the Algorithm

The pseudocode of the algorithm is given in Algorithms 1–3. Initially in C0, the lights of all robots are
set to color Off and the robots are stationary. We first discuss how any initial collinear configuration
C0 is transformed to a non-collinear (polygonal) configuration with at least three corners. We will
then discuss how robots reach to a Complete Visibility configuration Cmv and then how they
terminate their computation.

4.2.1 Transforming a collinear C0 to a Non-collinear C0

When C0 is collinear, any robot ri ∈ Q sees at least one (if an endpoint robot) and at most two
other robots (if not an endpoint robot) in C(ri). Let c1, . . . , cN be the robots in the line segment
convex hull P formed from C0 with c1, cN be its endpoints. Robots c1 and cN see one other
robot in C(c1) and C(cN) and they move to make C0 non-collinear (we discuss later our selection
of moving the endpoint robots c1, cN , not the non-endpoint robots c2, . . . , cN−1). The remaining

38

International Journal of Networking and Computing

c3

P(

rj

c3)

b

a
TLS3 z m

CLS3

c3

P(

rj

c3)

b

a
TLS3

m

c3

P(

rj

c3)

b

a
TLS3 z m

CLS3

c3

P(

rj

c3)

b

a
TLS3

m

c3

P(

rj

c3)

a
TLS3

m

c3

P(

rin

c3)

b

a

rmax

rk

W

γ

γ/6

r’

H
c0

P(
rin

c3)

b

a rmax

W
γ

γ/6r’

H

rk

Figure 1: An illustration of how a corner of P moves when it (left) sees (at least) two robots with
color “Off” and there are robots inside its TR(∗), (middle) sees (at least) two “Off” robots but no
robot is inside TR(∗), and (right) sees one “Off” robot which is its neighbor in P.

robots c2, . . . , cN−1 (that see two other robots in their C(∗)) do nothing. Let c2, cN−1 be the only
other robot in C(c1),C(cN), respectively.

(a)

c1

c2

cN

cN-1

(b)

c1

c2

cN

cN-1

We now describe how c1 moves (the case for cN is analogous). If
c1.x < c2.x (the x-coordinates), then c1 moves perpendicular to c1c2 in
clockwise direction by a small distance δ > 0 (keeping its color Off).
In this case, c1 is the leftmost endpoint in the line segment hull P. If
c1.x > c2.x, then c1 moves perpendicular to c1c2 in counterclockwise
direction by a small distance δ > 0 (keeping its color Off). In this case,
c1 is the rightmost endpoint in the line segment hull P. If c1.x = c2.x,
then c1 recognizes that the line segment P is vertical. In this case, c1
compares its y-coordinate with the y-coordinate of c2. If c1.y < c2.y,
c1 is the lowermost endpoint of the line segment P. Robot c1 moves
perpendicular to c1c2 in clockwise direction by a small distance δ > 0
(keeping its color Off). Otherwise, c1 moves perpendicular to c1c2 in
counterclockwise direction by a small distance δ > 0 (keeping its color Off). Figure on the right
illustrates these ideas. This transformation finishes when at least one of c1, cN moves one time. We
will prove in Lemma 5.1 that this technique indeed transforms any collinear C0 to non-collinear C0

in our SSYNC setting.
We now argue our selection of moving the endpoint robots (not the non-endpoint robots) to

transform collinear C0 to a non-collinear C0. Consider the case of N = 3 with all three robots
c1, c2, c3 collinear in a line L with c2 between c1 and c3. If c2 becomes crash faulty when it becomes
active for the first time, it may never move away from L and Complete Visibility is never achieved.

4.2.2 Reaching Complete Visibility Configuration from a Non-Collinear C0

We now describe in detail how to reach a Complete Visibility configuration Cmv starting from
a non-collinear initial configuration C0.

Let Qc,Qs,Qi be the set of corners, sides, and interior robots of P. Note that each of these sets
are disjoint from each other, i.e., if a robot ri ∈ Qi, then ri /∈ Qs and ri /∈ Qc. A robot rc ∈ Qc,
after its first activation, assumes color Red (without moving). The colors of the robots in Qs and
Qi (the side and interior robots of P) remain Off until they become corners of P. Since there is a
faulty robot, the color of at most one robot in Qc (the corners of P) may also be Off.

Our idea is to shrink the convex hull P by moving the corners in Qc to the interior of P in such
a way that they remain as corners of P and within finite time at least one side or one interior robot
of P becomes a new corner of P. Notice that interior and side robots in Qi and Qs do not move
(until they become corners of P).

We now describe how the corner robots in Qc move. Let rc ∈ Qc be a corner of P. Let a, b be
its counterclockwise and clockwise neighbors in the boundary of P. Robot rc, after colored Red,
considers two different scenarios and moves accordingly as described below.

39

Complete Visibility for Mobile Robots with Lights Tolerating Faults

Algorithm 2: Corner(ri,C(ri),P(ri))

1 if ri.light = Off then ri.light← Red;
2 else if ri.light = Red and ∀rj ∈ C(ri)\{ri}, rj .light ∈ {Red, Green} then ri.light = Green;
3 else if ∀rj ∈ C(ri), rj .light = Green then Terminate;
4 else if ∀rj ∈ C(ri)\{ri}, rj .light = Green and ri is in the interior of P(ri) with light Off

then Terminate;
5 else if ∀rj ∈ C(ri)\{ri, rk}, rj .light =Green and rk.light = Red and ri is in the interior of

P(ri) with light Off then Terminate;
6 else if ∀rj ∈ C(ri)\{ri, rk}, rj .light =Green and ri.light ∈ {Red, Green} and rk is in the

interior of P(ri) with light Off then Terminate;
7 else if ∀rj ∈ C(ri)\{ri}, rj .light = Green and ri is a corner of P(ri) with light ∈ {Red, Off}

then Terminate;
8 else if ∀rj ∈ C(ri)\{ri, rk}, rj .light = Green and ri.light = Green and rk is a corner of P(ri)

with light ∈ {Red, Off} then Terminate;
9 else

10 a← counterclockwise neighbor on the boundary of P(ri);
11 b← clockwise neighbor on the boundary of P(ri);
12 x← midpoint of the line segment ria;

13 y ← midpoint of the line segment rib;
14 if there exists more than one robot in C(ri)\{ri} with light Off then
15 if ri.light = Green then ri.light← Red;
16 rj ← robot in C(ri) with light Off that is the closest to ri (if more than one on CLSi,

pick one closer to b);
17 if rj is not inside triangle ∆rixy then
18 move to the midpoint of TLSi;
19 else

20 z ← intersection point of CLSi and rib;
21 move to the midpoint of the line segment rjz;
22 else if there exists only one robot rj ∈ C(ri)\{ri} with light Off and rj is not a and not b

then
23 rin ← rj ;
24 rmax ← the robot in C(ri) with maximum x-coordinate; (if more than one satisfies

this criteria, choose as rmax the robot with maximum y-coordinate)
25 if ri == rmax then rmax ← the closest robot to ri in C(ri) w.r.t. to x-coordinate; (if

more than one satisfies this criteria, choose as rmax the robot with maximum
y-coordinate)

26 if rinri is in counterclockwise direction from rinrmax then
27 rk ← the first robot in the counterclockwise direction of ririn in the opposite side

of ri ;
28 W ← the intersection of the line rkrin with P(ri);
29 if ∠ririnW ≤ ∠ririna then Destination(ri, rin, rmax,W);
30 else Destination(ri, rin, rmax, a);
31 if rinri is in clockwise direction from rinrmax then
32 rk ← the first robot in the clockwise direction of ririn in the opposite side of ri;
33 W ← the intersection of the line rkrin with P(ri);
34 if ∠ririnW ≤ ∠ririnb then Destination(ri, rin, rmax,W);
35 else Destination(ri, rin, rmax, b);
36 else if there exists only one robot rj ∈ C(ri)\{ri} with light Off and rj is either a or b

then
37 move to the midpoint of TLSi and set ri.light← Green;

40

International Journal of Networking and Computing

• Robot rc sees at least two robots with color Off: Robot rc finds the closest robot among
the Off colored robots it sees in C(ri). Let rj be that robot. If rj is inside the corner triangle
TR(rc), it finds the intersection point z of the corner line segment CLSc and rcb and moves to
the midpoint m of the line segment rjz that connects rj with point z (point z is on segment
rcb). The left of Fig. 1 illustrates this move for a corner c3 of P. If rj is not inside TR(rc), it
moves to the midpoint m of the triangle line segment TLSc. The middle of Fig. 1 illustrates
this move for a corner c3 of P. In both the moves, rc keeps its color Red.

• Robot rc sees one robot with color Off: Let rj be the robot with color Off that rc sees
in C(rc). Robot rc considers the following two sub-cases.

– Robot rj is either a or b: Robot rc moves to the midpoint m of the triangle line
segment TLSc and assumes color Green. The right of Fig. 1 illustrates this move for a
corner c3 of P.

– Robot rj is not a and not b: This is the most involved case. In this case, rj may be
in the interior of P or on a side of P (which is different than the sides rca and rcb of P).
If rj is a side robot then the neighbor corners of rj will do the move as in the previous
sub-case to make rj a corner. The other remaining corner robots of P (including rc) will
treat rj as an interior robot of P and make the move as described below.

For clarity of discussion, let rj be denoted as rin (to indicate the it is an interior robot
of P in view of rc). We describe the move for corner rc (the move for other corners of P
is analogous). Let rmax be the robot in C(rc) with maximum x-coordinate. If rc itself is
rmax, then rc takes as rmax the robot in C(rc)\{rc} with maximum x-coordinate (denote
this robot as r′max). If more than one robot satisfies this criteria, then rc takes as rmax the
robot with maximum y-coordinate. Notice that r′max is a neighbor of rmax in P because
rmax is the maximum x-coordinate robot and r′max must be at least the second largest
x-coordinate robot. Let rcrin and rinrmax be the line segments that connect robots rc
and rmax with robot rin.

We first define one notion that we will heavily use. Extend the line segment rcrin from
the endpoint rin so that it intersects the perimeter of P. Denote the point of intersection
by H (see the left of Fig. 2 taking c0 as rc). We say that point H is in the opposite
side of rc. Therefore, when we say counterclockwise (or clockwise) direction of rcrin in
the opposite side of rc, then we mean the neighbor robot of H in the perimeter of P in
counterclockwise (or clockwise) direction from H.

If rc is in the counterclockwise direction from rmax (the angle ∠rcrinrmax < 180◦), let
rk be the first robot in the counterclockwise direction of rcrin in the opposite side of rc.
Connect rk with rin and extend towards rc. Let W be the intersection point of line −−−→rkrin
in the boundary of P. W may be the point on rca or on some other edge of P. If W is
not on rca, rc takes point a as W , and moves to a point r′ in rcW assuming color Green.
The left of Fig. 2 illustrates this move for a corner c0 of P. Note that point r′ where c0
moves is in the counterclockwise direction of c0 (and rmax). We will describe later how
the point r′ is computed (the pseudocode of this technique is in Algorithm 3).

If rc is in the clockwise direction from rmax, then rk is the first robot in the clockwise
direction of rcrin in the opposite side of rc. Then, W is either point b (if the line −−−→rkrin
intersects the boundary of P not at side rcb) or the point at rcb where the line −−−→rkrin
intersects rcb. Robot rc then moves to a point r′ in rcb assuming color Green. The right
of Fig. 2 illustrates this move for a corner c3 of P. Note that the point r′ where c3 moves
is in the clockwise direction from c3 (and rmax).

We now describe how the point r′ is computed. The pseudocode is in Algorithm 3. Let γ be the
angle rc forms with robot rin and point W . If rc is in the counterclockwise direction of rmax, then
W is either the counterclockwise neighbor corner a of rc in the boundary of P or some point in the
side rca. However, if rc is in the clockwise direction of rmax, then W is either the clockwise neighbor
corner b of rc in the boundary of P or some point in the side rcb. Let L be the line that passes

41

Complete Visibility for Mobile Robots with Lights Tolerating Faults

c3

P(

rj

c3)

a
TLS3

m

c3

P(

rin

c3)

b

a

rmax

rk

W

γ

γ/6

r’

H
c0

P(
rin

c3)

b

a rmax

W
γ

γ/6r’

H

rk

c3

P(

rj

c3)

a
TLS3

m

c3

P(

rin

c3)

b

a

rmax

rk

W

γ

γ/6

r’

H
c0

P(
rin

c3)

b

a rmax

W
γ

γ/6r’

H

rk

Figure 2: An illustration of how a corner moves when its sees only one “Off” robot that is not its
neighbor in P: (left) when the corner is in the counterclockwise direction of rmax and (right) when
the corner is in the clockwise direction of rmax.

c0

P(
rin

c3)

b

a rmax

W γ’/2

γ/2r’

H

rk

r’’

Figure 3: An illustration of a possible collinear configuration when choosing angle γ/2.

through rin and intersects line rcW making an angle γ/6 with rcrin. The point r′ is the intersection
point of L and rcW . Fig. 2 illustrates these ideas.

The main idea behind choosing γ/6 (say not γ/2) is the following. The idea is illustrated in
Fig. 3. Let rc (c0 in Fig. 3) be in the counterclockwise direction of rmax and γ be the angle rc forms
with the interior robot rin and point W . Let γ′ be the angle in the opposite side of rc that the first
robot rk in the counterclockwise direction of Hrin makes with lines rcrin and −−−→rkrin. In Fig. 3, rk
also happened to be rmax. Suppose γ and γ′ are equal and so does the sides rcW and rkH. In a
symmetric configuration, if we choose angles γ/2 and γ′/2 (instead of γ/6 and γ′/6 as discussed in
the previous paragraph), then rc and rk might move to point r′ on rcW and r′′ on rkH, respectively,
so that they would be collinear again with the interior robot rin. Our selection of angles γ/6 and
γ′/6 avoids this collinear situation.

There might be scenarios where after rc assumes color Green, it sees two or more robots with
color Off. This happens in scenarios where all the interior robots are collinear in a line and only one
robot on that line is visible to rc (before rc moves). In this case, rc changes its color back to Red

and continue its convex hull shrinking process by moving inward in P keeping its color Red until it
again sees exactly one robot with light Off. We then provide the guarantee that if rc does not see
two or more robots with color Off after changing its color to Green from Red, then there must not
be more than one robot with color Off in the system. This plays a crucial role in the termination
guarantee of the algorithm described in the next subsection.

4.2.3 Termination of the Algorithm

We now describe when robots terminate their computation solving Complete Visibility. Each
robot ri ∈ Q terminates as soon as one of the following conditions holds for it.

42

International Journal of Networking and Computing

Algorithm 3: Destination(ri, rin, rmax, q)

1 α← angle ∠ririnrmax;
2 β ← angle ∠qrinrmax;
3 γ = (β − α) with sides ririn and qrin;
4 L← line that makes angle γ/6 with side ririn towards q;
5 r′ ← the intersection point of L and riq;
6 move to point r′;
7 ri.light← Green;

• All the robots in C(ri) are colored Green. That is, when ri sees all the robots in C(ri) have
color Green, then all the robots in Q must be in the corners of a hull P. This is because,
the robots in the sides and interior of P never assume color Red or Green until they become
corners of P.

• Robot ri is in the interior of P(ri) (with light Off) and all the other robots in C(ri) are colored
Green. This condition guarantees that ri is the only robot in the interior of P. This is because,
otherwise ri would have seen at least one other robot in C(ri) colored ∈ {Red, Off}.

• Robot ri is in the interior of P(ri) (with light Off) and all the other robots in C(ri) are colored
∈ {Green, Red}. This condition guarantees that ri is the only robot in the interior of P. This
is because, otherwise ri would have seen at least one other robot in C(ri) colored Off. This
also extends to the case where ri has light ∈ {Green, Red} and some other robot is in the
interior of P(ri) with color Off.

• Robot ri is on a corner of P(ri) (with light ∈ {Red, Off}) and all the other robots in C(ri)
are colored Green. This condition guarantees that there is no robot in the interior of P. This
is because, otherwise, there must be at least one other robot in C(ri) colored Off. This also
extends to the case where ri has light Green but some other robot in a corner of P(ri) has
light ∈ {Red, Off}.

Observe that throughout the algorithm we used three colors Off, Red, and Green for the robots
in Q.

5 Analysis of the Single Fault Algorithm

In this section, we analyze the correctness of the algorithm. Particularly, we show that the algorithm
solves Complete Visibility starting from any initial configuration C0 with all robots in Q being
in the distinct positions in the plane (and at most one robot is crash-faulty). We further show
that the algorithm terminates in finite time and the execution is collision-free. We start with the
following lemma which shows that if the initial configuration C0 is a line, it correctly transforms to
a non-collinear configuration C0.

Lemma 5.1 When at least one robot in the endpoint of the collinear C0 moves once and N ≥ 3,
there exists a hull P (with at least three corners) such that all robots in Q are on the corners and
sides of P with color Off.

Proof. Let c1, c2, . . . , cN−1, cN be the collinear robots of C0 in a line c1cN with c1, cN be its
endpoints and c2, cN−1 be the neighbors of c1, cN in c1cN , respectively. Let c1 be the leftmost (or
the bottommost robot if c1cN is a vertical line) on c1cN . Since there is a faulty robot, at least one
of the endpoint robots c1, cN in the collinear C0 can move even if the faulty robot is either c1 or cN .
Since c1 (and/or cN) moves perpendicular to the collinear C0, there must be at least three corners
since ∠c1c2cN < 180◦ after c1 moves once. If both c1, cN move then P has 4 corners when N ≥ 4 as
they move in the same side of the collinear C0 (c1 moves in the clockwise direction and cN moves
in the counterclockwise direction). For N = 3, P is still a triangle since again both c1, cN move in

43

Complete Visibility for Mobile Robots with Lights Tolerating Faults

the same side of collinear C0. It is easy to see that when c1 moves once, c2 becomes a corner and
the other robots c3, . . . , cN−1 remain as side robots in c2cN if cN has not moved. If cN has moved,
cN−1 also becomes a corner and all other robots c3, . . . , cN−2 remain as side robots in c2cN−1. All
the robots have light Off since they do not change color when they move in the collinear case. ut

We now prove the following lemma which shows that the execution of the algorithm is collision-
free. Particularly, we show that the paths the robots follow do not intersect and no two robots move
to the same position during the execution of the algorithm.

Lemma 5.2 The execution of the algorithm is collision-free.

Proof. We first show that the paths of robots do not cross each other throughout the execution of
the algorithm. When all the robots are collinear, only at most two endpoint robots move perpen-
dicular to the line segment hull, which immediately shows that the paths of two robots do not cross.
Starting from any non-collinear configuration C0, observe that only the corner robots in the set Qc
move during the execution of the algorithm (and the robots in Qs and Qi do not move). When a
corner ci ∈ Qc moves, it makes two kind of moves:

(i) moving to the positions of TLSi or CLSi, or

(ii) moving to the point r′ in the side cia or cib of P (Fig. 2), where a, b are the counterclockwise
and clockwise neighbors of ci in the boundary of P.

We first show that the paths of corner robots of P do not cross when they move to the positions
of TLS∗ or CLS∗ (Case (i)). When a corner ci ∈ Qc moves, it moves somewhere in the line TLSi (or
CLSi) in the triangular area TR(ci) and TR(ci) does not overlap with the triangular area TR(cj)
of any other corner cj ∈ Qc. Therefore, paths of any two robots do not cross.

We now show that the path of ci does not cross with the path of any other corner cj when ci
moves to the point r′ in cia or cib of P (Case (ii)). Note that ci makes its move to r′ when it sees
(exactly) one robot r with color Off and r is not a and not b. At this case, the neighbor corners of
ci either move to their TLS∗ (or CLS∗) or to their point r′. In this former case, r′ is not inside the
corner triangle TR(∗) of the neighbors of ci. In the latter case, the position r′ that ci and r′′ that
ci’s neighbor cj move are on cicj (even if they move toward each other) such that r′ is closer to ci
than cj and r′′ is closer to cj than ci (so that it never be the case that point ci is also the point cj
and vice-versa).

We now show that the robots do not share positions throughout the execution of the algorithm.
In the initial configuration C0, they do not share positions since they are already in distinct positions
due to our assumption on any initial configuration C0. After that, if a corner robot ci moves on
TLSi, it does not share position with any other robot since there is no robot on TLSi and inside
the corner triangle TR(ri). If a corner robot ci moves on CLSi, it does not share position with any
other robot on CLSi (in this case there is at least one robot on CLSi) because ci takes the closer
robot r to b on CLSi and moves to the midpoint of rz, where z is the intersection point of CLSi on
side cib connecting ci with its clockwise neighbor b in P. The robots ci, cj moving on the sides of P
do not share positions since their destination points are never the same point and those destination
points are closer to them than the other robots. ut

We now show that corner robots of P remain as corners throughout the execution of the algorithm
and the corners of P monotonically increase which is essential to guarantee progress towards a
Complete Visibility configuration Cmv.

Lemma 5.3 No corner robot becomes internal or side robot of P throughout the execution of the
algorithm. Moreover, the corner robots of P monotonically increase.

Proof. We first show that no corner of P becomes internal or side robot of P throughout the
execution of the algorithm. Let ci be a corner robot of P and a, b be its counterclockwise and
clockwise neighbors in the boundary of P. Robot ci either (i) moves toward the interior of P to
a position itself in either the triangle line segment TLSi (or the corner line segment CLSi) or (ii)

44

International Journal of Networking and Computing

moves to a position in edge cia or cib in the boundary of P. Notice that both TLSi and CLSi are
inside triangular area ∆acib. Furthermore, both TLSi and CLSi are parallel to ab (and also parallel
to each other).

We first show that ci does not become internal or side robot in the former case (Case (i)). We
have that before ci moves to TLSi or CLSi, ∠acib < 180◦. In other words, all the robots in Q are
in the region divided by lines cia and cib making angle < 180◦ at ci. Let xi be the position of ri on
TLSi or CLSi after it moves. We will show that either angle ∠crid < 180◦ from the new position
xi of ri, where c, d are either a, b, respectively, or some other internal robots in ∆acib that become
corners of P due to the move of ci. Suppose first that a, b are still the neighbors of ci. Since TLSi
(and CLSi) is inside ∆acib, the angle ∠acib < 180◦ as robot ci becomes a side robot of P if and
only if it moves to a position on ab. If a and/or b is not ci’s neighbor after it moves to xi, then either
there is another robot on CLSi or there is an robot inside ∆acib between lines TLSi and ab. In the
case of some another robot r′ on CLSi, since ci moves to a position xi on CLSi such that xi is closer
to b (the right neighbor of ci) than r′ (and any other robot in CLSi), ci still has ∠r′cib < 180◦. This
is because CLSi is parallel to ab and hence b, ci, r

′ can not be collinear. In the case of some robot
r′′ inside ∆acib between lines TLSi and ab, if a and/or b is not the neighbor of ci after it moved to
xi, then r′′ becomes a neighbor of ci and since r′′ is between TLSi and ab, ∠acir′′ < 180◦ (if r′′ is
the new neighbor of ci instead of b) and ∠r′cib < 180◦ (if r′′ is the new neighbor of ci instead of a).

We now show that ci does not become internal or side robot in the latter case (Case (ii)). In
Case (ii), ci moves to a position on either cia or cib. Note that when ci moves on cia or cib at r′,
there is no robot inside triangle ∆acib. Therefore, ∠acib < 180◦ from its new position r since r is
not the point on ab.

We now show that the corner robots of P monotonically increase. This follows analogously to the
proof of monotonic increase of the corners of P provided by Di Luna et al. [13] for their algorithm.
This is because, similar to the algorithm of Di Luna et al. [13], the corners of P always move toward
the interior of P to shrink the hull in our algorithm until there is at most one robot in the interior
of P. Due to being a faulty robot, there is a situation in which a corner ri may see only one robot
in the interior of P even when there are many robots in the interior of P. This is the case of all
interior robots in the line ririn, where rin is the interior robot of P that is visible to ri. In this case,
the move of ri in the perimeter of P assuming color Green breaks the collinearity so that ri sees all
the robots that were blocked by rin previously. The lemma follows. ut

We will prove in Theorem 1.1 that, after the execution of the algorithm, either all the robots in
Q are positioned on the corners of a hull P or there is a single robot rin in the interior of P. We
start with a proof that the interior robot rin is not collinear with any two corners of P. This is
needed to guarantee that Complete Visibility is solved for all (at least N − 1) non-faulty robots.

Lemma 5.4 If there exists a robot rin in the interior of P after the robots in the boundary of P
terminate, then rin is not collinear in all the lines joining any two corners of P.

Proof. Let ri be a corner in P and let rin be the only robot in the interior of P. Robot rin can
determine if it is the only interior robot in P when all other robots it sees in C(ri) have color ∈ {Red,
Green}. robot ri can determine rin is the only interior robot in P if it sees all other robots have
color Green or Red. In some cases, this might not be true due to many collinear interior robots in
P. We will show in the proof of Theorem 1.1 that this does not hamper the algorithm.

Extend the line ririn to the opposite of ri. Line ririn intersects the boundary of P at point H.
H can be a point on a side of P joining two consecutive corners or a corner point in P. If H is a
point on a side, it is immediate that rin does not block any robot from the view of ri (since rin is
the only robot in the interior of P). However, since ri does not see H, ri cannot decide whether
there is an robot on point H or not. Therefore, ri always assumes that H is a corner point of P
with a corner robot positioned on it. We have that ∠ririnH = 180◦ (Fig. 2 illustrates this idea).

Let rmax 6= ri be the robot in C(ri) with maximum x-axis. We will consider the case of ri itself
as rmax later. Suppose ri is in the counterclockwise direction from the line segment rinrmax. (We
have the notion of counterclockwise and clockwise directions for ri based on the angle ∠ririnrmax;
if ∠ririnrmax < 180◦ in the counterclockwise direction of rinrmax then we will say that ri is in the

45

Complete Visibility for Mobile Robots with Lights Tolerating Faults

counterclockwise direction of rmax. Otherwise, we will say that ri is in the clockwise direction of
rmax.)

Let α = ∠ririnrmax and θ = ∠Hrinrmax. We have that both α, θ < 180◦ and α+ θ = 180◦. We
will show that after ri and/or H (we assume that there is a robot positioned on point H) moves,
the new angles they make with rmax (assuming that rmax is stationary) is such that α′ ≥ α, θ′ ≥ θ,
and α′ + θ′ > 180◦. This guarantees that both H and ri are not collinear with rin anymore.

Let a be the counterclockwise neighbor of ri and rk be the counterclockwise neighbor of (the
hidden robot) H in the boundary of P. Observe that a is a corner of P with color ∈ {Red, Green}.
Let W be the intersection point of −−−→rkrin in the boundary of P towards ri. If W is a point on edge
ria, then γ = ∠ririnW , otherwise γ = ∠ririna. Fig. 2 illustrates this construction.

We have the following three scenarios due to the SSYNC setting:

(i) only ri (or H) moves in a round,

(ii) both ri, H move in a round, and

(iii) rmax moves after ri (or H) moves and then H (or ri) moves.

We first consider Case (i). Let r′ be the point on ria so that ∠ririnr′ = γ
6 . Since ri moves to

r′ and H, rmax, rin are stationary ∠r′rinrmax = α + γ
6 > α. Since θ′ = θ (as H does not move),

α′ + θ′ > 180◦ and hence rin is not collinear with ri and H anymore.
We now consider Case (ii). We have from Case (i) that α′ > α. Let b′ be the clockwise neighbor

of H. The point W ′ be the intersection point of
−−−→
r′krin in the boundary of P towards H, where

r′k is the clockwise neighbor of ri in the boundary of P. Since H moves to point r′′ on Hb′,
∠r′′rinrmax = θ + γ

6 > θ, where γ = ∠Hrinr′′. Therefore, α′ + θ′ > 180◦ and hence ri and H are
not collinear with rin anymore.

Consider now Case (iii). Let ri moved at round t, rmax moved at round t′, and H moved at
round t′′. We consider the case t < t′ < t′′; if any two robots among ri, rmax, and H move at
some round t = t′, we can argue the correctness using Case (ii). The case of H moving first, rmax
second, and then ri is analogous. Since ri moved first, we have that α′ > α. It remains to show that
α′ + β′ > 180◦. Let r′max be the new position of rmax after it is moved at round t′. Since H is not
rmax, H is on the same side of line rirmax joining rmax with ri. Therefore, H again moves in the
clockwise direction. Since H and b′ are not the same point, we have that θ′ > θ. Therefore, ri and
H are not collinear with rin anymore.

We now consider the case of ri itself as rmax. In this situation, ri would consider as rmax the
closest robot to it w.r.t. the x-axis. Denote that robot as r′max. Note that the robot H that is
hidden in rinri would also choose as rmax the robot r′max. This is because ri (which is also rmax is
hidden from its view). This would ensure that ri moves in the counterclockwise direction from r′max
and H would move in the clockwise direction from r′max and α′ + θ′ > 180◦.

Finally, we consider the situation where some robots of P think one corner of P as rmax and
the remaining robots of P think another corner of P as rmax. Fig. 4 illustrates a situation in which
corners a (blocked by rin to see ri) and ri of P think corner d of P as rmax and the remaining corners
of P think ri as rmax. Observe that besides ri and a, no other corner of P thinks d as rmax; that
is, there are at most 2 robots of P that think d as rmax which is different from ri, the actual rmax.
Note that d is the robot in P that is closer to ri w.r.t. the x-axis. According to the algorithm, robot
ri would move to position r′′ in line riH and a would move to position r′ in line arj . There may
be the situation that rj (a neighbor of a in the counterclockwise of ri) move towards a to point r′j
in line arj . Even in this case, a and rj do not cross each other in arj and, therefore, α′ + θ′ > 180◦

for any two robots collinear with rin in riH. ut

We are now ready to prove the main result from the analysis of our algorithm, Theorem 1.1.

Proof of Theorem 1.1. We have from Lemma 5.1 that if the initial configuration C0 is a line,
then it correctly transforms to a non-collinear configuration C0, when at least an endpoint robot of
that line moves once. Moreover, all the robots in the non-collinear C0 have color Off.

46

International Journal of Networking and Computing

c0

P(rin c3)
a

ri (which also is rmax)

W

γ/6

r’

rj

r’’

r’max

γ’/6

Hrj’

d

Figure 4: An illustration of a configuration in which rmax for some robots (corners a, ri) is different
than the actual rmax (corner ri) in P.

Therefore, suppose P is a convex hull of the robots in Q with at least three corners and colors
of all the robots Off. Let Qc,Qs,Qi be the robots on the corners, sides, and in the interior of P,
respectively. We will show that, when all the robots in Q terminate, then either all the robots in the
sets Qs,Qi also become corners of P (i.e., |Qc| = N) or there is exactly one robot rin in the interior
of P which is not collinear with any two corners of P (i.e., |Qc| = N − 1 and |Qi| = 1). Finally, we
will show that the robots terminate in finite time avoiding collisions.

Initially, all robots in Q have color Off. The corners in the set Qc assume color Red (without
moving) when they become active for the first time. Let rc be a corner of P. After colored Red,
until rc sees at least 2 robots with light Off in C(rc), it moves toward the interior of P to shrink
P, keeping its color Red. Suppose rc sees, in some round, only one robot r with color Off. Robot r
might be on the side, corner, or in the interior of P. For all these cases, we prove by contradiction
that r will not be collinear with any two corners of P.

Consider first that r is a side robot of P. We have that r.light = Off. Suppose for the con-
tradiction that when all the robots of P terminate, r still remains as a side robot. Let a, b be the
counterclockwise and clockwise neighbors of rc on the boundary of P. If r is a or b for rc then rc
assumes color Green and moves toward the interior of P to shrink P. After rc moves once inward,
there are two cases: Either rc still sees only one robot with light Off or more than one robot with
light Off. If rc sees only one robot with light Off when it has color Green, it terminates. This is
because, due to the move of rc inward and r does not move, r must become the corner of P and r
is not collinear with any two robots of P anymore, a contradiction.

If rc sees more than one robot with color Off, it changes its color back to Red and continue until
it sees again only one robot with color Off. Robot rc then eventually sees only one robot with light
Off after it assumes color Green and the above argument guarantees that r becomes a corner of P
(and it is not collinear with any two corners of P). The corners of P except rc consider r as an
interior robot in P. We will show below when they move, r does not become collinear with any two
corners of P.

Consider now that r is a corner robot of P. If it is a or b, then arguing similarly as above, rc
knows that r is a corner of P. If r is not a and not b, rc considers r as an interior robot in P and
rc moves to a point r′ in rca or rcb and assumes color Green. We will show that after this r is not
collinear with any two corners of P.

We now consider r in the interior of P. We have from Lemma 5.4 that when rc and/or H (the
robot that is hidden from the view of rc since it is collinear with rc) moves, r is not collinear with
rc and H.

We now show that after r becomes non-collinear with rc and H, it does not become collinear
again. The argument is as follows. Note that before rc and/or H move, they have color Red. After
they move as in Lemma 5.4, they assume color Green. After assuming color Green, rc and H
terminate if they see again only one robot with color Off. Therefore, r does not become collinear
again.

47

Complete Visibility for Mobile Robots with Lights Tolerating Faults

We now show that after the robots terminate, the Complete Visibility problem is in fact
solved. If rc is a corner and sees all the robots with color Green, then all robots in Q are in the
corners of P. Since otherwise, there must be at least one robot with color Off. If rc is a corner with
light Off or Red, it sees all other robots with light Green. Robot rc can then terminate since it is
not collinear any other corner of P. If rc is in the interior of P and sees all other robots with color
Green, then there is no other robot in the interior of P and rc can simply terminate and Lemma
5.4 provides the guarantee that the Complete Visibility is solved. If rc sees all other robots with
light Green except one robot with light Red, then all the robots of Q (except rc) are in the corners
of P and Lemma 5.4 guarantees Complete Visibility. Due to the single faulty robot, only one
robot can have light other than Green throughout the execution of the algorithm.

We now show that the algorithm terminates in finite time. It is immediate that all the robots
in Q become active within finite time. The corners of P make a move inward or on the edge of P
every time they become active. We have from Lemma 5.3 that each corner rc of P remains as a
corner of P and there is no collision between any two robots of Q (Lemma 5.2). Moreover, we have
from Lemma 5.3 that the number of corners of P monotonically increase during the execution of the
algorithm. Furthermore, the execution of the algorithm guarantees that a corner ri of P can not
terminate until there are more than one robot in the interior of P. This is because, if ri sees exactly
one robot rin in the interior, it assumes color Green moving appropriately, which makes sure that ri
sees all the robots blocked by rin. Robot ri then moves inward changing color to Red until it again
sees at most one robot in the interior. Note that an interior robot can hide other robots only one
the line ririn and after ri moves it sees all of them. Therefore, since we have finite number of robots
in Q, the algorithm terminates in finite time. Moreover, only three colors Off, Red, and Green are
used by robots throughout the execution of the algorithm. �

6 Impossibility of Complete Visibility under Byzantine Faults

We studied so far the crash-fault model and provided an algorithm that solves Complete Visibility
tolerating a faulty robot in a system of N ≥ 3 robots using 3 colors in the semi-synchronous setting.
Note that in the crash-fault model, the faulty robot is allowed to stop its movement at any time
but after it becomes faulty it remains stationary thereafter. A natural question is to see whether
Complete Visibility can be solved if a robot is Byzantine faulty. Therefore, we consider here the
Byzantine fault model. Note that in the Byzantine fault model, after a robot becomes faulty, it might
behave in an unpredictable and unforeseeable way. That is, it may exhibit arbitrary behavior and
movements. We now prove that in the semi-synchronous setting, it is impossible for any algorithm
to achieve Complete Visibility in a system of N = 3 robots in the Byzantine fault model, when
one robot is Byzantine faulty (this extends also to the fully synchronous model which we describe
later). In particular, we prove the following theorem.

Theorem 6.1 Given N = 3 robots (with lights) being in the distinct positions in a plane, there
is no algorithm that solves Complete Visibility tolerating a Byzantine-faulty robot in the semi-
synchronous setting.

Proof. Suppose that there is an initial configuration Conf1 consisting of three robots r1, r2, and
r3 which are collinear and r1 and r3 are blocked from each other by r2. Consider the scenario where
both r1 and r3 are active at round t (r2 is not active at round t) and the Complete Visibility
algorithm instructs them to move in such away that they become visible by each other, resulting in
a configuration Conf2. Since there are only three robots, Conf2 must be a triangle with r1, r2, r3
being its corners. Suppose r2 is Byzantine faulty. At round t+ 1, assume that r1 and r3 are inactive
and r2 becomes active (r2 was inactive at round t). Since r2 is Byzantine faulty, suppose it moves
to a point on edge r1r3 of the triangle so that it again becomes collinear with r1 and r3, resulting
in a configuration equivalent to Conf1. Assume at round t + 2, both r1 and r3 become active and
the algorithm instructs them to move in such away that they again become visible to each other,
resulting in a configuration equivalent to Conf2. Since r2 is Byzantine faulty, the execution can
then alternate between configurations {Conf1 → Conf2 → Conf1 → Conf2 → . . .}. ut

48

International Journal of Networking and Computing

Remarks It is easy to see that Theorem 6.1 extends also to the fully synchronous setting. Starting
from Conf1, we can simulate the actions of r1, r2, r3 to act like the proof of Theorem 6.1 as follows.
At round t, even if r2 is active, it does not move giving configuration Conf2. At round t + 1,
r1, r3 do not move (although they are active) and r2 moves similarly as in Theorem 6.1 to provide
configuration Conf1. And, this can alternative forever.

7 Algorithm Tolerating Two Crash Faults

We now discuss how Complete Visibility can be solved in a system of N ≥ 3 robots when two
robots are crash-faulty, extending the techniques developed in Section 4. Note that our algorithm
for one crash-faulty robot (Section 4) might not be able to solve Complete Visibility, starting
from any arbitrary initial configuration C0, when two robots are crash-faulty. For an illustration,
consider a configuration where there are two crash-faulty robots u, v with some other robots on the
line segment uv (between u and v). Since u, v do not move, the robots that are not on line uv
(including u, v) eventually converge to uv as the robots between u and v on uv also can not move in
addition to u, v in our algorithm. Therefore, we consider a subset of arbitrary initial configurations
C0, which we call feasible initial configurations, Cfeasible, defined as follows.

Definition 1 Given a set of N ≥ 3 robots (with lights) being in the distinct positions in a plane,
the feasible initial configurations Cfeasible are all arbitrary initial configurations C0 where, for any
two robots u, v that become crash-faulty (at any time t ≥ 0), there is no third robot between u and v
in the line segment uv connecting u and v.

Before describing the algorithm, we provide a definition that we need in the algorithm. Let rc
be a corner of P. The eligible area for rc, denoted as EA(rc), is a polygonal subregion inside corner
triangle TR(rc) for rc. We have from Sharma et al. [20] that EA(rc) can be computed for each
corner rc of P such that it satisfies the following lemma. Furthermore, the eligible areas of two
different corners of P do not overlap [20].

Lemma 7.1 ([20]) The eligible area EA(rc) for each corner rc of P is a non-empty convex polygon.
When rc moves to any point in EA(rc), rc remains as a corner of P and all the internal and side
robots of P are visible to rc (and vice-versa).

Algorithm We now discuss how Complete Visibility can be solved starting from all feasible
initial configurations Cfeasible (Definition 1). The collinear Cfeasible can be transformed to a non-
collinear Cfeasible using the technique of Section 4.2.1. It is easy to see that Definition 1 is not
violated after applying the technique of Section 4.2.1.

After non-collinear Cfeasible is reached, each corner of P colors itself Red (without moving).
After colored Red, the corners of P move toward the interior of P to shrink P until all robots in Q
become corners of P as in Section 4.2.2. The side and interior robots of P do nothing (no change in
color and they do not move) until they become corners of P.

We are now ready to describe how a corner rc of P moves to shrink P. The goal is to make both
u, v (faulty robots) corners of P, along with the remaining robots of Q. After that from Definition
1, we can argue on the correctness of the algorithm on solving Complete Visibility. Let rc be a
corner of P colored Red. It differentiates the following three cases to move when becomes active in
some round.

• Robot rc sees at least three robots with color Off: Robot rc moves toward the interior
of P as in Section 4.2.2, keeping its color Red. Robot rc moves to either CLSc or TLSc.

• Robot rc sees exactly two robots ri, rj with color Off: Robot rc differentiates the
following two sub-cases:

(i) Robot ri and/or rj is in the interior or side of P(rc): Robot rc moves toward the
interior of P as in the (above) case of seeing at least three robots with lights Off. Note
that rc moves to either CLSc or TLSc, and keeps its color Red.

49

Complete Visibility for Mobile Robots with Lights Tolerating Faults

(ii) Both ri, rj are corners of P(rc): Robot rc moves to a point in the eligible area EA(rc)
and assumes color Green.

• Robot rc sees exactly one robot ri with color Off: Robot rc differentiates the following
two sub-cases:

(i) Robot ri is in the interior or side of P(rc): Robot rc moves toward the interior of P
as in the (above) case of seeing at least three robots with lights Off. Note that rc moves
to either CLSc or TLSc, and keeps its color Red.

(ii) Robot ri is a corner of P(rc): Robot rc moves to a point in the eligible area EA(rc)
and assumes color Green.

There might be scenarios similar to Section 4.2.2 where after rc colored Green, it sees either (a)
three or more robots with color Off or (b) at least a robot with color Off in the interior or side
of P. In this case, rc changes its color back to Red and continue shrinking P based on which case
above applies for rc.

We now discuss how a corner rc terminates its computation. Robot rc terminates if and only if
all three conditions below satisfy simultaneously.

(i) rc is colored Green,

(ii) all robots in C(rc) are on the corners of P(rc), i.e., there is no side or interior robot in P(rc),
and

(iii) all corners of P(rc), in addition to rc, are colored Green, except at most 2 corner robots of P
colored ∈ {Red, Off}.

Analysis of the Algorithm We now analyze the correctness of the algorithm. We proceed
by proving the following lemma which is crucial to show that all robots of any feasible initial
configuration Cfeasible become corners of P and Complete Visibility is solved.

Lemma 7.2 Let a corner robot rc, after colored Green, sees at most 2 robots ri, rj with light Off

in the corners of P(rc) and there is no side or interior robot in P. If ri, rj are in fact the interior
robots of P, then (i) they block rc from seeing at most two corners of P, and (ii) they are inside
triangles formed by three consecutive corners of P.

Proof. Since rc is colored Green, it must have seen ri, rj on the corners of P(rc) with color Off,
when it was colored Red. Otherwise, rc would not assume color Green. When rc assumed color
Green, it must have moved to a point in EA(rc). We have from Lemma 7.1 that rc sees all interior
and side robots of P after moving to a point in EA(ci). Therefore, since rc sees no interior robot
besides ri, rj even after moving to EA(rc), then either (a) ri, rj are corners of P or (b) ri, rj are the
only robots in the interior of P. In Case (a), we are done. In Case (b), each ri, rj can block only
one corner of P. Therefore, we have the part (i) of lemma. For part (ii), it is easy to observe that
if ri (or rj) was not in the triangle formed by three consecutive corners of P, rc would have seen it
as internal in P(rc). ut

We are now ready to prove the main result of this section.

Theorem 7.3 Given a set of N ≥ 3 robots (with lights) being in the distinct positions in a plane
satisfying Definition 1, there is an algorithm that solves Complete Visibility tolerating two crash-
faulty robots using 3 colors and without collisions in the semi-synchronous setting.

Proof. Similar to Lemma 5.1, it can be shown that any collinear feasible initial configuration
Cfeasible correctly transforms to a non-collinear feasible configuration Cfeasible. The collision-free
execution of the algorithm is also immediate similar to Lemma 5.2. Furthermore, similar to Lemma
5.3, it is easy to see that corners of P remain as corners and the corners of P monotonically increase
throughout the execution of the algorithm.

50

International Journal of Networking and Computing

We have from Lemma 7.2 that a corner rc of P never terminates if there are more than two
robots in the interior, side, or on the corners of P with color Off. We again have from Lemma
7.2 that if only (at most) two robots ri, rj are in the interior of P with color Off, and a corner rc
terminates, then they are inside the triangles formed by three consecutive corners of P. Since the
corners are moving inside, once inside the triangle of a corner, an interior robot never gets outside
of that triangle until it becomes a corner (since that robot does not move until it becomes a corner).
Therefore, even if rc terminates, ri, rj become corners of P through the moves of the other corners
of P (except rc). This is because all other corners of P (except rc) will definitely see both ri, rj
internal in their convex hulls (one robot cannot block the same robot from two or more different
robots) and two corners of P see one of ri, rj inside the triangle they form with their neighbors. If
ri, rj were inside the triangles of the corners but not blocking rc to see the corner of triangle they
are in, rc sees ri, rj as internal in P(rc) and it terminates after both ri, rj become corners of P.
Therefore, the techniques used to prove Theorem 1.1 can be extended to obtain this theorem.

Only three colors Off, Red, and Green are used throughout the algorithm. ut

8 Concluding Remarks

We have presented, to our best knowledge, the first fault-tolerant algorithm for the Complete
Visibility problem using 3 colors in the robots with lights model under the semi-synchronous
setting, tolerating one crash-faulty robot, not known a priori. The algorithm terminates in finite
time avoiding collisions. All previous algorithms were not fault-tolerant (except handling some
special cases in [11]). We then provided an impossibility result on solving the Complete Visibility
problem tolerating a Byzantine faulty robot in a system of N = 3 robots. Furthermore, we provided a
Complete Visibility algorithm that tolerates two crash-faulty robots in a system of N ≥ 3 robots
using 3 colors in the semi-synchronous setting for a certain subset of arbitrary initial configurations.

Many questions remain for future work. It will be interesting to extend our algorithm to handle
non-rigid movements and also to the asynchronous setting. It will also be interesting to either (i)
minimize the number of colors from 3 to 2 as a 2-color algorithm is optimal w.r.t. the number of
colors in the fault-free robots with lights model (for Complete Visibility) [11, 16] when N is not
known; note that in our algorithm robots have no knowledge of N , or (ii) prove that any 3-color
solution is optimal in the faulty robots with lights model. Most importantly, it will be interesting
to tolerate 3 or more faults in the crash-fault model.

References

[1] Chrysovalandis Agathangelou, Chryssis Georgiou, and Marios Mavronicolas. A distributed
algorithm for gathering many fat mobile robots in the plane. In PODC, pages 250–259, 2013.

[2] Noa Agmon and David Peleg. Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM J. Comput., 36(1):56–82, July 2006.

[3] Subhash Bhagat and Krishnendu Mukhopadhyaya. Optimum algorithm for mutual visibility
among asynchronous robots with lights. In SSS, pages 341–355, 2017.

[4] Kálmán Bolla, Tamás Kovacs, and Gábor Fazekas. Gathering of fat robots with limited visibility
and without global navigation. In SIDE, pages 30–38, 2012.

[5] Reuven Cohen and David Peleg. Local spreading algorithms for autonomous robot systems.
Theor. Comput. Sci., 399(1-2):71–82, June 2008.

[6] Andreas Cord-Landwehr, Bastian Degener, Matthias Fischer, Martina Hüllmann, Barbara
Kempkes, Alexander Klaas, Peter Kling, Sven Kurras, Marcus Märtens, Friedhelm Meyer auf
der Heide, Christoph Raupach, Kamil Swierkot, Daniel Warner, Christoph Weddemann, and
Daniel Wonisch. Collisionless gathering of robots with an extent. In SOFSEM, pages 178–189,
2011.

51

Complete Visibility for Mobile Robots with Lights Tolerating Faults

[7] Jurek Czyzowicz, Leszek Gasieniec, and Andrzej Pelc. Gathering few fat mobile robots in the
plane. Theor. Comput. Sci., 410(6-7):481–499, 2009.

[8] Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Masafumi Yamashita.
Autonomous mobile robots with lights. Theor. Comput. Sci., 609:171–184, 2016.

[9] Ayan Dutta, Sruti Gan Chaudhuri, Suparno Datta, and Krishnendu Mukhopadhyaya. Circle
formation by asynchronous fat robots with limited visibility. In ICDCIT, pages 83–93, 2012.

[10] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed computing by oblivious
mobile robots. Synthesis Lectures on Distributed Computing Theory, 3(2):1–185, 2012.

[11] Giuseppe Antonio Di Luna, Paola Flocchini, Sruti Gan Chaudhuri, Federico Poloni, Nicola
Santoro, and Giovanni Viglietta. Mutual visibility by luminous robots without collisions. Inf.
Comput., 254:392–418, 2017.

[12] Giuseppe Antonio Di Luna, Paola Flocchini, Sruti Gan Chaudhuri, Nicola Santoro, and Gio-
vanni Viglietta. Robots with lights: Overcoming obstructed visibility without colliding. In SSS,
pages 150–164, 2014.

[13] Giuseppe Antonio Di Luna, Paola Flocchini, Federico Poloni, Nicola Santoro, and Giovanni
Viglietta. The mutual visibility problem for oblivious robots. In CCCG, pages 348–354, 2014.

[14] Linda Pagli, Giuseppe Prencipe, and Giovanni Viglietta. Getting close without touching: Near-
gathering for autonomous mobile robots. Distrib. Comput., 28(5):333–349, October 2015.

[15] David Peleg. Distributed coordination algorithms for mobile robot swarms: New directions and
challenges. In IWDC, pages 1–12, 2005.

[16] Gokarna Sharma, Costas Busch, and Supratik Mukhopadhyay. Bounds on mutual visibility
algorithms. In CCCG, pages 268–274, 2015.

[17] Gokarna Sharma, Costas Busch, and Supratik Mukhopadhyay. Mutual visibility with an optimal
number of colors. In ALGOSENSORS, pages 196–210, 2015.

[18] Gokarna Sharma, Costas Busch, and Supratik Mukhopadhyay. Brief announcement: Complete
visibility for oblivious robots in linear time. In SPAA, pages 325–327, 2017.

[19] Gokarna Sharma, Ramachandran Vaidyanathan, and Jerry L. Trahan. Constant-time complete
visibility for asynchronous robots with lights. In SSS, pages 265–281, 2017.

[20] Gokarna Sharma, Ramachandran Vaidyanathan, Jerry L. Trahan, Costas Busch, and Suresh
Rai. Complete visibility for robots with lights in o(1) time. In SSS, pages 327–345, 2016.

[21] Gokarna Sharma, Ramachandran Vaidyanathan, Jerry L. Trahan, Costas Busch, and Suresh
Rai. Logarithmic-time complete visibility for asynchronous robots with lights. In IPDPS, pages
513–522, 2017.

[22] Ramachandran Vaidyanathan, Costas Busch, Jerry L. Trahan, Gokarna Sharma, and Suresh
Rai. Logarithmic-time complete visibility for robots with lights. In IPDPS, pages 375–384,
2015.

52

	Introduction
	Detailed Related Work
	Model and Preliminaries
	Algorithm Tolerating a Single Fault
	High Level Overview of the Algorithm
	Details of the Algorithm
	Transforming a collinear C0 to a Non-collinear C0
	Reaching Complete Visibility Configuration from a Non-Collinear C0
	Termination of the Algorithm

	Analysis of the Single Fault Algorithm
	Impossibility of Complete Visibility under Byzantine Faults
	Algorithm Tolerating Two Crash Faults
	Concluding Remarks

